Properties

Label 637.2.e.f.508.2
Level $637$
Weight $2$
Character 637.508
Analytic conductor $5.086$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(79,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 508.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 637.508
Dual form 637.2.e.f.79.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(-0.707107 + 1.22474i) q^{3} +(-0.792893 - 1.37333i) q^{5} -2.00000 q^{6} +2.82843 q^{8} +(0.500000 + 0.866025i) q^{9} +(1.12132 - 1.94218i) q^{10} +(-2.12132 + 3.67423i) q^{11} -1.00000 q^{13} +2.24264 q^{15} +(2.00000 + 3.46410i) q^{16} +(-0.707107 + 1.22474i) q^{17} +(-0.707107 + 1.22474i) q^{18} +(3.62132 + 6.27231i) q^{19} -6.00000 q^{22} +(2.91421 + 5.04757i) q^{23} +(-2.00000 + 3.46410i) q^{24} +(1.24264 - 2.15232i) q^{25} +(-0.707107 - 1.22474i) q^{26} -5.65685 q^{27} +0.171573 q^{29} +(1.58579 + 2.74666i) q^{30} +(-1.62132 + 2.80821i) q^{31} +(-3.00000 - 5.19615i) q^{33} -2.00000 q^{34} +(-1.12132 - 1.94218i) q^{37} +(-5.12132 + 8.87039i) q^{38} +(0.707107 - 1.22474i) q^{39} +(-2.24264 - 3.88437i) q^{40} +8.82843 q^{41} -5.00000 q^{43} +(0.792893 - 1.37333i) q^{45} +(-4.12132 + 7.13834i) q^{46} +(-0.792893 - 1.37333i) q^{47} -5.65685 q^{48} +3.51472 q^{50} +(-1.00000 - 1.73205i) q^{51} +(0.0857864 - 0.148586i) q^{53} +(-4.00000 - 6.92820i) q^{54} +6.72792 q^{55} -10.2426 q^{57} +(0.121320 + 0.210133i) q^{58} +(-0.171573 + 0.297173i) q^{59} +(-3.00000 - 5.19615i) q^{61} -4.58579 q^{62} +8.00000 q^{64} +(0.792893 + 1.37333i) q^{65} +(4.24264 - 7.34847i) q^{66} +(7.24264 - 12.5446i) q^{67} -8.24264 q^{69} -13.0711 q^{71} +(1.41421 + 2.44949i) q^{72} +(4.62132 - 8.00436i) q^{73} +(1.58579 - 2.74666i) q^{74} +(1.75736 + 3.04384i) q^{75} +2.00000 q^{78} +(-7.74264 - 13.4106i) q^{79} +(3.17157 - 5.49333i) q^{80} +(2.50000 - 4.33013i) q^{81} +(6.24264 + 10.8126i) q^{82} +13.2426 q^{83} +2.24264 q^{85} +(-3.53553 - 6.12372i) q^{86} +(-0.121320 + 0.210133i) q^{87} +(-6.00000 + 10.3923i) q^{88} +(-0.792893 - 1.37333i) q^{89} +2.24264 q^{90} +(-2.29289 - 3.97141i) q^{93} +(1.12132 - 1.94218i) q^{94} +(5.74264 - 9.94655i) q^{95} +11.7279 q^{97} -4.24264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{5} - 8 q^{6} + 2 q^{9} - 4 q^{10} - 4 q^{13} - 8 q^{15} + 8 q^{16} + 6 q^{19} - 24 q^{22} + 6 q^{23} - 8 q^{24} - 12 q^{25} + 12 q^{29} + 12 q^{30} + 2 q^{31} - 12 q^{33} - 8 q^{34} + 4 q^{37}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(3\) −0.707107 + 1.22474i −0.408248 + 0.707107i −0.994694 0.102882i \(-0.967194\pi\)
0.586445 + 0.809989i \(0.300527\pi\)
\(4\) 0 0
\(5\) −0.792893 1.37333i −0.354593 0.614172i 0.632456 0.774597i \(-0.282047\pi\)
−0.987048 + 0.160424i \(0.948714\pi\)
\(6\) −2.00000 −0.816497
\(7\) 0 0
\(8\) 2.82843 1.00000
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 1.12132 1.94218i 0.354593 0.614172i
\(11\) −2.12132 + 3.67423i −0.639602 + 1.10782i 0.345918 + 0.938265i \(0.387568\pi\)
−0.985520 + 0.169559i \(0.945766\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 2.24264 0.579047
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −0.707107 + 1.22474i −0.171499 + 0.297044i −0.938944 0.344070i \(-0.888194\pi\)
0.767445 + 0.641114i \(0.221528\pi\)
\(18\) −0.707107 + 1.22474i −0.166667 + 0.288675i
\(19\) 3.62132 + 6.27231i 0.830788 + 1.43897i 0.897414 + 0.441189i \(0.145443\pi\)
−0.0666264 + 0.997778i \(0.521224\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −6.00000 −1.27920
\(23\) 2.91421 + 5.04757i 0.607656 + 1.05249i 0.991626 + 0.129145i \(0.0412232\pi\)
−0.383970 + 0.923345i \(0.625443\pi\)
\(24\) −2.00000 + 3.46410i −0.408248 + 0.707107i
\(25\) 1.24264 2.15232i 0.248528 0.430463i
\(26\) −0.707107 1.22474i −0.138675 0.240192i
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) 0.171573 0.0318603 0.0159301 0.999873i \(-0.494929\pi\)
0.0159301 + 0.999873i \(0.494929\pi\)
\(30\) 1.58579 + 2.74666i 0.289524 + 0.501470i
\(31\) −1.62132 + 2.80821i −0.291198 + 0.504369i −0.974093 0.226147i \(-0.927387\pi\)
0.682895 + 0.730516i \(0.260720\pi\)
\(32\) 0 0
\(33\) −3.00000 5.19615i −0.522233 0.904534i
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 0 0
\(37\) −1.12132 1.94218i −0.184344 0.319293i 0.759011 0.651077i \(-0.225683\pi\)
−0.943355 + 0.331784i \(0.892349\pi\)
\(38\) −5.12132 + 8.87039i −0.830788 + 1.43897i
\(39\) 0.707107 1.22474i 0.113228 0.196116i
\(40\) −2.24264 3.88437i −0.354593 0.614172i
\(41\) 8.82843 1.37877 0.689384 0.724396i \(-0.257881\pi\)
0.689384 + 0.724396i \(0.257881\pi\)
\(42\) 0 0
\(43\) −5.00000 −0.762493 −0.381246 0.924473i \(-0.624505\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 0 0
\(45\) 0.792893 1.37333i 0.118198 0.204724i
\(46\) −4.12132 + 7.13834i −0.607656 + 1.05249i
\(47\) −0.792893 1.37333i −0.115655 0.200321i 0.802386 0.596805i \(-0.203563\pi\)
−0.918042 + 0.396484i \(0.870230\pi\)
\(48\) −5.65685 −0.816497
\(49\) 0 0
\(50\) 3.51472 0.497056
\(51\) −1.00000 1.73205i −0.140028 0.242536i
\(52\) 0 0
\(53\) 0.0857864 0.148586i 0.0117837 0.0204099i −0.860073 0.510170i \(-0.829582\pi\)
0.871857 + 0.489760i \(0.162916\pi\)
\(54\) −4.00000 6.92820i −0.544331 0.942809i
\(55\) 6.72792 0.907193
\(56\) 0 0
\(57\) −10.2426 −1.35667
\(58\) 0.121320 + 0.210133i 0.0159301 + 0.0275918i
\(59\) −0.171573 + 0.297173i −0.0223369 + 0.0386886i −0.876978 0.480531i \(-0.840444\pi\)
0.854641 + 0.519220i \(0.173777\pi\)
\(60\) 0 0
\(61\) −3.00000 5.19615i −0.384111 0.665299i 0.607535 0.794293i \(-0.292159\pi\)
−0.991645 + 0.128994i \(0.958825\pi\)
\(62\) −4.58579 −0.582395
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 0.792893 + 1.37333i 0.0983463 + 0.170341i
\(66\) 4.24264 7.34847i 0.522233 0.904534i
\(67\) 7.24264 12.5446i 0.884829 1.53257i 0.0389203 0.999242i \(-0.487608\pi\)
0.845909 0.533327i \(-0.179059\pi\)
\(68\) 0 0
\(69\) −8.24264 −0.992297
\(70\) 0 0
\(71\) −13.0711 −1.55125 −0.775625 0.631194i \(-0.782565\pi\)
−0.775625 + 0.631194i \(0.782565\pi\)
\(72\) 1.41421 + 2.44949i 0.166667 + 0.288675i
\(73\) 4.62132 8.00436i 0.540885 0.936840i −0.457969 0.888968i \(-0.651423\pi\)
