Properties

Label 5824.2.a.bl.1.1
Level $5824$
Weight $2$
Character 5824.1
Self dual yes
Analytic conductor $46.505$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5824,2,Mod(1,5824)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5824, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5824.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5824 = 2^{6} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5824.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.5048741372\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 5824.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{3} -1.58579 q^{5} +1.00000 q^{7} -1.00000 q^{9} -4.24264 q^{11} +1.00000 q^{13} +2.24264 q^{15} +1.41421 q^{17} +7.24264 q^{19} -1.41421 q^{21} -5.82843 q^{23} -2.48528 q^{25} +5.65685 q^{27} -0.171573 q^{29} +3.24264 q^{31} +6.00000 q^{33} -1.58579 q^{35} -2.24264 q^{37} -1.41421 q^{39} +8.82843 q^{41} +5.00000 q^{43} +1.58579 q^{45} +1.58579 q^{47} +1.00000 q^{49} -2.00000 q^{51} +0.171573 q^{53} +6.72792 q^{55} -10.2426 q^{57} -0.343146 q^{59} -6.00000 q^{61} -1.00000 q^{63} -1.58579 q^{65} +14.4853 q^{67} +8.24264 q^{69} -13.0711 q^{71} -9.24264 q^{73} +3.51472 q^{75} -4.24264 q^{77} +15.4853 q^{79} -5.00000 q^{81} -13.2426 q^{83} -2.24264 q^{85} +0.242641 q^{87} +1.58579 q^{89} +1.00000 q^{91} -4.58579 q^{93} -11.4853 q^{95} +11.7279 q^{97} +4.24264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} + 2 q^{7} - 2 q^{9} + 2 q^{13} - 4 q^{15} + 6 q^{19} - 6 q^{23} + 12 q^{25} - 6 q^{29} - 2 q^{31} + 12 q^{33} - 6 q^{35} + 4 q^{37} + 12 q^{41} + 10 q^{43} + 6 q^{45} + 6 q^{47} + 2 q^{49}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 −0.816497 −0.408248 0.912871i \(-0.633860\pi\)
−0.408248 + 0.912871i \(0.633860\pi\)
\(4\) 0 0
\(5\) −1.58579 −0.709185 −0.354593 0.935021i \(-0.615380\pi\)
−0.354593 + 0.935021i \(0.615380\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.24264 −1.27920 −0.639602 0.768706i \(-0.720901\pi\)
−0.639602 + 0.768706i \(0.720901\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 2.24264 0.579047
\(16\) 0 0
\(17\) 1.41421 0.342997 0.171499 0.985184i \(-0.445139\pi\)
0.171499 + 0.985184i \(0.445139\pi\)
\(18\) 0 0
\(19\) 7.24264 1.66158 0.830788 0.556589i \(-0.187890\pi\)
0.830788 + 0.556589i \(0.187890\pi\)
\(20\) 0 0
\(21\) −1.41421 −0.308607
\(22\) 0 0
\(23\) −5.82843 −1.21531 −0.607656 0.794201i \(-0.707890\pi\)
−0.607656 + 0.794201i \(0.707890\pi\)
\(24\) 0 0
\(25\) −2.48528 −0.497056
\(26\) 0 0
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) −0.171573 −0.0318603 −0.0159301 0.999873i \(-0.505071\pi\)
−0.0159301 + 0.999873i \(0.505071\pi\)
\(30\) 0 0
\(31\) 3.24264 0.582395 0.291198 0.956663i \(-0.405946\pi\)
0.291198 + 0.956663i \(0.405946\pi\)
\(32\) 0 0
\(33\) 6.00000 1.04447
\(34\) 0 0
\(35\) −1.58579 −0.268047
\(36\) 0 0
\(37\) −2.24264 −0.368688 −0.184344 0.982862i \(-0.559016\pi\)
−0.184344 + 0.982862i \(0.559016\pi\)
\(38\) 0 0
\(39\) −1.41421 −0.226455
\(40\) 0 0
\(41\) 8.82843 1.37877 0.689384 0.724396i \(-0.257881\pi\)
0.689384 + 0.724396i \(0.257881\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) 0 0
\(45\) 1.58579 0.236395
\(46\) 0 0
\(47\) 1.58579 0.231311 0.115655 0.993289i \(-0.463103\pi\)
0.115655 + 0.993289i \(0.463103\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 0.171573 0.0235673 0.0117837 0.999931i \(-0.496249\pi\)
0.0117837 + 0.999931i \(0.496249\pi\)
\(54\) 0 0
\(55\) 6.72792 0.907193
\(56\) 0 0
\(57\) −10.2426 −1.35667
\(58\) 0 0
\(59\) −0.343146 −0.0446738 −0.0223369 0.999751i \(-0.507111\pi\)
−0.0223369 + 0.999751i \(0.507111\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) −1.58579 −0.196693
\(66\) 0 0
\(67\) 14.4853 1.76966 0.884829 0.465915i \(-0.154275\pi\)
0.884829 + 0.465915i \(0.154275\pi\)
\(68\) 0 0
\(69\) 8.24264 0.992297
\(70\) 0 0
\(71\) −13.0711 −1.55125 −0.775625 0.631194i \(-0.782565\pi\)
−0.775625 + 0.631194i \(0.782565\pi\)
\(72\) 0 0
\(73\) −9.24264 −1.08177 −0.540885 0.841097i \(-0.681910\pi\)
−0.540885 + 0.841097i \(0.681910\pi\)
\(74\) 0 0
\(75\) 3.51472 0.405845
\(76\) 0 0
\(77\) −4.24264 −0.483494
\(78\) 0 0
\(79\) 15.4853 1.74223 0.871115 0.491079i \(-0.163397\pi\)
0.871115 + 0.491079i \(0.163397\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) −13.2426 −1.45357 −0.726784 0.686866i \(-0.758986\pi\)
−0.726784 + 0.686866i \(0.758986\pi\)
\(84\) 0 0
\(85\) −2.24264 −0.243249
\(86\) 0 0
\(87\) 0.242641 0.0260138
\(88\) 0 0
\(89\) 1.58579 0.168093 0.0840465 0.996462i \(-0.473216\pi\)
0.0840465 + 0.996462i \(0.473216\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) −4.58579 −0.475524
\(94\) 0 0
\(95\) −11.4853 −1.17837
\(96\) 0 0
\(97\) 11.7279 1.19079 0.595395 0.803433i \(-0.296996\pi\)
0.595395 + 0.803433i \(0.296996\pi\)
\(98\) 0 0
\(99\) 4.24264 0.426401
\(100\) 0 0
\(101\) −10.2426 −1.01918 −0.509590 0.860417i \(-0.670203\pi\)
−0.509590 + 0.860417i \(0.670203\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 2.24264 0.218859
\(106\) 0 0
\(107\) 20.1421 1.94721 0.973607 0.228232i \(-0.0732943\pi\)
0.973607 + 0.228232i \(0.0732943\pi\)
\(108\) 0 0
\(109\) −16.7279 −1.60224 −0.801122 0.598501i \(-0.795763\pi\)
−0.801122 + 0.598501i \(0.795763\pi\)
\(110\) 0 0
\(111\) 3.17157 0.301032
\(112\) 0 0
\(113\) 2.31371 0.217655 0.108828 0.994061i \(-0.465290\pi\)
0.108828 + 0.994061i \(0.465290\pi\)
\(114\) 0 0
\(115\) 9.24264 0.861881
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 1.41421 0.129641
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) −12.4853 −1.12576
\(124\) 0 0
\(125\) 11.8701 1.06169
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) −7.07107 −0.622573
\(130\) 0 0
\(131\) 2.82843 0.247121 0.123560 0.992337i \(-0.460569\pi\)
0.123560 + 0.992337i \(0.460569\pi\)
\(132\) 0 0
\(133\) 7.24264 0.628017
\(134\) 0 0
\(135\) −8.97056 −0.772063
\(136\) 0 0
\(137\) −4.58579 −0.391790 −0.195895 0.980625i \(-0.562761\pi\)
−0.195895 + 0.980625i \(0.562761\pi\)
\(138\) 0 0
\(139\) −6.24264 −0.529494 −0.264747 0.964318i \(-0.585288\pi\)
−0.264747 + 0.964318i \(0.585288\pi\)
\(140\) 0 0
\(141\) −2.24264 −0.188864
\(142\) 0 0
\(143\) −4.24264 −0.354787
\(144\) 0 0
\(145\) 0.272078 0.0225948
\(146\) 0 0
\(147\) −1.41421 −0.116642
\(148\) 0 0
\(149\) −16.2426 −1.33065 −0.665324 0.746554i \(-0.731707\pi\)
−0.665324 + 0.746554i \(0.731707\pi\)
\(150\) 0 0
\(151\) −9.75736 −0.794043 −0.397021 0.917809i \(-0.629956\pi\)
−0.397021 + 0.917809i \(0.629956\pi\)
\(152\) 0 0
\(153\) −1.41421 −0.114332
\(154\) 0 0
\(155\) −5.14214 −0.413026
\(156\) 0 0
\(157\) 3.75736 0.299870 0.149935 0.988696i \(-0.452094\pi\)
0.149935 + 0.988696i \(0.452094\pi\)
\(158\) 0 0
\(159\) −0.242641 −0.0192427
\(160\) 0 0
\(161\) −5.82843 −0.459344
\(162\) 0 0
\(163\) −8.48528 −0.664619 −0.332309 0.943170i \(-0.607828\pi\)
−0.332309 + 0.943170i \(0.607828\pi\)
\(164\) 0 0
\(165\) −9.51472 −0.740720
\(166\) 0 0
\(167\) 15.3848 1.19051 0.595255 0.803537i \(-0.297051\pi\)
0.595255 + 0.803537i \(0.297051\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −7.24264 −0.553859
\(172\) 0 0
\(173\) −24.7279 −1.88003 −0.940015 0.341134i \(-0.889189\pi\)
−0.940015 + 0.341134i \(0.889189\pi\)
\(174\) 0 0
\(175\) −2.48528 −0.187870
\(176\) 0 0
\(177\) 0.485281 0.0364760
\(178\) 0 0
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) 0 0
\(181\) 18.7279 1.39204 0.696018 0.718025i \(-0.254953\pi\)
0.696018 + 0.718025i \(0.254953\pi\)
\(182\) 0 0
\(183\) 8.48528 0.627250
\(184\) 0 0
\(185\) 3.55635 0.261468
\(186\) 0 0
\(187\) −6.00000 −0.438763
\(188\) 0 0
\(189\) 5.65685 0.411476
\(190\) 0 0
\(191\) 15.1716 1.09778 0.548888 0.835896i \(-0.315051\pi\)
0.548888 + 0.835896i \(0.315051\pi\)
\(192\) 0 0
\(193\) −14.4853 −1.04267 −0.521337 0.853351i \(-0.674566\pi\)
−0.521337 + 0.853351i \(0.674566\pi\)
\(194\) 0 0
\(195\) 2.24264 0.160599
\(196\) 0 0
\(197\) −12.3431 −0.879413 −0.439706 0.898142i \(-0.644917\pi\)
−0.439706 + 0.898142i \(0.644917\pi\)
\(198\) 0 0
\(199\) −3.75736 −0.266352 −0.133176 0.991092i \(-0.542518\pi\)
−0.133176 + 0.991092i \(0.542518\pi\)
\(200\) 0 0
\(201\) −20.4853 −1.44492
\(202\) 0 0
\(203\) −0.171573 −0.0120421
\(204\) 0 0
\(205\) −14.0000 −0.977802
\(206\) 0 0
\(207\) 5.82843 0.405104
\(208\) 0 0
\(209\) −30.7279 −2.12549
\(210\) 0 0
\(211\) 15.9706 1.09946 0.549729 0.835343i \(-0.314731\pi\)