0.998854 0.0478714i \(-0.0152438\pi\)
\(74\) 1.58579 2.74666i 0.184344 0.319293i
\(75\) 1.75736 + 3.04384i 0.202922 + 0.351472i
\(76\) 0 0
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) −7.74264 13.4106i −0.871115 1.50882i −0.860844 0.508868i \(-0.830064\pi\)
−0.0102708 0.999947i \(-0.503269\pi\)
\(80\) 3.17157 5.49333i 0.354593 0.614172i
\(81\) 2.50000 4.33013i 0.277778 0.481125i
\(82\) 6.24264 + 10.8126i 0.689384 + 1.19405i
\(83\) 13.2426 1.45357 0.726784 0.686866i \(-0.241014\pi\)
0.726784 + 0.686866i \(0.241014\pi\)
\(84\) 0 0
\(85\) 2.24264 0.243249
\(86\) −3.53553 6.12372i −0.381246 0.660338i
\(87\) −0.121320 + 0.210133i −0.0130069 + 0.0225286i
\(88\) −6.00000 + 10.3923i −0.639602 + 1.10782i
\(89\) −0.792893 1.37333i −0.0840465 0.145573i 0.820938 0.571017i \(-0.193451\pi\)
−0.904985 + 0.425445i \(0.860118\pi\)
\(90\) 2.24264 0.236395
\(91\) 0 0
\(92\) 0 0
\(93\) −2.29289 3.97141i −0.237762 0.411816i
\(94\) 1.12132 1.94218i 0.115655 0.200321i
\(95\) 5.74264 9.94655i 0.589183 1.02049i
\(96\) 0 0
\(97\) 11.7279 1.19079 0.595395 0.803433i \(-0.296996\pi\)
0.595395 + 0.803433i \(0.296996\pi\)
\(98\) 0 0
\(99\) −4.24264 −0.426401
\(100\) 0 0
\(101\) −5.12132 + 8.87039i −0.509590 + 0.882636i 0.490348 + 0.871527i \(0.336870\pi\)
−0.999938 + 0.0111097i \(0.996464\pi\)
\(102\) 1.41421 2.44949i 0.140028 0.242536i
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) −2.82843 −0.277350
\(105\) 0 0
\(106\) 0.242641 0.0235673
\(107\) 10.0711 + 17.4436i 0.973607 + 1.68634i 0.684458 + 0.729052i \(0.260039\pi\)
0.289149 + 0.957284i \(0.406628\pi\)
\(108\) 0 0
\(109\) −8.36396 + 14.4868i −0.801122 + 1.38758i 0.117756 + 0.993043i \(0.462430\pi\)
−0.918878 + 0.394542i \(0.870903\pi\)
\(110\) 4.75736 + 8.23999i 0.453596 + 0.785652i
\(111\) 3.17157 0.301032
\(112\) 0 0
\(113\) 2.31371 0.217655 0.108828 0.994061i \(-0.465290\pi\)
0.108828 + 0.994061i \(0.465290\pi\)
\(114\) −7.24264 12.5446i −0.678335 1.17491i
\(115\) 4.62132 8.00436i 0.430940 0.746411i
\(116\) 0 0
\(117\) −0.500000 0.866025i −0.0462250 0.0800641i
\(118\) −0.485281 −0.0446738
\(119\) 0 0
\(120\) 6.34315 0.579047
\(121\) −3.50000 6.06218i −0.318182 0.551107i
\(122\) 4.24264 7.34847i 0.384111 0.665299i
\(123\) −6.24264 + 10.8126i −0.562880 + 0.974937i
\(124\) 0 0
\(125\) −11.8701 −1.06169
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 5.65685 + 9.79796i 0.500000 + 0.866025i
\(129\) 3.53553 6.12372i 0.311286 0.539164i
\(130\) −1.12132 + 1.94218i −0.0983463 + 0.170341i
\(131\) 1.41421 + 2.44949i 0.123560 + 0.214013i 0.921169 0.389162i \(-0.127235\pi\)
−0.797609 + 0.603175i \(0.793902\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 20.4853 1.76966
\(135\) 4.48528 + 7.76874i 0.386032 + 0.668626i
\(136\) −2.00000 + 3.46410i −0.171499 + 0.297044i
\(137\) 2.29289 3.97141i 0.195895 0.339300i −0.751298 0.659963i \(-0.770572\pi\)
0.947194 + 0.320662i \(0.103905\pi\)
\(138\) −5.82843 10.0951i −0.496149 0.859355i
\(139\) 6.24264 0.529494 0.264747 0.964318i \(-0.414712\pi\)
0.264747 + 0.964318i \(0.414712\pi\)
\(140\) 0 0
\(141\) 2.24264 0.188864
\(142\) −9.24264 16.0087i −0.775625 1.34342i
\(143\) 2.12132 3.67423i 0.177394 0.307255i
\(144\) −2.00000 + 3.46410i −0.166667 + 0.288675i
\(145\) −0.136039 0.235626i −0.0112974 0.0195677i
\(146\) 13.0711 1.08177
\(147\) 0 0
\(148\) 0 0
\(149\) −8.12132 14.0665i −0.665324 1.15238i −0.979197 0.202911i \(-0.934960\pi\)
0.313873 0.949465i \(-0.398373\pi\)
\(150\) −2.48528 + 4.30463i −0.202922 + 0.351472i
\(151\) 4.87868 8.45012i 0.397021 0.687661i −0.596336 0.802735i \(-0.703377\pi\)
0.993357 + 0.115074i \(0.0367106\pi\)
\(152\) 10.2426 + 17.7408i 0.830788 + 1.43897i
\(153\) −1.41421 −0.114332
\(154\) 0 0
\(155\) 5.14214 0.413026
\(156\) 0 0
\(157\) 1.87868 3.25397i 0.149935 0.259695i −0.781268 0.624195i \(-0.785427\pi\)
0.931203 + 0.364500i \(0.118760\pi\)
\(158\) 10.9497 18.9655i 0.871115 1.50882i
\(159\) 0.121320 + 0.210133i 0.00962133 + 0.0166646i
\(160\) 0 0
\(161\) 0 0
\(162\) 7.07107 0.555556
\(163\) −4.24264 7.34847i −0.332309 0.575577i 0.650655 0.759374i \(-0.274494\pi\)
−0.982964 + 0.183797i \(0.941161\pi\)
\(164\) 0 0
\(165\) −4.75736 + 8.23999i −0.370360 + 0.641482i
\(166\) 9.36396 + 16.2189i 0.726784 + 1.25883i
\(167\) 15.3848 1.19051 0.595255 0.803537i \(-0.297051\pi\)
0.595255 + 0.803537i \(0.297051\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 1.58579 + 2.74666i 0.121624 + 0.210659i
\(171\) −3.62132 + 6.27231i −0.276929 + 0.479656i
\(172\) 0 0
\(173\) −12.3640 21.4150i −0.940015 1.62815i −0.765438 0.643509i \(-0.777478\pi\)
−0.174576 0.984644i \(-0.555856\pi\)
\(174\) −0.343146 −0.0260138
\(175\) 0 0
\(176\) −16.9706 −1.27920
\(177\) −0.242641 0.420266i −0.0182380 0.0315891i
\(178\) 1.12132 1.94218i 0.0840465 0.145573i
\(179\) 4.50000 7.79423i 0.336346 0.582568i −0.647397 0.762153i \(-0.724142\pi\)
0.983742 + 0.179585i \(0.0574756\pi\)
\(180\) 0 0
\(181\) −18.7279 −1.39204 −0.696018 0.718025i \(-0.745047\pi\)
−0.696018 + 0.718025i \(0.745047\pi\)
\(182\) 0 0
\(183\) 8.48528 0.627250
\(184\) 8.24264 + 14.2767i 0.607656 + 1.05249i
\(185\) −1.77817 + 3.07989i −0.130734 + 0.226438i
\(186\) 3.24264 5.61642i 0.237762 0.411816i
\(187\) −3.00000 5.19615i −0.219382 0.379980i
\(188\) 0 0
\(189\) 0 0
\(190\) 16.2426 1.17837
\(191\) −7.58579 13.1390i −0.548888 0.950702i −0.998351 0.0574033i \(-0.981718\pi\)
0.449463 0.893299i \(-0.351615\pi\)
\(192\) −5.65685 + 9.79796i −0.408248 + 0.707107i
\(193\) 7.24264 12.5446i 0.521337 0.902982i −0.478355 0.878166i \(-0.658767\pi\)
0.999692 0.0248153i \(-0.00789976\pi\)
\(194\) 8.29289 + 14.3637i 0.595395 + 1.03125i
\(195\) −2.24264 −0.160599
\(196\) 0 0
\(197\) 12.3431 0.879413 0.439706 0.898142i \(-0.355083\pi\)
0.439706 + 0.898142i \(0.355083\pi\)
\(198\) −3.00000 5.19615i −0.213201 0.369274i
\(199\) 1.87868 3.25397i 0.133176 0.230668i −0.791723 0.610880i \(-0.790816\pi\)
0.924899 + 0.380212i \(0.124149\pi\)
\(200\) 3.51472 6.08767i 0.248528 0.430463i
\(201\) 10.2426 + 17.7408i 0.722460 + 1.25134i
\(202\) −14.4853 −1.01918
\(203\) 0 0
\(204\) 0 0
\(205\) −7.00000 12.1244i −0.488901 0.846802i