0.549729 + 0.835343i \(0.314731\pi\)
\(212\) 0 0
\(213\) 18.4853 1.26659
\(214\) 0 0
\(215\) −7.92893 −0.540749
\(216\) 0 0
\(217\) 3.24264 0.220125
\(218\) 0 0
\(219\) 13.0711 0.883261
\(220\) 0 0
\(221\) 1.41421 0.0951303
\(222\) 0 0
\(223\) 0.757359 0.0507165 0.0253583 0.999678i \(-0.491927\pi\)
0.0253583 + 0.999678i \(0.491927\pi\)
\(224\) 0 0
\(225\) 2.48528 0.165685
\(226\) 0 0
\(227\) −26.8284 −1.78067 −0.890333 0.455311i \(-0.849528\pi\)
−0.890333 + 0.455311i \(0.849528\pi\)
\(228\) 0 0
\(229\) −29.4558 −1.94650 −0.973248 0.229755i \(-0.926207\pi\)
−0.973248 + 0.229755i \(0.926207\pi\)
\(230\) 0 0
\(231\) 6.00000 0.394771
\(232\) 0 0
\(233\) −14.6569 −0.960202 −0.480101 0.877213i \(-0.659400\pi\)
−0.480101 + 0.877213i \(0.659400\pi\)
\(234\) 0 0
\(235\) −2.51472 −0.164042
\(236\) 0 0
\(237\) −21.8995 −1.42253
\(238\) 0 0
\(239\) 3.51472 0.227348 0.113674 0.993518i \(-0.463738\pi\)
0.113674 + 0.993518i \(0.463738\pi\)
\(240\) 0 0
\(241\) −20.2132 −1.30205 −0.651023 0.759058i \(-0.725660\pi\)
−0.651023 + 0.759058i \(0.725660\pi\)
\(242\) 0 0
\(243\) −9.89949 −0.635053
\(244\) 0 0
\(245\) −1.58579 −0.101312
\(246\) 0 0
\(247\) 7.24264 0.460838
\(248\) 0 0
\(249\) 18.7279 1.18683
\(250\) 0 0
\(251\) −16.5858 −1.04689 −0.523443 0.852061i \(-0.675353\pi\)
−0.523443 + 0.852061i \(0.675353\pi\)
\(252\) 0 0
\(253\) 24.7279 1.55463
\(254\) 0 0
\(255\) 3.17157 0.198612
\(256\) 0 0
\(257\) −19.4142 −1.21103 −0.605513 0.795836i \(-0.707032\pi\)
−0.605513 + 0.795836i \(0.707032\pi\)
\(258\) 0 0
\(259\) −2.24264 −0.139351
\(260\) 0 0
\(261\) 0.171573 0.0106201
\(262\) 0 0
\(263\) 1.97056 0.121510 0.0607551 0.998153i \(-0.480649\pi\)
0.0607551 + 0.998153i \(0.480649\pi\)
\(264\) 0 0
\(265\) −0.272078 −0.0167136
\(266\) 0 0
\(267\) −2.24264 −0.137247
\(268\) 0 0
\(269\) −9.17157 −0.559201 −0.279600 0.960116i \(-0.590202\pi\)
−0.279600 + 0.960116i \(0.590202\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) −1.41421 −0.0855921
\(274\) 0 0
\(275\) 10.5442 0.635837
\(276\) 0 0
\(277\) 7.48528 0.449747 0.224873 0.974388i \(-0.427803\pi\)
0.224873 + 0.974388i \(0.427803\pi\)
\(278\) 0 0
\(279\) −3.24264 −0.194132
\(280\) 0 0
\(281\) 15.5563 0.928014 0.464007 0.885832i \(-0.346411\pi\)
0.464007 + 0.885832i \(0.346411\pi\)
\(282\) 0 0
\(283\) 8.48528 0.504398 0.252199 0.967675i \(-0.418846\pi\)
0.252199 + 0.967675i \(0.418846\pi\)
\(284\) 0 0
\(285\) 16.2426 0.962131
\(286\) 0 0
\(287\) 8.82843 0.521126
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) −16.5858 −0.972276
\(292\) 0 0
\(293\) −15.3848 −0.898788 −0.449394 0.893334i \(-0.648360\pi\)
−0.449394 + 0.893334i \(0.648360\pi\)
\(294\) 0 0
\(295\) 0.544156 0.0316820
\(296\) 0 0
\(297\) −24.0000 −1.39262
\(298\) 0 0
\(299\) −5.82843 −0.337067
\(300\) 0 0
\(301\) 5.00000 0.288195
\(302\) 0 0
\(303\) 14.4853 0.832158
\(304\) 0 0
\(305\) 9.51472 0.544811
\(306\) 0 0
\(307\) −13.2426 −0.755797 −0.377899 0.925847i \(-0.623353\pi\)
−0.377899 + 0.925847i \(0.623353\pi\)
\(308\) 0 0
\(309\) 11.3137 0.643614
\(310\) 0 0
\(311\) −7.41421 −0.420421 −0.210211 0.977656i \(-0.567415\pi\)
−0.210211 + 0.977656i \(0.567415\pi\)
\(312\) 0 0
\(313\) 23.2132 1.31209 0.656044 0.754723i \(-0.272229\pi\)
0.656044 + 0.754723i \(0.272229\pi\)
\(314\) 0 0
\(315\) 1.58579 0.0893489
\(316\) 0 0
\(317\) 11.3137 0.635441 0.317721 0.948184i \(-0.397083\pi\)
0.317721 + 0.948184i \(0.397083\pi\)
\(318\) 0 0
\(319\) 0.727922 0.0407558
\(320\) 0 0
\(321\) −28.4853 −1.58989
\(322\) 0 0
\(323\) 10.2426 0.569916
\(324\) 0 0
\(325\) −2.48528 −0.137859
\(326\) 0 0
\(327\) 23.6569 1.30823
\(328\) 0 0
\(329\) 1.58579 0.0874272
\(330\) 0 0
\(331\) 18.0000 0.989369 0.494685 0.869072i \(-0.335284\pi\)
0.494685 + 0.869072i \(0.335284\pi\)
\(332\) 0 0
\(333\) 2.24264 0.122896
\(334\) 0 0
\(335\) −22.9706 −1.25502
\(336\) 0 0
\(337\) −33.0000 −1.79762 −0.898812 0.438334i \(-0.855569\pi\)
−0.898812 + 0.438334i \(0.855569\pi\)
\(338\) 0 0
\(339\) −3.27208 −0.177715
\(340\) 0 0
\(341\) −13.7574 −0.745003
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −13.0711 −0.703723
\(346\) 0 0
\(347\) 5.65685 0.303676 0.151838 0.988405i \(-0.451481\pi\)
0.151838 + 0.988405i \(0.451481\pi\)
\(348\) 0 0
\(349\) 25.7279 1.37718 0.688592 0.725149i \(-0.258229\pi\)
0.688592 + 0.725149i \(0.258229\pi\)
\(350\) 0 0
\(351\) 5.65685 0.301941
\(352\) 0 0
\(353\) −8.48528 −0.451626 −0.225813 0.974171i \(-0.572504\pi\)
−0.225813 + 0.974171i \(0.572504\pi\)
\(354\) 0 0
\(355\) 20.7279 1.10012
\(356\) 0 0
\(357\) −2.00000 −0.105851
\(358\) 0 0
\(359\) −27.8995 −1.47248 −0.736240 0.676721i \(-0.763400\pi\)
−0.736240 + 0.676721i \(0.763400\pi\)
\(360\) 0 0
\(361\) 33.4558 1.76083
\(362\) 0 0
\(363\) −9.89949 −0.519589
\(364\) 0 0
\(365\) 14.6569 0.767175
\(366\) 0 0
\(367\) 10.2426 0.534661 0.267331 0.963605i \(-0.413858\pi\)
0.267331 + 0.963605i \(0.413858\pi\)
\(368\) 0 0
\(369\) −8.82843 −0.459590
\(370\) 0 0
\(371\) 0.171573 0.00890762
\(372\) 0 0
\(373\) −8.48528 −0.439351 −0.219676 0.975573i \(-0.570500\pi\)
−0.219676 + 0.975573i \(0.570500\pi\)
\(374\) 0 0
\(375\) −16.7868 −0.866866
\(376\) 0 0
\(377\) −0.171573 −0.00883645
\(378\) 0 0
\(379\) −23.7574 −1.22033 −0.610167 0.792273i \(-0.708898\pi\)
−0.610167 + 0.792273i \(0.708898\pi\)
\(380\) 0 0
\(381\) −2.82843 −0.144905
\(382\) 0 0
\(383\) −20.4853 −1.04675 −0.523374 0.852103i \(-0.675327\pi\)
−0.523374 + 0.852103i \(0.675327\pi\)
\(384\) 0 0
\(385\) 6.72792 0.342887
\(386\) 0 0
\(387\) −5.00000 −0.254164
\(388\) 0 0
\(389\) −29.6569 −1.50366 −0.751831 0.659356i \(-0.770829\pi\)
−0.751831 + 0.659356i \(0.770829\pi\)
\(390\) 0 0
\(391\) −8.24264 −0.416848
\(392\) 0 0
\(393\) −4.00000 −0.201773
\(394\) 0 0
\(395\) −24.5563 −1.23556
\(396\) 0 0
\(397\) 18.2132 0.914094 0.457047 0.889442i \(-0.348907\pi\)
0.457047 + 0.889442i \(0.348907\pi\)
\(398\) 0 0
\(399\) −10.2426 −0.512773
\(400\) 0 0
\(401\) 6.34315 0.316762 0.158381 0.987378i \(-0.449373\pi\)
0.158381 + 0.987378i \(0.449373\pi\)
\(402\) 0 0
\(403\) 3.24264 0.161527
\(404\) 0 0
\(405\) 7.92893 0.393992
\(406\) 0 0
\(407\) 9.51472 0.471627
\(408\) 0 0
\(409\) 3.24264 0.160338 0.0801691 0.996781i \(-0.474454\pi\)
0.0801691 + 0.996781i \(0.474454\pi\)
\(410\) 0 0
\(411\) 6.48528 0.319895
\(412\) 0 0
\(413\) −0.343146 −0.0168851
\(414\) 0 0
\(415\) 21.0000 1.03085
\(416\) 0 0
\(417\) 8.82843 0.432330
\(418\) 0 0
\(419\) 20.8701 1.01957 0.509785 0.860302i \(-0.329725\pi\)
0.509785 + 0.860302i \(0.329725\pi\)
\(420\) 0 0
\(421\) −6.72792 −0.327899 −0.163949 0.986469i \(-0.552423\pi\)
−0.163949 + 0.986469i \(0.552423\pi\)
\(422\) 0 0
\(423\) −1.58579 −0.0771036
\(424\) 0 0
\(425\) −3.51472 −0.170489
\(426\) 0 0
\(427\) −6.00000 −0.290360
\(428\) 0 0
\(429\) 6.00000 0.289683
\(430\) 0 0
\(431\) −12.3431 −0.594548 −0.297274 0.954792i \(-0.596078\pi\)
−0.297274 + 0.954792i \(0.596078\pi\)
\(432\) 0 0
\(433\) −24.9706 −1.20001 −0.600004 0.799997i \(-0.704834\pi\)
−0.600004 + 0.799997i \(0.704834\pi\)
\(434\) 0 0
\(435\) −0.384776 −0.0184486
\(436\) 0 0
\(437\) −42.2132 −2.01933
\(438\) 0 0
\(439\) −34.4853 −1.64589 −0.822946 0.568119i \(-0.807671\pi\)
−0.822946 + 0.568119i \(0.807671\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) 3.68629 0.175141 0.0875705 0.996158i \(-0.472090\pi\)
0.0875705 + 0.996158i \(0.472090\pi\)
\(444\) 0 0
\(445\) −2.51472 −0.119209
\(446\) 0 0
\(447\) 22.9706 1.08647
\(448\) 0 0
\(449\) 21.1716 0.999148 0.499574 0.866271i \(-0.333490\pi\)
0.499574 + 0.866271i \(0.333490\pi\)
\(450\) 0 0
\(451\) −37.4558 −1.76373
\(452\) 0 0
\(453\) 13.7990 0.648333
\(454\) 0 0
\(455\) −1.58579 −0.0743428
\(456\) 0 0
\(457\) −7.21320 −0.337419 −0.168710 0.985666i \(-0.553960\pi\)
−0.168710 + 0.985666i \(0.553960\pi\)
\(458\) 0 0
\(459\) 8.00000 0.373408
\(460\) 0 0
\(461\) −8.82843 −0.411181 −0.205590 0.978638i \(-0.565911\pi\)
−0.205590 + 0.978638i \(0.565911\pi\)
\(462\) 0 0
\(463\) −4.24264 −0.197172 −0.0985861 0.995129i \(-0.531432\pi\)
−0.0985861 + 0.995129i \(0.531432\pi\)
\(464\) 0 0
\(465\) 7.27208 0.337235
\(466\) 0 0
\(467\) 3.89949 0.180447 0.0902236 0.995922i \(-0.471242\pi\)
0.0902236 + 0.995922i \(0.471242\pi\)
\(468\) 0 0
\(469\) 14.4853 0.668868
\(470\) 0 0
\(471\) −5.31371 −0.244843
\(472\) 0 0
\(473\) −21.2132 −0.975384
\(474\) 0 0
\(475\) −18.0000 −0.825897
\(476\) 0 0