\(206\) −5.65685 + 9.79796i −0.394132 + 0.682656i
\(207\) −2.91421 + 5.04757i −0.202552 + 0.350830i
\(208\) −2.00000 3.46410i −0.138675 0.240192i
\(209\) −30.7279 −2.12549
\(210\) 0 0
\(211\) −15.9706 −1.09946 −0.549729 0.835343i \(-0.685269\pi\)
−0.549729 + 0.835343i \(0.685269\pi\)
\(212\) 0 0
\(213\) 9.24264 16.0087i 0.633295 1.09690i
\(214\) −14.2426 + 24.6690i −0.973607 + 1.68634i
\(215\) 3.96447 + 6.86666i 0.270374 + 0.468302i
\(216\) −16.0000 −1.08866
\(217\) 0 0
\(218\) −23.6569 −1.60224
\(219\) 6.53553 + 11.3199i 0.441630 + 0.764926i
\(220\) 0 0
\(221\) 0.707107 1.22474i 0.0475651 0.0823853i
\(222\) 2.24264 + 3.88437i 0.150516 + 0.260702i
\(223\) 0.757359 0.0507165 0.0253583 0.999678i \(-0.491927\pi\)
0.0253583 + 0.999678i \(0.491927\pi\)
\(224\) 0 0
\(225\) 2.48528 0.165685
\(226\) 1.63604 + 2.83370i 0.108828 + 0.188495i
\(227\) −13.4142 + 23.2341i −0.890333 + 1.54210i −0.0508557 + 0.998706i \(0.516195\pi\)
−0.839477 + 0.543395i \(0.817138\pi\)
\(228\) 0 0
\(229\) −14.7279 25.5095i −0.973248 1.68572i −0.685598 0.727980i \(-0.740459\pi\)
−0.287651 0.957735i \(-0.592874\pi\)
\(230\) 13.0711 0.861881
\(231\) 0 0
\(232\) 0.485281 0.0318603
\(233\) 7.32843 + 12.6932i 0.480101 + 0.831560i 0.999739 0.0228267i \(-0.00726659\pi\)
−0.519638 + 0.854386i \(0.673933\pi\)
\(234\) 0.707107 1.22474i 0.0462250 0.0800641i
\(235\) −1.25736 + 2.17781i −0.0820211 + 0.142065i
\(236\) 0 0
\(237\) 21.8995 1.42253
\(238\) 0 0
\(239\) 3.51472 0.227348 0.113674 0.993518i \(-0.463738\pi\)
0.113674 + 0.993518i \(0.463738\pi\)
\(240\) 4.48528 + 7.76874i 0.289524 + 0.501470i
\(241\) 10.1066 17.5051i 0.651023 1.12761i −0.331851 0.943332i \(-0.607673\pi\)
0.982875 0.184274i \(-0.0589934\pi\)
\(242\) 4.94975 8.57321i 0.318182 0.551107i
\(243\) −4.94975 8.57321i −0.317526 0.549972i
\(244\) 0 0
\(245\) 0 0
\(246\) −17.6569 −1.12576
\(247\) −3.62132 6.27231i −0.230419 0.399098i
\(248\) −4.58579 + 7.94282i −0.291198 + 0.504369i
\(249\) −9.36396 + 16.2189i −0.593417 + 1.02783i
\(250\) −8.39340 14.5378i −0.530845 0.919451i
\(251\) 16.5858 1.04689 0.523443 0.852061i \(-0.324647\pi\)
0.523443 + 0.852061i \(0.324647\pi\)
\(252\) 0 0
\(253\) −24.7279 −1.55463
\(254\) 1.41421 + 2.44949i 0.0887357 + 0.153695i
\(255\) −1.58579 + 2.74666i −0.0993058 + 0.172003i
\(256\) 0 0
\(257\) 9.70711 + 16.8132i 0.605513 + 1.04878i 0.991970 + 0.126472i \(0.0403652\pi\)
−0.386458 + 0.922307i \(0.626301\pi\)
\(258\) 10.0000 0.622573
\(259\) 0 0
\(260\) 0 0
\(261\) 0.0857864 + 0.148586i 0.00531005 + 0.00919727i
\(262\) −2.00000 + 3.46410i −0.123560 + 0.214013i
\(263\) −0.985281 + 1.70656i −0.0607551 + 0.105231i −0.894803 0.446461i \(-0.852684\pi\)
0.834048 + 0.551692i \(0.186018\pi\)
\(264\) −8.48528 14.6969i −0.522233 0.904534i
\(265\) −0.272078 −0.0167136
\(266\) 0 0
\(267\) 2.24264 0.137247
\(268\) 0 0
\(269\) −4.58579 + 7.94282i −0.279600 + 0.484282i −0.971285 0.237917i \(-0.923535\pi\)
0.691685 + 0.722199i \(0.256869\pi\)
\(270\) −6.34315 + 10.9867i −0.386032 + 0.668626i
\(271\) −10.0000 17.3205i −0.607457 1.05215i −0.991658 0.128897i \(-0.958856\pi\)
0.384201 0.923249i \(-0.374477\pi\)
\(272\) −5.65685 −0.342997
\(273\) 0 0
\(274\) 6.48528 0.391790
\(275\) 5.27208 + 9.13151i 0.317918 + 0.550651i
\(276\) 0 0
\(277\) 3.74264 6.48244i 0.224873 0.389492i −0.731408 0.681940i \(-0.761136\pi\)
0.956281 + 0.292448i \(0.0944698\pi\)
\(278\) 4.41421 + 7.64564i 0.264747 + 0.458555i
\(279\) −3.24264 −0.194132
\(280\) 0 0
\(281\) 15.5563 0.928014 0.464007 0.885832i \(-0.346411\pi\)
0.464007 + 0.885832i \(0.346411\pi\)
\(282\) 1.58579 + 2.74666i 0.0944322 + 0.163561i
\(283\) 4.24264 7.34847i 0.252199 0.436821i −0.711932 0.702248i \(-0.752180\pi\)
0.964131 + 0.265427i \(0.0855130\pi\)
\(284\) 0 0
\(285\) 8.12132 + 14.0665i 0.481065 + 0.833230i
\(286\) 6.00000 0.354787
\(287\) 0 0
\(288\) 0 0
\(289\) 7.50000 + 12.9904i 0.441176 + 0.764140i
\(290\) 0.192388 0.333226i 0.0112974 0.0195677i
\(291\) −8.29289 + 14.3637i −0.486138 + 0.842016i
\(292\) 0 0
\(293\) 15.3848 0.898788 0.449394 0.893334i \(-0.351640\pi\)
0.449394 + 0.893334i \(0.351640\pi\)
\(294\) 0 0
\(295\) 0.544156 0.0316820
\(296\) −3.17157 5.49333i −0.184344 0.319293i
\(297\) 12.0000 20.7846i 0.696311 1.20605i
\(298\) 11.4853 19.8931i 0.665324 1.15238i
\(299\) −2.91421 5.04757i −0.168533 0.291908i
\(300\) 0 0
\(301\) 0 0
\(302\) 13.7990 0.794043
\(303\) −7.24264 12.5446i −0.416079 0.720670i
\(304\) −14.4853 + 25.0892i −0.830788 + 1.43897i
\(305\) −4.75736 + 8.23999i −0.272406 + 0.471820i
\(306\) −1.00000 1.73205i −0.0571662 0.0990148i
\(307\) 13.2426 0.755797 0.377899 0.925847i \(-0.376647\pi\)
0.377899 + 0.925847i \(0.376647\pi\)
\(308\) 0 0
\(309\) −11.3137 −0.643614
\(310\) 3.63604 + 6.29780i 0.206513 + 0.357691i
\(311\) 3.70711 6.42090i 0.210211 0.364096i −0.741570 0.670876i \(-0.765918\pi\)
0.951780 + 0.306780i \(0.0992517\pi\)
\(312\) 2.00000 3.46410i 0.113228 0.196116i
\(313\) −11.6066 20.1032i −0.656044 1.13630i −0.981631 0.190789i \(-0.938895\pi\)
0.325587 0.945512i \(-0.394438\pi\)
\(314\) 5.31371 0.299870
\(315\) 0 0
\(316\) 0 0
\(317\) 5.65685 + 9.79796i 0.317721 + 0.550308i 0.980012 0.198938i \(-0.0637493\pi\)
−0.662291 + 0.749246i \(0.730416\pi\)
\(318\) −0.171573 + 0.297173i −0.00962133 + 0.0166646i
\(319\) −0.363961 + 0.630399i −0.0203779 + 0.0352956i
\(320\) −6.34315 10.9867i −0.354593 0.614172i
\(321\) −28.4853 −1.58989
\(322\) 0 0
\(323\) −10.2426 −0.569916
\(324\) 0 0
\(325\) −1.24264 + 2.15232i −0.0689293 + 0.119389i
\(326\) 6.00000 10.3923i 0.332309 0.575577i
\(327\) −11.8284 20.4874i −0.654114 1.13296i
\(328\) 24.9706 1.37877
\(329\) 0 0
\(330\) −13.4558 −0.740720
\(331\) 9.00000 + 15.5885i 0.494685 + 0.856819i 0.999981 0.00612670i \(-0.00195020\pi\)
−0.505296 + 0.862946i \(0.668617\pi\)
\(332\) 0 0
\(333\) 1.12132 1.94218i 0.0614480 0.106431i
\(334\) 10.8787 + 18.8424i 0.595255 + 1.03101i
\(335\) −22.9706 −1.25502
\(336\) 0 0
\(337\) −33.0000 −1.79762 −0.898812 0.438334i \(-0.855569\pi\)
−0.898812 + 0.438334i \(0.855569\pi\)
\(338\) 0.707107 + 1.22474i 0.0384615 + 0.0666173i