\(477\) −0.171573 −0.00785578
\(478\) 0 0
\(479\) −6.21320 −0.283889 −0.141944 0.989875i \(-0.545335\pi\)
−0.141944 + 0.989875i \(0.545335\pi\)
\(480\) 0 0
\(481\) −2.24264 −0.102256
\(482\) 0 0
\(483\) 8.24264 0.375053
\(484\) 0 0
\(485\) −18.5980 −0.844491
\(486\) 0 0
\(487\) −11.4558 −0.519114 −0.259557 0.965728i \(-0.583577\pi\)
−0.259557 + 0.965728i \(0.583577\pi\)
\(488\) 0 0
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) −16.6274 −0.750385 −0.375192 0.926947i \(-0.622423\pi\)
−0.375192 + 0.926947i \(0.622423\pi\)
\(492\) 0 0
\(493\) −0.242641 −0.0109280
\(494\) 0 0
\(495\) −6.72792 −0.302398
\(496\) 0 0
\(497\) −13.0711 −0.586318
\(498\) 0 0
\(499\) 13.2721 0.594140 0.297070 0.954856i \(-0.403991\pi\)
0.297070 + 0.954856i \(0.403991\pi\)
\(500\) 0 0
\(501\) −21.7574 −0.972047
\(502\) 0 0
\(503\) −28.6274 −1.27643 −0.638217 0.769857i \(-0.720328\pi\)
−0.638217 + 0.769857i \(0.720328\pi\)
\(504\) 0 0
\(505\) 16.2426 0.722788
\(506\) 0 0
\(507\) −1.41421 −0.0628074
\(508\) 0 0
\(509\) 5.10051 0.226076 0.113038 0.993591i \(-0.463942\pi\)
0.113038 + 0.993591i \(0.463942\pi\)
\(510\) 0 0
\(511\) −9.24264 −0.408870
\(512\) 0 0
\(513\) 40.9706 1.80889
\(514\) 0 0
\(515\) 12.6863 0.559025
\(516\) 0 0
\(517\) −6.72792 −0.295894
\(518\) 0 0
\(519\) 34.9706 1.53504
\(520\) 0 0
\(521\) −6.34315 −0.277898 −0.138949 0.990300i \(-0.544372\pi\)
−0.138949 + 0.990300i \(0.544372\pi\)
\(522\) 0 0
\(523\) −30.9706 −1.35425 −0.677124 0.735869i \(-0.736774\pi\)
−0.677124 + 0.735869i \(0.736774\pi\)
\(524\) 0 0
\(525\) 3.51472 0.153395
\(526\) 0 0
\(527\) 4.58579 0.199760
\(528\) 0 0
\(529\) 10.9706 0.476981
\(530\) 0 0
\(531\) 0.343146 0.0148913
\(532\) 0 0
\(533\) 8.82843 0.382402
\(534\) 0 0
\(535\) −31.9411 −1.38094
\(536\) 0 0
\(537\) −12.7279 −0.549250
\(538\) 0 0
\(539\) −4.24264 −0.182743
\(540\) 0 0
\(541\) 7.21320 0.310120 0.155060 0.987905i \(-0.450443\pi\)
0.155060 + 0.987905i \(0.450443\pi\)
\(542\) 0 0
\(543\) −26.4853 −1.13659
\(544\) 0 0
\(545\) 26.5269 1.13629
\(546\) 0 0
\(547\) −35.4853 −1.51724 −0.758621 0.651533i \(-0.774126\pi\)
−0.758621 + 0.651533i \(0.774126\pi\)
\(548\) 0 0
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) −1.24264 −0.0529383
\(552\) 0 0
\(553\) 15.4853 0.658501
\(554\) 0 0
\(555\) −5.02944 −0.213488
\(556\) 0 0
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) 0 0
\(559\) 5.00000 0.211477
\(560\) 0 0
\(561\) 8.48528 0.358249
\(562\) 0 0
\(563\) 6.34315 0.267332 0.133666 0.991026i \(-0.457325\pi\)
0.133666 + 0.991026i \(0.457325\pi\)
\(564\) 0 0
\(565\) −3.66905 −0.154358
\(566\) 0 0
\(567\) −5.00000 −0.209980
\(568\) 0 0
\(569\) 5.14214 0.215570 0.107785 0.994174i \(-0.465624\pi\)
0.107785 + 0.994174i \(0.465624\pi\)
\(570\) 0 0
\(571\) −42.4558 −1.77672 −0.888361 0.459146i \(-0.848156\pi\)
−0.888361 + 0.459146i \(0.848156\pi\)
\(572\) 0 0
\(573\) −21.4558 −0.896331
\(574\) 0 0
\(575\) 14.4853 0.604078
\(576\) 0 0
\(577\) −6.97056 −0.290188 −0.145094 0.989418i \(-0.546349\pi\)
−0.145094 + 0.989418i \(0.546349\pi\)
\(578\) 0 0
\(579\) 20.4853 0.851339
\(580\) 0 0
\(581\) −13.2426 −0.549397
\(582\) 0 0
\(583\) −0.727922 −0.0301475
\(584\) 0 0
\(585\) 1.58579 0.0655642
\(586\) 0 0
\(587\) 6.55635 0.270609 0.135305 0.990804i \(-0.456799\pi\)
0.135305 + 0.990804i \(0.456799\pi\)
\(588\) 0 0
\(589\) 23.4853 0.967694
\(590\) 0 0
\(591\) 17.4558 0.718037
\(592\) 0 0
\(593\) −0.556349 −0.0228465 −0.0114233 0.999935i \(-0.503636\pi\)
−0.0114233 + 0.999935i \(0.503636\pi\)
\(594\) 0 0
\(595\) −2.24264 −0.0919393
\(596\) 0 0
\(597\) 5.31371 0.217476
\(598\) 0 0
\(599\) −28.7990 −1.17669 −0.588347 0.808608i \(-0.700221\pi\)
−0.588347 + 0.808608i \(0.700221\pi\)
\(600\) 0 0
\(601\) −38.9706 −1.58964 −0.794821 0.606844i \(-0.792435\pi\)
−0.794821 + 0.606844i \(0.792435\pi\)
\(602\) 0 0
\(603\) −14.4853 −0.589886
\(604\) 0 0
\(605\) −11.1005 −0.451300
\(606\) 0 0
\(607\) −26.7279 −1.08485 −0.542426 0.840103i \(-0.682494\pi\)
−0.542426 + 0.840103i \(0.682494\pi\)
\(608\) 0 0
\(609\) 0.242641 0.00983230
\(610\) 0 0
\(611\) 1.58579 0.0641541
\(612\) 0 0
\(613\) 16.0000 0.646234 0.323117 0.946359i \(-0.395269\pi\)
0.323117 + 0.946359i \(0.395269\pi\)