\(339\) −1.63604 + 2.83370i −0.0888574 + 0.153906i
\(340\) 0 0
\(341\) −6.87868 11.9142i −0.372501 0.645191i
\(342\) −10.2426 −0.553859
\(343\) 0 0
\(344\) −14.1421 −0.762493
\(345\) 6.53553 + 11.3199i 0.351861 + 0.609442i
\(346\) 17.4853 30.2854i 0.940015 1.62815i
\(347\) 2.82843 4.89898i 0.151838 0.262991i −0.780065 0.625698i \(-0.784814\pi\)
0.931903 + 0.362707i \(0.118147\pi\)
\(348\) 0 0
\(349\) −25.7279 −1.37718 −0.688592 0.725149i \(-0.741771\pi\)
−0.688592 + 0.725149i \(0.741771\pi\)
\(350\) 0 0
\(351\) 5.65685 0.301941
\(352\) 0 0
\(353\) 4.24264 7.34847i 0.225813 0.391120i −0.730750 0.682645i \(-0.760830\pi\)
0.956563 + 0.291526i \(0.0941628\pi\)
\(354\) 0.343146 0.594346i 0.0182380 0.0315891i
\(355\) 10.3640 + 17.9509i 0.550062 + 0.952735i
\(356\) 0 0
\(357\) 0 0
\(358\) 12.7279 0.672692
\(359\) 13.9497 + 24.1617i 0.736240 + 1.27520i 0.954177 + 0.299242i \(0.0967337\pi\)
−0.217938 + 0.975963i \(0.569933\pi\)
\(360\) 2.24264 3.88437i 0.118198 0.204724i
\(361\) −16.7279 + 28.9736i −0.880417 + 1.52493i
\(362\) −13.2426 22.9369i −0.696018 1.20554i
\(363\) 9.89949 0.519589
\(364\) 0 0
\(365\) −14.6569 −0.767175
\(366\) 6.00000 + 10.3923i 0.313625 + 0.543214i
\(367\) −5.12132 + 8.87039i −0.267331 + 0.463030i −0.968172 0.250287i \(-0.919475\pi\)
0.700841 + 0.713318i \(0.252808\pi\)
\(368\) −11.6569 + 20.1903i −0.607656 + 1.05249i
\(369\) 4.41421 + 7.64564i 0.229795 + 0.398016i
\(370\) −5.02944 −0.261468
\(371\) 0 0
\(372\) 0 0
\(373\) −4.24264 7.34847i −0.219676 0.380489i 0.735033 0.678031i \(-0.237167\pi\)
−0.954709 + 0.297542i \(0.903833\pi\)
\(374\) 4.24264 7.34847i 0.219382 0.379980i
\(375\) 8.39340 14.5378i 0.433433 0.750728i
\(376\) −2.24264 3.88437i −0.115655 0.200321i
\(377\) −0.171573 −0.00883645
\(378\) 0 0
\(379\) 23.7574 1.22033 0.610167 0.792273i \(-0.291102\pi\)
0.610167 + 0.792273i \(0.291102\pi\)
\(380\) 0 0
\(381\) −1.41421 + 2.44949i −0.0724524 + 0.125491i
\(382\) 10.7279 18.5813i 0.548888 0.950702i
\(383\) 10.2426 + 17.7408i 0.523374 + 0.906511i 0.999630 + 0.0272042i \(0.00866044\pi\)
−0.476255 + 0.879307i \(0.658006\pi\)
\(384\) −16.0000 −0.816497
\(385\) 0 0
\(386\) 20.4853 1.04267
\(387\) −2.50000 4.33013i −0.127082 0.220113i
\(388\) 0 0
\(389\) −14.8284 + 25.6836i −0.751831 + 1.30221i 0.195103 + 0.980783i \(0.437496\pi\)
−0.946934 + 0.321427i \(0.895838\pi\)
\(390\) −1.58579 2.74666i −0.0802994 0.139083i
\(391\) −8.24264 −0.416848
\(392\) 0 0
\(393\) −4.00000 −0.201773
\(394\) 8.72792 + 15.1172i 0.439706 + 0.761594i
\(395\) −12.2782 + 21.2664i −0.617782 + 1.07003i
\(396\) 0 0
\(397\) 9.10660 + 15.7731i 0.457047 + 0.791629i 0.998803 0.0489067i \(-0.0155737\pi\)
−0.541756 + 0.840536i \(0.682240\pi\)
\(398\) 5.31371 0.266352
\(399\) 0 0
\(400\) 9.94113 0.497056
\(401\) −3.17157 5.49333i −0.158381 0.274324i 0.775904 0.630851i \(-0.217294\pi\)
−0.934285 + 0.356527i \(0.883961\pi\)
\(402\) −14.4853 + 25.0892i −0.722460 + 1.25134i
\(403\) 1.62132 2.80821i 0.0807637 0.139887i
\(404\) 0 0
\(405\) −7.92893 −0.393992
\(406\) 0 0
\(407\) 9.51472 0.471627
\(408\) −2.82843 4.89898i −0.140028 0.242536i
\(409\) −1.62132 + 2.80821i −0.0801691 + 0.138857i −0.903322 0.428962i \(-0.858879\pi\)
0.823153 + 0.567819i \(0.192213\pi\)
\(410\) 9.89949 17.1464i 0.488901 0.846802i
\(411\) 3.24264 + 5.61642i 0.159948 + 0.277037i
\(412\) 0 0
\(413\) 0 0
\(414\) −8.24264 −0.405104
\(415\) −10.5000 18.1865i −0.515425 0.892742i
\(416\) 0 0
\(417\) −4.41421 + 7.64564i −0.216165 + 0.374409i
\(418\) −21.7279 37.6339i −1.06275 1.84073i
\(419\) −20.8701 −1.01957 −0.509785 0.860302i \(-0.670275\pi\)
−0.509785 + 0.860302i \(0.670275\pi\)
\(420\) 0 0
\(421\) 6.72792 0.327899 0.163949 0.986469i \(-0.447577\pi\)
0.163949 + 0.986469i \(0.447577\pi\)
\(422\) −11.2929 19.5599i −0.549729 0.952159i
\(423\) 0.792893 1.37333i 0.0385518 0.0667737i
\(424\) 0.242641 0.420266i 0.0117837 0.0204099i
\(425\) 1.75736 + 3.04384i 0.0852444 + 0.147648i
\(426\) 26.1421 1.26659
\(427\) 0 0
\(428\) 0 0
\(429\) 3.00000 + 5.19615i 0.144841 + 0.250873i
\(430\) −5.60660 + 9.71092i −0.270374 + 0.468302i
\(431\) 6.17157 10.6895i 0.297274 0.514894i −0.678237 0.734843i \(-0.737256\pi\)
0.975511 + 0.219949i \(0.0705891\pi\)
\(432\) −11.3137 19.5959i −0.544331 0.942809i
\(433\) −24.9706 −1.20001 −0.600004 0.799997i \(-0.704834\pi\)
−0.600004 + 0.799997i \(0.704834\pi\)
\(434\) 0 0
\(435\) 0.384776 0.0184486
\(436\) 0 0
\(437\) −21.1066 + 36.5577i −1.00967 + 1.74879i
\(438\) −9.24264 + 16.0087i −0.441630 + 0.764926i
\(439\) 17.2426 + 29.8651i 0.822946 + 1.42538i 0.903479 + 0.428633i \(0.141005\pi\)
−0.0805324 + 0.996752i \(0.525662\pi\)
\(440\) 19.0294 0.907193
\(441\) 0 0
\(442\) 2.00000 0.0951303
\(443\) 1.84315 + 3.19242i 0.0875705 + 0.151677i 0.906484 0.422241i \(-0.138756\pi\)
−0.818913 + 0.573917i \(0.805423\pi\)
\(444\) 0 0
\(445\) −1.25736 + 2.17781i −0.0596045 + 0.103238i
\(446\) 0.535534 + 0.927572i 0.0253583 + 0.0439218i
\(447\) 22.9706 1.08647
\(448\) 0 0
\(449\) 21.1716 0.999148 0.499574 0.866271i \(-0.333490\pi\)
0.499574 + 0.866271i \(0.333490\pi\)
\(450\) 1.75736 + 3.04384i 0.0828427 + 0.143488i
\(451\) −18.7279 + 32.4377i −0.881863 + 1.52743i
\(452\) 0 0
\(453\) 6.89949 + 11.9503i 0.324167 + 0.561473i
\(454\) −37.9411 −1.78067
\(455\) 0 0
\(456\) −28.9706 −1.35667
\(457\) 3.60660 + 6.24682i 0.168710 + 0.292214i 0.937966 0.346726i \(-0.112707\pi\)
−0.769257 + 0.638940i \(0.779373\pi\)
\(458\) 20.8284 36.0759i 0.973248 1.68572i
\(459\) 4.00000 6.92820i 0.186704 0.323381i
\(460\) 0 0
\(461\) 8.82843 0.411181 0.205590 0.978638i \(-0.434089\pi\)
0.205590 + 0.978638i \(0.434089\pi\)
\(462\) 0 0
\(463\) −4.24264 −0.197172 −0.0985861 0.995129i \(-0.531432\pi\)
−0.0985861 + 0.995129i \(0.531432\pi\)
\(464\) 0.343146 + 0.594346i 0.0159301 + 0.0275918i
\(465\) −3.63604 + 6.29780i −0.168617 + 0.292054i
\(466\) −10.3640 + 17.9509i −0.480101 + 0.831560i
\(467\) 1.94975 + 3.37706i 0.0902236 + 0.156272i 0.907605 0.419825i \(-0.137909\pi\)
−0.817382 + 0.576097i \(0.804575\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −3.55635 −0.164042