\(614\) 0 0
\(615\) 19.7990 0.798372
\(616\) 0 0
\(617\) 12.3431 0.496916 0.248458 0.968643i \(-0.420076\pi\)
0.248458 + 0.968643i \(0.420076\pi\)
\(618\) 0 0
\(619\) −0.970563 −0.0390102 −0.0195051 0.999810i \(-0.506209\pi\)
−0.0195051 + 0.999810i \(0.506209\pi\)
\(620\) 0 0
\(621\) −32.9706 −1.32306
\(622\) 0 0
\(623\) 1.58579 0.0635332
\(624\) 0 0
\(625\) −6.39697 −0.255879
\(626\) 0 0
\(627\) 43.4558 1.73546
\(628\) 0 0
\(629\) −3.17157 −0.126459
\(630\) 0 0
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) 0 0
\(633\) −22.5858 −0.897704
\(634\) 0 0
\(635\) −3.17157 −0.125860
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 0 0
\(639\) 13.0711 0.517083
\(640\) 0 0
\(641\) 15.3431 0.606018 0.303009 0.952988i \(-0.402009\pi\)
0.303009 + 0.952988i \(0.402009\pi\)
\(642\) 0 0
\(643\) 12.4853 0.492371 0.246186 0.969223i \(-0.420823\pi\)
0.246186 + 0.969223i \(0.420823\pi\)
\(644\) 0 0
\(645\) 11.2132 0.441519
\(646\) 0 0
\(647\) 14.5269 0.571112 0.285556 0.958362i \(-0.407822\pi\)
0.285556 + 0.958362i \(0.407822\pi\)
\(648\) 0 0
\(649\) 1.45584 0.0571469
\(650\) 0 0
\(651\) −4.58579 −0.179731
\(652\) 0 0
\(653\) −17.3137 −0.677538 −0.338769 0.940870i \(-0.610010\pi\)
−0.338769 + 0.940870i \(0.610010\pi\)
\(654\) 0 0
\(655\) −4.48528 −0.175254
\(656\) 0 0
\(657\) 9.24264 0.360590
\(658\) 0 0
\(659\) 15.3431 0.597684 0.298842 0.954303i \(-0.403400\pi\)
0.298842 + 0.954303i \(0.403400\pi\)
\(660\) 0 0
\(661\) 10.7574 0.418413 0.209206 0.977872i \(-0.432912\pi\)
0.209206 + 0.977872i \(0.432912\pi\)
\(662\) 0 0
\(663\) −2.00000 −0.0776736
\(664\) 0 0
\(665\) −11.4853 −0.445380
\(666\) 0 0
\(667\) 1.00000 0.0387202
\(668\) 0 0
\(669\) −1.07107 −0.0414099
\(670\) 0 0
\(671\) 25.4558 0.982712
\(672\) 0 0
\(673\) −26.9411 −1.03850 −0.519252 0.854621i \(-0.673789\pi\)
−0.519252 + 0.854621i \(0.673789\pi\)
\(674\) 0 0
\(675\) −14.0589 −0.541126
\(676\) 0 0
\(677\) 41.3553 1.58941 0.794707 0.606993i \(-0.207624\pi\)
0.794707 + 0.606993i \(0.207624\pi\)
\(678\) 0 0
\(679\) 11.7279 0.450076
\(680\) 0 0
\(681\) 37.9411 1.45391
\(682\) 0 0
\(683\) 21.1716 0.810108 0.405054 0.914293i \(-0.367253\pi\)
0.405054 + 0.914293i \(0.367253\pi\)
\(684\) 0 0
\(685\) 7.27208 0.277852
\(686\) 0 0
\(687\) 41.6569 1.58931
\(688\) 0 0
\(689\) 0.171573 0.00653641
\(690\) 0 0
\(691\) −28.6985 −1.09174 −0.545871 0.837869i \(-0.683801\pi\)
−0.545871 + 0.837869i \(0.683801\pi\)
\(692\) 0 0
\(693\) 4.24264 0.161165
\(694\) 0 0
\(695\) 9.89949 0.375509
\(696\) 0 0
\(697\) 12.4853 0.472914
\(698\) 0 0
\(699\) 20.7279 0.784002
\(700\) 0 0
\(701\) 10.7990 0.407872 0.203936 0.978984i \(-0.434627\pi\)
0.203936 + 0.978984i \(0.434627\pi\)
\(702\) 0 0
\(703\) −16.2426 −0.612603
\(704\) 0 0
\(705\) 3.55635 0.133940
\(706\) 0 0
\(707\) −10.2426 −0.385214
\(708\) 0 0
\(709\) −0.727922 −0.0273377 −0.0136688 0.999907i \(-0.504351\pi\)
−0.0136688 + 0.999907i \(0.504351\pi\)
\(710\) 0 0
\(711\) −15.4853 −0.580743
\(712\) 0 0
\(713\) −18.8995 −0.707792
\(714\) 0 0
\(715\) 6.72792 0.251610
\(716\) 0 0
\(717\) −4.97056 −0.185629
\(718\) 0 0
\(719\) −1.75736 −0.0655384 −0.0327692 0.999463i \(-0.510433\pi\)
−0.0327692 + 0.999463i \(0.510433\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 28.5858 1.06312
\(724\) 0 0
\(725\) 0.426407 0.0158364
\(726\) 0 0
\(727\) 42.0000 1.55769 0.778847 0.627214i \(-0.215805\pi\)
0.778847 + 0.627214i \(0.215805\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) 7.07107 0.261533
\(732\) 0 0
\(733\) 16.6985 0.616773 0.308386 0.951261i \(-0.400211\pi\)
0.308386 + 0.951261i \(0.400211\pi\)
\(734\) 0 0
\(735\) 2.24264 0.0827210
\(736\) 0 0
\(737\) −61.4558 −2.26376
\(738\) 0 0
\(739\) 17.6985 0.651049 0.325525 0.945534i \(-0.394459\pi\)
0.325525 + 0.945534i \(0.394459\pi\)
\(740\) 0 0
\(741\) −10.2426 −0.376273
\(742\) 0 0
\(743\) −29.6569 −1.08800 −0.544002 0.839084i \(-0.683092\pi\)
−0.544002 + 0.839084i \(0.683092\pi\)
\(744\) 0 0
\(745\) 25.7574 0.943677
\(746\) 0 0
\(747\) 13.2426 0.484523
\(748\) 0 0
\(749\) 20.1421 0.735978
\(750\) 0 0
\(751\) 15.4853 0.565066 0.282533 0.959258i \(-0.408825\pi\)
0.282533 + 0.959258i \(0.408825\pi\)
\(752\) 0 0
\(753\) 23.4558 0.854778
\(754\) 0 0
\(755\) 15.4731 0.563123
\(756\) 0 0
\(757\) −21.4853 −0.780896 −0.390448 0.920625i \(-0.627680\pi\)
−0.390448 + 0.920625i \(0.627680\pi\)
\(758\) 0 0
\(759\) −34.9706 −1.26935
\(760\) 0 0
\(761\) 34.7574 1.25995 0.629977 0.776614i \(-0.283064\pi\)
0.629977 + 0.776614i \(0.283064\pi\)
\(762\) 0 0
\(763\) −16.7279 −0.605591
\(764\) 0 0
\(765\) 2.24264 0.0810828
\(766\) 0 0
\(767\) −0.343146 −0.0123903
\(768\) 0 0
\(769\) 52.2132 1.88286 0.941428 0.337214i \(-0.109484\pi\)
0.941428 + 0.337214i \(0.109484\pi\)
\(770\) 0 0
\(771\) 27.4558 0.988798
\(772\) 0 0
\(773\) 32.8284 1.18076 0.590378 0.807127i \(-0.298979\pi\)
0.590378 + 0.807127i \(0.298979\pi\)
\(774\) 0 0
\(775\) −8.05887 −0.289483
\(776\) 0 0
\(777\) 3.17157 0.113780
\(778\) 0 0
\(779\) 63.9411 2.29093
\(780\) 0 0
\(781\) 55.4558 1.98437
\(782\) 0 0
\(783\) −0.970563 −0.0346851
\(784\) 0 0
\(785\) −5.95837 −0.212663
\(786\) 0 0
\(787\) 24.7574 0.882505 0.441252 0.897383i \(-0.354534\pi\)
0.441252 + 0.897383i \(0.354534\pi\)
\(788\) 0 0
\(789\) −2.78680 −0.0992126
\(790\) 0 0
\(791\) 2.31371 0.0822660
\(792\) 0 0
\(793\) −6.00000 −0.213066
\(794\) 0 0
\(795\) 0.384776 0.0136466
\(796\) 0 0
\(797\) 24.3431 0.862278 0.431139 0.902285i \(-0.358112\pi\)
0.431139 + 0.902285i \(0.358112\pi\)
\(798\) 0 0
\(799\) 2.24264 0.0793389
\(800\) 0 0
\(801\) −1.58579 −0.0560310
\(802\) 0 0
\(803\) 39.2132 1.38380
\(804\) 0 0
\(805\) 9.24264 0.325760
\(806\) 0 0
\(807\) 12.9706 0.456585
\(808\) 0 0
\(809\) 17.4853 0.614750 0.307375 0.951589i \(-0.400549\pi\)
0.307375 + 0.951589i \(0.400549\pi\)
\(810\) 0 0
\(811\) 21.9411 0.770457 0.385229 0.922821i \(-0.374123\pi\)
0.385229 + 0.922821i \(0.374123\pi\)
\(812\) 0 0
\(813\) −28.2843 −0.991973
\(814\) 0 0
\(815\) 13.4558 0.471338
\(816\) 0 0
\(817\) 36.2132 1.26694
\(818\) 0 0
\(819\) −1.00000 −0.0349428
\(820\) 0 0
\(821\) 20.1421 0.702965 0.351483 0.936194i \(-0.385678\pi\)
0.351483 + 0.936194i \(0.385678\pi\)
\(822\) 0 0
\(823\) 10.4853 0.365494 0.182747 0.983160i \(-0.441501\pi\)
0.182747 + 0.983160i \(0.441501\pi\)
\(824\) 0 0
\(825\) −14.9117 −0.519158
\(826\) 0 0
\(827\) 49.4558 1.71975 0.859874 0.510506i \(-0.170542\pi\)
0.859874 + 0.510506i \(0.170542\pi\)
\(828\) 0 0
\(829\) −50.7279 −1.76185 −0.880927 0.473253i \(-0.843080\pi\)
−0.880927 + 0.473253i \(0.843080\pi\)
\(830\) 0 0
\(831\) −10.5858 −0.367217
\(832\) 0 0
\(833\) 1.41421 0.0489996
\(834\) 0 0
\(835\) −24.3970 −0.844292
\(836\) 0 0
\(837\) 18.3431 0.634032
\(838\) 0 0
\(839\) −33.1716 −1.14521 −0.572605 0.819831i \(-0.694067\pi\)
−0.572605 + 0.819831i \(0.694067\pi\)
\(840\) 0 0
\(841\) −28.9706 −0.998985
\(842\) 0 0
\(843\) −22.0000 −0.757720
\(844\) 0 0
\(845\) −1.58579 −0.0545527
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 0 0
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) 13.0711 0.448070
\(852\) 0 0
\(853\) −39.7279 −1.36026 −0.680129 0.733092i \(-0.738076\pi\)
−0.680129 + 0.733092i \(0.738076\pi\)
\(854\) 0 0
\(855\) 11.4853 0.392788
\(856\) 0 0
\(857\) −54.7696 −1.87089 −0.935446 0.353469i \(-0.885002\pi\)
−0.935446 + 0.353469i \(0.885002\pi\)
\(858\) 0 0
\(859\) −30.9706 −1.05670 −0.528351 0.849026i \(-0.677189\pi\)
−0.528351 + 0.849026i \(0.677189\pi\)
\(860\) 0 0
\(861\) −12.4853 −0.425497
\(862\) 0 0
\(863\) 28.2843 0.962808 0.481404 0.876499i \(-0.340127\pi\)
0.481404 + 0.876499i \(0.340127\pi\)
\(864\) 0 0
\(865\) 39.2132 1.33329
\(866\) 0 0
\(867\) 21.2132 0.720438
\(868\) 0 0
\(869\) −65.6985 −2.22867
\(870\) 0 0
\(871\) 14.4853 0.490815
\(872\) 0 0
\(873\) −11.7279 −0.396930
\(874\) 0 0
\(875\) 11.8701 0.401281
\(876\) 0 0
\(877\) 10.2426 0.345869 0.172935 0.984933i \(-0.444675\pi\)
0.172935 + 0.984933i \(0.444675\pi\)
\(878\) 0 0
\(879\) 21.7574 0.733858
\(880\) 0 0
\(881\) 13.1127 0.441778 0.220889 0.975299i \(-0.429104\pi\)
0.220889 + 0.975299i \(0.429104\pi\)
\(882\) 0 0
\(883\) −2.00000 −0.0673054 −0.0336527 0.999434i \(-0.510714\pi\)
−0.0336527 + 0.999434i \(0.510714\pi\)
\(884\) 0 0
\(885\) −0.769553 −0.0258682
\(886\) 0 0
\(887\) 19.1127 0.641742 0.320871 0.947123i \(-0.396024\pi\)
0.320871 + 0.947123i \(0.396024\pi\)