\(471\) 2.65685 + 4.60181i 0.122421 + 0.212040i
\(472\) −0.485281 + 0.840532i −0.0223369 + 0.0386886i
\(473\) 10.6066 18.3712i 0.487692 0.844707i
\(474\) 15.4853 + 26.8213i 0.711263 + 1.23194i
\(475\) 18.0000 0.825897
\(476\) 0 0
\(477\) 0.171573 0.00785578
\(478\) 2.48528 + 4.30463i 0.113674 + 0.196889i
\(479\) 3.10660 5.38079i 0.141944 0.245855i −0.786284 0.617865i \(-0.787998\pi\)
0.928229 + 0.372010i \(0.121331\pi\)
\(480\) 0 0
\(481\) 1.12132 + 1.94218i 0.0511278 + 0.0885560i
\(482\) 28.5858 1.30205
\(483\) 0 0
\(484\) 0 0
\(485\) −9.29899 16.1063i −0.422245 0.731350i
\(486\) 7.00000 12.1244i 0.317526 0.549972i
\(487\) 5.72792 9.92105i 0.259557 0.449566i −0.706566 0.707647i \(-0.749757\pi\)
0.966123 + 0.258081i \(0.0830901\pi\)
\(488\) −8.48528 14.6969i −0.384111 0.665299i
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) 16.6274 0.750385 0.375192 0.926947i \(-0.377577\pi\)
0.375192 + 0.926947i \(0.377577\pi\)
\(492\) 0 0
\(493\) −0.121320 + 0.210133i −0.00546399 + 0.00946391i
\(494\) 5.12132 8.87039i 0.230419 0.399098i
\(495\) 3.36396 + 5.82655i 0.151199 + 0.261884i
\(496\) −12.9706 −0.582395
\(497\) 0 0
\(498\) −26.4853 −1.18683
\(499\) 6.63604 + 11.4940i 0.297070 + 0.514540i 0.975464 0.220158i \(-0.0706572\pi\)
−0.678394 + 0.734698i \(0.737324\pi\)
\(500\) 0 0
\(501\) −10.8787 + 18.8424i −0.486024 + 0.841818i
\(502\) 11.7279 + 20.3134i 0.523443 + 0.906629i
\(503\) −28.6274 −1.27643 −0.638217 0.769857i \(-0.720328\pi\)
−0.638217 + 0.769857i \(0.720328\pi\)
\(504\) 0 0
\(505\) 16.2426 0.722788
\(506\) −17.4853 30.2854i −0.777316 1.34635i
\(507\) −0.707107 + 1.22474i −0.0314037 + 0.0543928i
\(508\) 0 0
\(509\) 2.55025 + 4.41717i 0.113038 + 0.195787i 0.916994 0.398902i \(-0.130608\pi\)
−0.803956 + 0.594689i \(0.797275\pi\)
\(510\) −4.48528 −0.198612
\(511\) 0 0
\(512\) 22.6274 1.00000
\(513\) −20.4853 35.4815i −0.904447 1.56655i
\(514\) −13.7279 + 23.7775i −0.605513 + 1.04878i
\(515\) 6.34315 10.9867i 0.279512 0.484130i
\(516\) 0 0
\(517\) 6.72792 0.295894
\(518\) 0 0
\(519\) 34.9706 1.53504
\(520\) 2.24264 + 3.88437i 0.0983463 + 0.170341i
\(521\) 3.17157 5.49333i 0.138949 0.240667i −0.788150 0.615483i \(-0.788961\pi\)
0.927099 + 0.374816i \(0.122294\pi\)
\(522\) −0.121320 + 0.210133i −0.00531005 + 0.00919727i
\(523\) −15.4853 26.8213i −0.677124 1.17281i −0.975843 0.218472i \(-0.929893\pi\)
0.298719 0.954341i \(-0.403441\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −2.78680 −0.121510
\(527\) −2.29289 3.97141i −0.0998800 0.172997i
\(528\) 12.0000 20.7846i 0.522233 0.904534i
\(529\) −5.48528 + 9.50079i −0.238490 + 0.413078i
\(530\) −0.192388 0.333226i −0.00835681 0.0144744i
\(531\) −0.343146 −0.0148913
\(532\) 0 0
\(533\) −8.82843 −0.382402
\(534\) 1.58579 + 2.74666i 0.0686237 + 0.118860i
\(535\) 15.9706 27.6618i 0.690468 1.19593i
\(536\) 20.4853 35.4815i 0.884829 1.53257i
\(537\) 6.36396 + 11.0227i 0.274625 + 0.475665i
\(538\) −12.9706 −0.559201
\(539\) 0 0
\(540\) 0 0
\(541\) 3.60660 + 6.24682i 0.155060 + 0.268572i 0.933081 0.359667i \(-0.117110\pi\)
−0.778021 + 0.628238i \(0.783776\pi\)
\(542\) 14.1421 24.4949i 0.607457 1.05215i
\(543\) 13.2426 22.9369i 0.568296 0.984318i
\(544\) 0 0
\(545\) 26.5269 1.13629
\(546\) 0 0
\(547\) 35.4853 1.51724 0.758621 0.651533i \(-0.225874\pi\)
0.758621 + 0.651533i \(0.225874\pi\)
\(548\) 0 0
\(549\) 3.00000 5.19615i 0.128037 0.221766i
\(550\) −7.45584 + 12.9139i −0.317918 + 0.550651i
\(551\) 0.621320 + 1.07616i 0.0264691 + 0.0458459i
\(552\) −23.3137 −0.992297
\(553\) 0 0
\(554\) 10.5858 0.449747
\(555\) −2.51472 4.35562i −0.106744 0.184886i
\(556\) 0 0
\(557\) −6.00000 + 10.3923i −0.254228 + 0.440336i −0.964686 0.263404i \(-0.915155\pi\)
0.710457 + 0.703740i \(0.248488\pi\)
\(558\) −2.29289 3.97141i −0.0970659 0.168123i
\(559\) 5.00000 0.211477
\(560\) 0 0
\(561\) 8.48528 0.358249
\(562\) 11.0000 + 19.0526i 0.464007 + 0.803684i
\(563\) 3.17157 5.49333i 0.133666 0.231516i −0.791421 0.611271i \(-0.790658\pi\)
0.925087 + 0.379755i \(0.123992\pi\)
\(564\) 0 0
\(565\) −1.83452 3.17749i −0.0771790 0.133678i
\(566\) 12.0000 0.504398
\(567\) 0 0
\(568\) −36.9706 −1.55125
\(569\) −2.57107 4.45322i −0.107785 0.186689i 0.807088 0.590431i \(-0.201042\pi\)
−0.914873 + 0.403743i \(0.867709\pi\)
\(570\) −11.4853 + 19.8931i −0.481065 + 0.833230i
\(571\) −21.2279 + 36.7678i −0.888361 + 1.53869i −0.0465485 + 0.998916i \(0.514822\pi\)
−0.841812 + 0.539770i \(0.818511\pi\)
\(572\) 0 0
\(573\) 21.4558 0.896331
\(574\) 0 0
\(575\) 14.4853 0.604078
\(576\) 4.00000 + 6.92820i 0.166667 + 0.288675i
\(577\) 3.48528 6.03668i 0.145094 0.251310i −0.784314 0.620364i \(-0.786985\pi\)
0.929408 + 0.369054i \(0.120318\pi\)
\(578\) −10.6066 + 18.3712i −0.441176 + 0.764140i
\(579\) 10.2426 + 17.7408i 0.425670 + 0.737281i
\(580\) 0 0
\(581\) 0 0
\(582\) −23.4558 −0.972276
\(583\) 0.363961 + 0.630399i 0.0150737 + 0.0261085i
\(584\) 13.0711 22.6398i 0.540885 0.936840i
\(585\) −0.792893 + 1.37333i −0.0327821 + 0.0567803i
\(586\) 10.8787 + 18.8424i 0.449394 + 0.778373i
\(587\) −6.55635 −0.270609 −0.135305 0.990804i \(-0.543201\pi\)
−0.135305 + 0.990804i \(0.543201\pi\)
\(588\) 0 0
\(589\) −23.4853 −0.967694
\(590\) 0.384776 + 0.666452i 0.0158410 + 0.0274374i
\(591\) −8.72792 + 15.1172i −0.359019 + 0.621839i
\(592\) 4.48528 7.76874i 0.184344 0.319293i
\(593\) 0.278175 + 0.481813i 0.0114233 + 0.0197857i 0.871681 0.490075i \(-0.163030\pi\)
−0.860257 + 0.509860i \(0.829697\pi\)
\(594\) 33.9411 1.39262
\(595\) 0 0
\(596\) 0 0
\(597\) 2.65685 + 4.60181i 0.108738 + 0.188339i
\(598\) 4.12132 7.13834i 0.168533 0.291908i
\(599\) 14.3995 24.9407i 0.588347 1.01905i −0.406102 0.913828i \(-0.633112\pi\)
0.994449 0.105220i \(-0.0335546\pi\)
\(600\) 4.97056 + 8.60927i 0.202922 + 0.351472i
\(601\) −38.9706 −1.58964 −0.794821 0.606844i \(-0.792435\pi\)
−0.794821 + 0.606844i \(0.792435\pi\)
\(602\) 0 0
\(603\) 14.4853 0.589886
\(604\) 0 0
\(605\) −5.55025 + 9.61332i −0.225650 + 0.390837i
\(606\) 10.2426 17.7408i 0.416079 0.720670i
\(607\) 13.3640 + 23.1471i 0.542426 + 0.939510i 0.998764 + 0.0497034i \(0.0158276\pi\)