\(888\) 0 0
\(889\) 2.00000 0.0670778
\(890\) 0 0
\(891\) 21.2132 0.710669
\(892\) 0 0
\(893\) 11.4853 0.384340
\(894\) 0 0
\(895\) −14.2721 −0.477063
\(896\) 0 0
\(897\) 8.24264 0.275214
\(898\) 0 0
\(899\) −0.556349 −0.0185553
\(900\) 0 0
\(901\) 0.242641 0.00808353
\(902\) 0 0
\(903\) −7.07107 −0.235310
\(904\) 0 0
\(905\) −29.6985 −0.987211
\(906\) 0 0
\(907\) −1.97056 −0.0654315 −0.0327157 0.999465i \(-0.510416\pi\)
−0.0327157 + 0.999465i \(0.510416\pi\)
\(908\) 0 0
\(909\) 10.2426 0.339727
\(910\) 0 0
\(911\) −43.9706 −1.45681 −0.728405 0.685147i \(-0.759738\pi\)
−0.728405 + 0.685147i \(0.759738\pi\)
\(912\) 0 0
\(913\) 56.1838 1.85941
\(914\) 0 0
\(915\) −13.4558 −0.444836
\(916\) 0 0
\(917\) 2.82843 0.0934029
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 18.7279 0.617106
\(922\) 0 0
\(923\) −13.0711 −0.430239
\(924\) 0 0
\(925\) 5.57359 0.183259
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 36.8995 1.21063 0.605317 0.795985i \(-0.293047\pi\)
0.605317 + 0.795985i \(0.293047\pi\)
\(930\) 0 0
\(931\) 7.24264 0.237368
\(932\) 0 0
\(933\) 10.4853 0.343273
\(934\) 0 0
\(935\) 9.51472 0.311165
\(936\) 0 0
\(937\) 45.2132 1.47705 0.738525 0.674226i \(-0.235522\pi\)
0.738525 + 0.674226i \(0.235522\pi\)
\(938\) 0 0
\(939\) −32.8284 −1.07132
\(940\) 0 0
\(941\) −40.0711 −1.30628 −0.653140 0.757237i \(-0.726549\pi\)
−0.653140 + 0.757237i \(0.726549\pi\)
\(942\) 0 0
\(943\) −51.4558 −1.67563
\(944\) 0 0
\(945\) −8.97056 −0.291812
\(946\) 0 0
\(947\) −15.1716 −0.493010 −0.246505 0.969142i \(-0.579282\pi\)
−0.246505 + 0.969142i \(0.579282\pi\)
\(948\) 0 0
\(949\) −9.24264 −0.300029
\(950\) 0 0
\(951\) −16.0000 −0.518836
\(952\) 0 0
\(953\) 11.1421 0.360929 0.180465 0.983581i \(-0.442240\pi\)
0.180465 + 0.983581i \(0.442240\pi\)
\(954\) 0 0
\(955\) −24.0589 −0.778527
\(956\) 0 0
\(957\) −1.02944 −0.0332770
\(958\) 0 0
\(959\) −4.58579 −0.148083
\(960\) 0 0
\(961\) −20.4853 −0.660816
\(962\) 0 0
\(963\) −20.1421 −0.649071
\(964\) 0 0
\(965\) 22.9706 0.739449
\(966\) 0 0
\(967\) 17.6985 0.569145 0.284572 0.958655i \(-0.408148\pi\)
0.284572 + 0.958655i \(0.408148\pi\)
\(968\) 0 0
\(969\) −14.4853 −0.465334
\(970\) 0 0
\(971\) −43.4558 −1.39456 −0.697282 0.716797i \(-0.745608\pi\)
−0.697282 + 0.716797i \(0.745608\pi\)
\(972\) 0 0
\(973\) −6.24264 −0.200130
\(974\) 0 0
\(975\) 3.51472 0.112561
\(976\) 0 0
\(977\) 24.0416 0.769160 0.384580 0.923092i \(-0.374346\pi\)
0.384580 + 0.923092i \(0.374346\pi\)
\(978\) 0 0
\(979\) −6.72792 −0.215025
\(980\) 0 0
\(981\) 16.7279 0.534081
\(982\) 0 0
\(983\) −15.0416 −0.479754 −0.239877 0.970803i \(-0.577107\pi\)
−0.239877 + 0.970803i \(0.577107\pi\)
\(984\) 0 0
\(985\) 19.5736 0.623667
\(986\) 0 0
\(987\) −2.24264 −0.0713840
\(988\) 0 0
\(989\) −29.1421 −0.926666
\(990\) 0 0
\(991\) 1.02944 0.0327012 0.0163506 0.999866i \(-0.494795\pi\)
0.0163506 + 0.999866i \(0.494795\pi\)
\(992\) 0 0
\(993\) −25.4558 −0.807817
\(994\) 0 0
\(995\) 5.95837 0.188893
\(996\) 0 0
\(997\) 11.5147 0.364675 0.182337 0.983236i \(-0.441634\pi\)
0.182337 + 0.983236i \(0.441634\pi\)
\(998\) 0 0
\(999\) −12.6863 −0.401377
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5824.2.a.bl.1.1 2
4.3 odd 2 5824.2.a.bk.1.2 2
8.3 odd 2 1456.2.a.q.1.1 2
8.5 even 2 91.2.a.c.1.1 2
24.5 odd 2 819.2.a.h.1.2 2
40.29 even 2 2275.2.a.j.1.2 2
56.5 odd 6 637.2.e.g.508.2 4
56.13 odd 2 637.2.a.g.1.1 2
56.37 even 6 637.2.e.f.508.2 4
56.45 odd 6 637.2.e.g.79.2 4
56.53 even 6 637.2.e.f.79.2 4
104.5 odd 4 1183.2.c.d.337.4 4
104.21 odd 4 1183.2.c.d.337.2 4
104.77 even 2 1183.2.a.d.1.2 2
168.125 even 2 5733.2.a.s.1.2 2
728.181 odd 2 8281.2.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.a.c.1.1 2 8.5 even 2
637.2.a.g.1.1 2 56.13 odd 2
637.2.e.f.79.2 4 56.53 even 6
637.2.e.f.508.2 4 56.37 even 6
637.2.e.g.79.2 4 56.45 odd 6
637.2.e.g.508.2 4 56.5 odd 6
819.2.a.h.1.2 2 24.5 odd 2
1183.2.a.d.1.2 2 104.77 even 2
1183.2.c.d.337.2 4 104.21 odd 4
1183.2.c.d.337.4 4 104.5 odd 4
1456.2.a.q.1.1 2 8.3 odd 2
2275.2.a.j.1.2 2 40.29 even 2
5733.2.a.s.1.2 2 168.125 even 2
5824.2.a.bk.1.2 2 4.3 odd 2
5824.2.a.bl.1.1 2 1.1 even 1 trivial
8281.2.a.v.1.2 2 728.181 odd 2