−0.456338 + 0.889807i \(0.650839\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −13.4558 −0.544811
\(611\) 0.792893 + 1.37333i 0.0320770 + 0.0555590i
\(612\) 0 0
\(613\) 8.00000 13.8564i 0.323117 0.559655i −0.658012 0.753007i \(-0.728603\pi\)
0.981129 + 0.193352i \(0.0619359\pi\)
\(614\) 9.36396 + 16.2189i 0.377899 + 0.654540i
\(615\) 19.7990 0.798372
\(616\) 0 0
\(617\) 12.3431 0.496916 0.248458 0.968643i \(-0.420076\pi\)
0.248458 + 0.968643i \(0.420076\pi\)
\(618\) −8.00000 13.8564i −0.321807 0.557386i
\(619\) −0.485281 + 0.840532i −0.0195051 + 0.0337838i −0.875613 0.483013i \(-0.839542\pi\)
0.856108 + 0.516797i \(0.172876\pi\)
\(620\) 0 0
\(621\) −16.4853 28.5533i −0.661532 1.14581i
\(622\) 10.4853 0.420421
\(623\) 0 0
\(624\) 5.65685 0.226455
\(625\) 3.19848 + 5.53994i 0.127939 + 0.221598i
\(626\) 16.4142 28.4303i 0.656044 1.13630i
\(627\) 21.7279 37.6339i 0.867730 1.50295i
\(628\) 0 0
\(629\) 3.17157 0.126459
\(630\) 0 0
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) −21.8995 37.9310i −0.871115 1.50882i
\(633\) 11.2929 19.5599i 0.448852 0.777435i
\(634\) −8.00000 + 13.8564i −0.317721 + 0.550308i
\(635\) −1.58579 2.74666i −0.0629300 0.108998i
\(636\) 0 0
\(637\) 0 0
\(638\) −1.02944 −0.0407558
\(639\) −6.53553 11.3199i −0.258542 0.447807i
\(640\) 8.97056 15.5375i 0.354593 0.614172i
\(641\) −7.67157 + 13.2876i −0.303009 + 0.524827i −0.976816 0.214080i \(-0.931325\pi\)
0.673807 + 0.738907i \(0.264658\pi\)
\(642\) −20.1421 34.8872i −0.794947 1.37689i
\(643\) −12.4853 −0.492371 −0.246186 0.969223i \(-0.579177\pi\)
−0.246186 + 0.969223i \(0.579177\pi\)
\(644\) 0 0
\(645\) −11.2132 −0.441519
\(646\) −7.24264 12.5446i −0.284958 0.493562i
\(647\) −7.26346 + 12.5807i −0.285556 + 0.494597i −0.972744 0.231882i \(-0.925512\pi\)
0.687188 + 0.726480i \(0.258845\pi\)
\(648\) 7.07107 12.2474i 0.277778 0.481125i
\(649\) −0.727922 1.26080i −0.0285734 0.0494907i
\(650\) −3.51472 −0.137859
\(651\) 0 0
\(652\) 0 0
\(653\) −8.65685 14.9941i −0.338769 0.586765i 0.645433 0.763817i \(-0.276677\pi\)
−0.984201 + 0.177052i \(0.943344\pi\)
\(654\) 16.7279 28.9736i 0.654114 1.13296i
\(655\) 2.24264 3.88437i 0.0876272 0.151775i
\(656\) 17.6569 + 30.5826i 0.689384 + 1.19405i
\(657\) 9.24264 0.360590
\(658\) 0 0
\(659\) −15.3431 −0.597684 −0.298842 0.954303i \(-0.596600\pi\)
−0.298842 + 0.954303i \(0.596600\pi\)
\(660\) 0 0
\(661\) 5.37868 9.31615i 0.209206 0.362356i −0.742258 0.670114i \(-0.766245\pi\)
0.951465 + 0.307758i \(0.0995786\pi\)
\(662\) −12.7279 + 22.0454i −0.494685 + 0.856819i
\(663\) 1.00000 + 1.73205i 0.0388368 + 0.0672673i
\(664\) 37.4558 1.45357
\(665\) 0 0
\(666\) 3.17157 0.122896
\(667\) 0.500000 + 0.866025i 0.0193601 + 0.0335326i
\(668\) 0 0
\(669\) −0.535534 + 0.927572i −0.0207049 + 0.0358620i
\(670\) −16.2426 28.1331i −0.627508 1.08688i
\(671\) 25.4558 0.982712
\(672\) 0 0
\(673\) −26.9411 −1.03850 −0.519252 0.854621i \(-0.673789\pi\)
−0.519252 + 0.854621i \(0.673789\pi\)
\(674\) −23.3345 40.4166i −0.898812 1.55679i
\(675\) −7.02944 + 12.1753i −0.270563 + 0.468629i
\(676\) 0 0
\(677\) 20.6777 + 35.8148i 0.794707 + 1.37647i 0.923025 + 0.384740i \(0.125709\pi\)
−0.128317 + 0.991733i \(0.540958\pi\)
\(678\) −4.62742 −0.177715
\(679\) 0 0
\(680\) 6.34315 0.243249
\(681\) −18.9706 32.8580i −0.726954 1.25912i
\(682\) 9.72792 16.8493i 0.372501 0.645191i
\(683\) 10.5858 18.3351i 0.405054 0.701574i −0.589274 0.807933i \(-0.700586\pi\)
0.994328 + 0.106359i \(0.0339194\pi\)
\(684\) 0 0
\(685\) −7.27208 −0.277852
\(686\) 0 0
\(687\) 41.6569 1.58931
\(688\) −10.0000 17.3205i −0.381246 0.660338i
\(689\) −0.0857864 + 0.148586i −0.00326820 + 0.00566069i
\(690\) −9.24264 + 16.0087i −0.351861 + 0.609442i
\(691\) −14.3492 24.8536i −0.545871 0.945476i −0.998552 0.0538034i \(-0.982866\pi\)
0.452681 0.891673i \(-0.350468\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 8.00000 0.303676
\(695\) −4.94975 8.57321i −0.187755 0.325201i
\(696\) −0.343146 + 0.594346i −0.0130069 + 0.0225286i
\(697\) −6.24264 + 10.8126i −0.236457 + 0.409555i
\(698\) −18.1924 31.5101i −0.688592 1.19268i
\(699\) −20.7279 −0.784002
\(700\) 0 0
\(701\) −10.7990 −0.407872 −0.203936 0.978984i \(-0.565373\pi\)
−0.203936 + 0.978984i \(0.565373\pi\)
\(702\) 4.00000 + 6.92820i 0.150970 + 0.261488i
\(703\) 8.12132 14.0665i 0.306301 0.530530i
\(704\) −16.9706 + 29.3939i −0.639602 + 1.10782i
\(705\) −1.77817 3.07989i −0.0669699 0.115995i
\(706\) 12.0000 0.451626
\(707\) 0 0
\(708\) 0 0
\(709\) −0.363961 0.630399i −0.0136688 0.0236751i 0.859110 0.511791i \(-0.171018\pi\)
−0.872779 + 0.488116i \(0.837684\pi\)
\(710\) −14.6569 + 25.3864i −0.550062 + 0.952735i
\(711\) 7.74264 13.4106i 0.290372 0.502939i
\(712\) −2.24264 3.88437i −0.0840465 0.145573i
\(713\) −18.8995 −0.707792
\(714\) 0 0
\(715\) −6.72792 −0.251610
\(716\) 0 0
\(717\) −2.48528 + 4.30463i −0.0928145 + 0.160759i
\(718\) −19.7279 + 34.1698i −0.736240 + 1.27520i
\(719\) 0.878680 + 1.52192i 0.0327692 + 0.0567580i 0.881945 0.471352i \(-0.156234\pi\)
−0.849176 + 0.528110i \(0.822901\pi\)
\(720\) 6.34315 0.236395
\(721\) 0 0
\(722\) −47.3137 −1.76083
\(723\) 14.2929 + 24.7560i 0.531558 + 0.920686i
\(724\) 0 0
\(725\) 0.213203 0.369279i 0.00791818 0.0137147i
\(726\) 7.00000 + 12.1244i 0.259794 + 0.449977i
\(727\) 42.0000 1.55769 0.778847 0.627214i \(-0.215805\pi\)
0.778847 + 0.627214i \(0.215805\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) −10.3640 17.9509i −0.383587 0.664393i
\(731\) 3.53553 6.12372i 0.130766 0.226494i
\(732\) 0 0
\(733\) 8.34924 + 14.4613i 0.308386 + 0.534141i 0.978010 0.208560i \(-0.0668777\pi\)
−0.669623 + 0.742701i \(0.733544\pi\)
\(734\) −14.4853 −0.534661
\(735\) 0 0
\(736\) 0 0
\(737\) 30.7279 + 53.2223i 1.13188 + 1.96047i
\(738\) −6.24264 + 10.8126i −0.229795 + 0.398016i
\(739\) 8.84924 15.3273i 0.325525 0.563825i −0.656094 0.754679i \(-0.727792\pi\)
0.981618 + 0.190854i \(0.0611258\pi\)
\(740\) 0 0
\(741\) 10.2426 0.376273
\(742\) 0 0
\(743\) −29.6569 −1.08800 −0.544002 0.839084i \(-0.683092\pi\)
−0.544002 + 0.839084i \(0.683092\pi\)
\(744\) −6.48528 11.2328i −0.237762 0.411816i
\(745\) −12.8787 + 22.3065i −0.471838 + 0.817248i
\(746\) 6.00000 10.3923i 0.219676 0.380489i
\(747\) 6.62132 + 11.4685i 0.242261 + 0.419609i
\(748\) 0 0
\(749\) 0 0
\(750\) 23.7401 0.866866
\(751\) −7.74264 13.4106i −0.282533 0.489361i 0.689475 0.724310i \(-0.257841\pi\)
−0.972008 + 0.234948i \(0.924508\pi\)
\(752\) 3.17157 5.49333i 0.115655 0.200321i
\(753\) −11.7279 + 20.3134i −0.427389 + 0.740260i
\(754\) −0.121320 0.210133i −0.00441823 0.00765259i
\(755\) −15.4731 −0.563123
\(756\) 0 0
\(757\) 21.4853 0.780896 0.390448 0.920625i \(-0.372320\pi\)
0.390448 + 0.920625i \(0.372320\pi\)
\(758\) 16.7990 + 29.0967i 0.610167 + 1.05684i
\(759\) 17.4853 30.2854i 0.634676 1.09929i
\(760\) 16.2426 28.1331i 0.589183 1.02049i
\(761\) −17.3787 30.1008i −0.629977 1.09115i −0.987556 0.157269i \(-0.949731\pi\)
0.357579 0.933883i \(-0.383602\pi\)
\(762\) −4.00000 −0.144905
\(763\) 0 0
\(764\) 0 0
\(765\) 1.12132 + 1.94218i 0.0405414 + 0.0702198i
\(766\) −14.4853 + 25.0892i −0.523374 + 0.906511i
\(767\) 0.171573 0.297173i 0.00619514 0.0107303i
\(768\) 0 0
\(769\) 52.2132 1.88286 0.941428 0.337214i \(-0.109484\pi\)
0.941428 + 0.337214i \(0.109484\pi\)
\(770\) 0 0
\(771\) −27.4558 −0.988798
\(772\) 0 0
\(773\) 16.4142 28.4303i 0.590378 1.02257i −0.403803 0.914846i \(-0.632312\pi\)
0.994181 0.107719i \(-0.0343547\pi\)
\(774\) 3.53553 6.12372i 0.127082 0.220113i
\(775\) 4.02944 + 6.97919i 0.144742 + 0.250700i
\(776\) 33.1716 1.19079
\(777\) 0 0
\(778\) −41.9411 −1.50366
\(779\) 31.9706 + 55.3746i 1.14546 + 1.98400i
\(780\) 0 0
\(781\) 27.7279 48.0262i 0.992183 1.71851i
\(782\) −5.82843 10.0951i −0.208424 0.361001i
\(783\) −0.970563 −0.0346851
\(784\) 0 0
\(785\) −5.95837 −0.212663
\(786\) −2.82843 4.89898i −0.100887 0.174741i
\(787\) 12.3787 21.4405i 0.441252 0.764271i −0.556530 0.830827i \(-0.687868\pi\)
0.997783 + 0.0665559i \(0.0212011\pi\)
\(788\) 0 0
\(789\) −1.39340 2.41344i −0.0496063 0.0859206i
\(790\) −34.7279 −1.23556
\(791\) 0 0
\(792\) −12.0000 −0.426401
\(793\) 3.00000 + 5.19615i 0.106533 + 0.184521i
\(794\) −12.8787 + 22.3065i −0.457047 + 0.791629i
\(795\) 0.192388 0.333226i 0.00682330 0.0118183i
\(796\) 0 0
\(797\) −24.3431 −0.862278 −0.431139 0.902285i \(-0.641888\pi\)
−0.431139 + 0.902285i \(0.641888\pi\)
\(798\) 0 0
\(799\) 2.24264 0.0793389
\(800\) 0 0
\(801\) 0.792893 1.37333i 0.0280155 0.0485243i
\(802\) 4.48528 7.76874i 0.158381 0.274324i
\(803\) 19.6066 + 33.9596i 0.691902 + 1.19841i
\(804\) 0 0
\(805\) 0 0
\(806\) 4.58579 0.161527
\(807\) −6.48528 11.2328i −0.228293 0.395415i
\(808\) −14.4853 + 25.0892i −0.509590 + 0.882636i
\(809\) −8.74264 + 15.1427i −0.307375 + 0.532389i −0.977787 0.209600i \(-0.932784\pi\)
0.670412 + 0.741989i \(0.266117\pi\)
\(810\) −5.60660 9.71092i −0.196996 0.341207i
\(811\) −21.9411 −0.770457 −0.385229 0.922821i \(-0.625877\pi\)
−0.385229 + 0.922821i \(0.625877\pi\)
\(812\) 0 0
\(813\) 28.2843 0.991973
\(814\) 6.72792 + 11.6531i 0.235814 + 0.408441i
\(815\) −6.72792 + 11.6531i −0.235669 + 0.408190i
\(816\) 4.00000 6.92820i 0.140028 0.242536i
\(817\) −18.1066 31.3616i −0.633470 1.09720i
\(818\) −4.58579 −0.160338
\(819\) 0 0
\(820\) 0 0
\(821\) 10.0711 + 17.4436i 0.351483 + 0.608786i 0.986509 0.163704i \(-0.0523443\pi\)
−0.635027 + 0.772490i \(0.719011\pi\)
\(822\) −4.58579 + 7.94282i −0.159948 + 0.277037i
\(823\) −5.24264 + 9.08052i −0.182747 + 0.316527i −0.942815 0.333316i \(-0.891832\pi\)
0.760068 + 0.649844i \(0.225166\pi\)
\(824\) 11.3137 + 19.5959i 0.394132 + 0.682656i
\(825\) −14.9117 −0.519158
\(826\) 0 0
\(827\) −49.4558 −1.71975 −0.859874 0.510506i \(-0.829458\pi\)
−0.859874 + 0.510506i \(0.829458\pi\)
\(828\) 0 0
\(829\) −25.3640 + 43.9317i −0.880927 + 1.52581i −0.0306146 + 0.999531i \(0.509746\pi\)
−0.850312 + 0.526279i \(0.823587\pi\)
\(830\) 14.8492 25.7196i 0.515425 0.892742i
\(831\) 5.29289 + 9.16756i 0.183608 + 0.318019i
\(832\) −8.00000 −0.277350
\(833\) 0 0
\(834\) −12.4853 −0.432330
\(835\) −12.1985 21.1284i −0.422146 0.731178i
\(836\) 0 0
\(837\) 9.17157 15.8856i 0.317016 0.549088i
\(838\) −14.7574 25.5605i −0.509785 0.882973i
\(839\) −33.1716 −1.14521 −0.572605 0.819831i \(-0.694067\pi\)
−0.572605 + 0.819831i \(0.694067\pi\)
\(840\) 0 0
\(841\) −28.9706 −0.998985
\(842\) 4.75736 + 8.23999i 0.163949 + 0.283969i
\(843\) −11.0000 + 19.0526i −0.378860 + 0.656205i
\(844\) 0 0
\(845\) −0.792893 1.37333i −0.0272764 0.0472440i
\(846\) 2.24264 0.0771036
\(847\) 0 0
\(848\) 0.686292 0.0235673
\(849\) 6.00000 + 10.3923i 0.205919 + 0.356663i
\(850\) −2.48528 + 4.30463i −0.0852444 + 0.147648i
\(851\) 6.53553 11.3199i 0.224035 0.388040i
\(852\) 0 0
\(853\) 39.7279 1.36026 0.680129 0.733092i \(-0.261924\pi\)
0.680129 + 0.733092i \(0.261924\pi\)
\(854\) 0 0
\(855\) 11.4853 0.392788
\(856\) 28.4853 + 49.3380i 0.973607 + 1.68634i
\(857\) 27.3848 47.4318i 0.935446 1.62024i 0.161610 0.986855i \(-0.448331\pi\)
0.773836 0.633385i \(-0.218335\pi\)
\(858\) −4.24264 + 7.34847i −0.144841 + 0.250873i
\(859\) −15.4853 26.8213i −0.528351 0.915131i −0.999454 0.0330523i \(-0.989477\pi\)
0.471103 0.882078i \(-0.343856\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 17.4558 0.594548
\(863\) −14.1421 24.4949i −0.481404 0.833816i 0.518368 0.855157i \(-0.326540\pi\)
−0.999772 + 0.0213414i \(0.993206\pi\)
\(864\) 0 0
\(865\) −19.6066 + 33.9596i −0.666644 + 1.15466i
\(866\) −17.6569 30.5826i −0.600004 1.03924i
\(867\) −21.2132 −0.720438
\(868\) 0 0
\(869\) 65.6985 2.22867
\(870\) 0.272078 + 0.471253i 0.00922431 + 0.0159770i
\(871\) −7.24264 + 12.5446i −0.245408 + 0.425058i
\(872\) −23.6569 + 40.9749i −0.801122 + 1.38758i
\(873\) 5.86396 + 10.1567i 0.198465 + 0.343751i
\(874\) −59.6985 −2.01933
\(875\) 0 0
\(876\) 0 0
\(877\) 5.12132 + 8.87039i 0.172935 + 0.299532i 0.939445 0.342701i \(-0.111342\pi\)
−0.766510 + 0.642232i \(0.778008\pi\)
\(878\) −24.3848 + 42.2357i −0.822946 + 1.42538i
\(879\) −10.8787 + 18.8424i −0.366929 + 0.635539i
\(880\) 13.4558 + 23.3062i 0.453596 + 0.785652i
\(881\) 13.1127 0.441778 0.220889 0.975299i \(-0.429104\pi\)
0.220889 + 0.975299i \(0.429104\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) 0 0
\(885\) −0.384776 + 0.666452i −0.0129341 + 0.0224025i
\(886\) −2.60660 + 4.51477i −0.0875705 + 0.151677i
\(887\) −9.55635 16.5521i −0.320871 0.555765i 0.659797 0.751444i \(-0.270642\pi\)
−0.980668 + 0.195679i \(0.937309\pi\)
\(888\) 8.97056 0.301032
\(889\) 0 0
\(890\) −3.55635 −0.119209
\(891\) 10.6066 + 18.3712i 0.355335 + 0.615457i
\(892\) 0 0
\(893\) 5.74264 9.94655i 0.192170 0.332848i
\(894\) 16.2426 + 28.1331i 0.543235 + 0.940911i
\(895\) −14.2721 −0.477063
\(896\) 0 0
\(897\) 8.24264 0.275214
\(898\) 14.9706 + 25.9298i 0.499574 + 0.865288i
\(899\) −0.278175 + 0.481813i −0.00927764 + 0.0160693i
\(900\) 0 0
\(901\) 0.121320 + 0.210133i 0.00404177 + 0.00700055i
\(902\) −52.9706 −1.76373
\(903\) 0 0
\(904\) 6.54416 0.217655
\(905\) 14.8492 + 25.7196i 0.493606 + 0.854950i
\(906\) −9.75736 + 16.9002i −0.324167 + 0.561473i
\(907\) −0.985281 + 1.70656i −0.0327157 + 0.0566653i −0.881920 0.471400i \(-0.843749\pi\)
0.849204 + 0.528065i \(0.177082\pi\)
\(908\) 0 0
\(909\) −10.2426 −0.339727
\(910\) 0 0
\(911\) −43.9706 −1.45681 −0.728405 0.685147i \(-0.759738\pi\)
−0.728405 + 0.685147i \(0.759738\pi\)
\(912\) −20.4853 35.4815i −0.678335 1.17491i
\(913\) −28.0919 + 48.6566i −0.929706 + 1.61030i
\(914\) −5.10051 + 8.83433i −0.168710 + 0.292214i
\(915\) −6.72792 11.6531i −0.222418 0.385240i
\(916\) 0 0
\(917\) 0 0
\(918\) 11.3137 0.373408
\(919\) −12.0000 20.7846i −0.395843 0.685621i 0.597365 0.801970i \(-0.296214\pi\)
−0.993208 + 0.116348i \(0.962881\pi\)
\(920\) 13.0711 22.6398i 0.430940 0.746411i
\(921\) −9.36396 + 16.2189i −0.308553 + 0.534429i
\(922\) 6.24264 + 10.8126i 0.205590 + 0.356093i
\(923\) 13.0711 0.430239
\(924\) 0 0
\(925\) −5.57359 −0.183259
\(926\) −3.00000 5.19615i −0.0985861 0.170756i
\(927\) −4.00000 + 6.92820i −0.131377 + 0.227552i
\(928\) 0 0
\(929\) −18.4497 31.9559i −0.605317 1.04844i −0.992001 0.126227i \(-0.959713\pi\)
0.386685 0.922212i \(-0.373620\pi\)
\(930\) −10.2843 −0.337235
\(931\) 0 0
\(932\) 0 0
\(933\) 5.24264 + 9.08052i 0.171636 + 0.297283i
\(934\) −2.75736 + 4.77589i −0.0902236 + 0.156272i
\(935\) −4.75736 + 8.23999i −0.155582 + 0.269476i
\(936\) −1.41421 2.44949i −0.0462250 0.0800641i
\(937\) 45.2132 1.47705 0.738525 0.674226i \(-0.235522\pi\)
0.738525 + 0.674226i \(0.235522\pi\)
\(938\) 0 0
\(939\) 32.8284 1.07132
\(940\) 0 0
\(941\) −20.0355 + 34.7026i −0.653140 + 1.13127i 0.329217 + 0.944254i \(0.393215\pi\)
−0.982357 + 0.187017i \(0.940118\pi\)
\(942\) −3.75736 + 6.50794i −0.122421 + 0.212040i
\(943\) 25.7279 + 44.5621i 0.837816 + 1.45114i
\(944\) −1.37258 −0.0446738
\(945\) 0 0
\(946\) 30.0000 0.975384
\(947\) −7.58579 13.1390i −0.246505 0.426959i 0.716049 0.698050i \(-0.245949\pi\)
−0.962554 + 0.271091i \(0.912615\pi\)
\(948\) 0 0
\(949\) −4.62132 + 8.00436i −0.150014 + 0.259833i
\(950\) 12.7279 + 22.0454i 0.412948 + 0.715247i
\(951\) −16.0000 −0.518836
\(952\) 0 0
\(953\) 11.1421 0.360929 0.180465 0.983581i \(-0.442240\pi\)
0.180465 + 0.983581i \(0.442240\pi\)
\(954\) 0.121320 + 0.210133i 0.00392789 + 0.00680331i
\(955\) −12.0294 + 20.8356i −0.389263 + 0.674224i
\(956\) 0 0
\(957\) −0.514719 0.891519i −0.0166385 0.0288187i
\(958\) 8.78680 0.283889
\(959\) 0 0
\(960\) 17.9411 0.579047
\(961\) 10.2426 + 17.7408i 0.330408 + 0.572283i
\(962\) −1.58579 + 2.74666i −0.0511278 + 0.0885560i
\(963\) −10.0711 + 17.4436i −0.324536 + 0.562112i
\(964\) 0 0
\(965\) −22.9706 −0.739449
\(966\) 0 0
\(967\) 17.6985 0.569145 0.284572 0.958655i \(-0.408148\pi\)
0.284572 + 0.958655i \(0.408148\pi\)
\(968\) −9.89949 17.1464i −0.318182 0.551107i
\(969\) 7.24264 12.5446i 0.232667 0.402991i
\(970\) 13.1508 22.7778i 0.422245 0.731350i
\(971\) −21.7279 37.6339i −0.697282 1.20773i −0.969405 0.245466i \(-0.921059\pi\)
0.272123 0.962262i \(-0.412274\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 16.2010 0.519114
\(975\) −1.75736 3.04384i −0.0562805 0.0974808i
\(976\) 12.0000 20.7846i 0.384111 0.665299i
\(977\) −12.0208 + 20.8207i −0.384580 + 0.666112i −0.991711 0.128490i \(-0.958987\pi\)
0.607131 + 0.794602i \(0.292320\pi\)
\(978\) 8.48528 + 14.6969i 0.271329 + 0.469956i
\(979\) 6.72792 0.215025
\(980\) 0 0
\(981\) −16.7279 −0.534081
\(982\) 11.7574 + 20.3643i 0.375192 + 0.649852i
\(983\) 7.52082 13.0264i 0.239877 0.415479i −0.720802 0.693141i \(-0.756226\pi\)
0.960679 + 0.277662i \(0.0895596\pi\)
\(984\) −17.6569 + 30.5826i −0.562880 + 0.974937i
\(985\) −9.78680 16.9512i −0.311833 0.540111i
\(986\) −0.343146 −0.0109280
\(987\) 0 0
\(988\) 0 0
\(989\) −14.5711 25.2378i −0.463333 0.802516i
\(990\) −4.75736 + 8.23999i −0.151199 + 0.261884i
\(991\) −0.514719 + 0.891519i −0.0163506 + 0.0283200i −0.874085 0.485773i \(-0.838538\pi\)
0.857734 + 0.514093i \(0.171871\pi\)
\(992\) 0 0
\(993\) −25.4558 −0.807817
\(994\) 0 0
\(995\) −5.95837 −0.188893
\(996\) 0 0
\(997\) 5.75736 9.97204i 0.182337 0.315818i −0.760339 0.649527i \(-0.774967\pi\)
0.942676 + 0.333709i \(0.108300\pi\)
\(998\) −9.38478 + 16.2549i −0.297070 + 0.514540i
\(999\) 6.34315 + 10.9867i 0.200688 + 0.347602i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.e.f.508.2 4
7.2 even 3 inner 637.2.e.f.79.2 4
7.3 odd 6 637.2.a.g.1.1 2
7.4 even 3 91.2.a.c.1.1 2
7.5 odd 6 637.2.e.g.79.2 4
7.6 odd 2 637.2.e.g.508.2 4
21.11 odd 6 819.2.a.h.1.2 2
21.17 even 6 5733.2.a.s.1.2 2
28.11 odd 6 1456.2.a.q.1.1 2
35.4 even 6 2275.2.a.j.1.2 2
56.11 odd 6 5824.2.a.bk.1.2 2
56.53 even 6 5824.2.a.bl.1.1 2
91.18 odd 12 1183.2.c.d.337.4 4
91.25 even 6 1183.2.a.d.1.2 2
91.38 odd 6 8281.2.a.v.1.2 2
91.60 odd 12 1183.2.c.d.337.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.a.c.1.1 2 7.4 even 3
637.2.a.g.1.1 2 7.3 odd 6
637.2.e.f.79.2 4 7.2 even 3 inner
637.2.e.f.508.2 4 1.1 even 1 trivial
637.2.e.g.79.2 4 7.5 odd 6
637.2.e.g.508.2 4 7.6 odd 2
819.2.a.h.1.2 2 21.11 odd 6
1183.2.a.d.1.2 2 91.25 even 6
1183.2.c.d.337.2 4 91.60 odd 12
1183.2.c.d.337.4 4 91.18 odd 12
1456.2.a.q.1.1 2 28.11 odd 6
2275.2.a.j.1.2 2 35.4 even 6
5733.2.a.s.1.2 2 21.17 even 6
5824.2.a.bk.1.2 2 56.11 odd 6
5824.2.a.bl.1.1 2 56.53 even 6
8281.2.a.v.1.2 2 91.38 odd 6