Properties

Label 819.2.a.h.1.2
Level $819$
Weight $2$
Character 819.1
Self dual yes
Analytic conductor $6.540$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(1,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.53974792554\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 819.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} -1.58579 q^{5} +1.00000 q^{7} -2.82843 q^{8} -2.24264 q^{10} -4.24264 q^{11} -1.00000 q^{13} +1.41421 q^{14} -4.00000 q^{16} -1.41421 q^{17} -7.24264 q^{19} -6.00000 q^{22} +5.82843 q^{23} -2.48528 q^{25} -1.41421 q^{26} -0.171573 q^{29} +3.24264 q^{31} -2.00000 q^{34} -1.58579 q^{35} +2.24264 q^{37} -10.2426 q^{38} +4.48528 q^{40} -8.82843 q^{41} -5.00000 q^{43} +8.24264 q^{46} -1.58579 q^{47} +1.00000 q^{49} -3.51472 q^{50} +0.171573 q^{53} +6.72792 q^{55} -2.82843 q^{56} -0.242641 q^{58} -0.343146 q^{59} +6.00000 q^{61} +4.58579 q^{62} +8.00000 q^{64} +1.58579 q^{65} -14.4853 q^{67} -2.24264 q^{70} +13.0711 q^{71} -9.24264 q^{73} +3.17157 q^{74} -4.24264 q^{77} +15.4853 q^{79} +6.34315 q^{80} -12.4853 q^{82} -13.2426 q^{83} +2.24264 q^{85} -7.07107 q^{86} +12.0000 q^{88} -1.58579 q^{89} -1.00000 q^{91} -2.24264 q^{94} +11.4853 q^{95} +11.7279 q^{97} +1.41421 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} + 2 q^{7} + 4 q^{10} - 2 q^{13} - 8 q^{16} - 6 q^{19} - 12 q^{22} + 6 q^{23} + 12 q^{25} - 6 q^{29} - 2 q^{31} - 4 q^{34} - 6 q^{35} - 4 q^{37} - 12 q^{38} - 8 q^{40} - 12 q^{41} - 10 q^{43}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(3\) 0 0
\(4\) 0 0
\(5\) −1.58579 −0.709185 −0.354593 0.935021i \(-0.615380\pi\)
−0.354593 + 0.935021i \(0.615380\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −2.82843 −1.00000
\(9\) 0 0
\(10\) −2.24264 −0.709185
\(11\) −4.24264 −1.27920 −0.639602 0.768706i \(-0.720901\pi\)
−0.639602 + 0.768706i \(0.720901\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 1.41421 0.377964
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −1.41421 −0.342997 −0.171499 0.985184i \(-0.554861\pi\)
−0.171499 + 0.985184i \(0.554861\pi\)
\(18\) 0 0
\(19\) −7.24264 −1.66158 −0.830788 0.556589i \(-0.812110\pi\)
−0.830788 + 0.556589i \(0.812110\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −6.00000 −1.27920
\(23\) 5.82843 1.21531 0.607656 0.794201i \(-0.292110\pi\)
0.607656 + 0.794201i \(0.292110\pi\)
\(24\) 0 0
\(25\) −2.48528 −0.497056
\(26\) −1.41421 −0.277350
\(27\) 0 0
\(28\) 0 0
\(29\) −0.171573 −0.0318603 −0.0159301 0.999873i \(-0.505071\pi\)
−0.0159301 + 0.999873i \(0.505071\pi\)
\(30\) 0 0
\(31\) 3.24264 0.582395 0.291198 0.956663i \(-0.405946\pi\)
0.291198 + 0.956663i \(0.405946\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) −1.58579 −0.268047
\(36\) 0 0
\(37\) 2.24264 0.368688 0.184344 0.982862i \(-0.440984\pi\)
0.184344 + 0.982862i \(0.440984\pi\)
\(38\) −10.2426 −1.66158
\(39\) 0 0
\(40\) 4.48528 0.709185
\(41\) −8.82843 −1.37877 −0.689384 0.724396i \(-0.742119\pi\)
−0.689384 + 0.724396i \(0.742119\pi\)
\(42\) 0 0
\(43\) −5.00000 −0.762493 −0.381246 0.924473i \(-0.624505\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 8.24264 1.21531
\(47\) −1.58579 −0.231311 −0.115655 0.993289i \(-0.536897\pi\)
−0.115655 + 0.993289i \(0.536897\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −3.51472 −0.497056
\(51\) 0 0
\(52\) 0 0
\(53\) 0.171573 0.0235673 0.0117837 0.999931i \(-0.496249\pi\)
0.0117837 + 0.999931i \(0.496249\pi\)
\(54\) 0 0
\(55\) 6.72792 0.907193
\(56\) −2.82843 −0.377964
\(57\) 0 0
\(58\) −0.242641 −0.0318603
\(59\) −0.343146 −0.0446738 −0.0223369 0.999751i \(-0.507111\pi\)
−0.0223369 + 0.999751i \(0.507111\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 4.58579 0.582395
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 1.58579 0.196693
\(66\) 0 0
\(67\) −14.4853 −1.76966 −0.884829 0.465915i \(-0.845725\pi\)
−0.884829 + 0.465915i \(0.845725\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −2.24264 −0.268047
\(71\) 13.0711 1.55125 0.775625 0.631194i \(-0.217435\pi\)
0.775625 + 0.631194i \(0.217435\pi\)
\(72\) 0 0
\(73\) −9.24264 −1.08177 −0.540885 0.841097i \(-0.681910\pi\)
−0.540885 + 0.841097i \(0.681910\pi\)
\(74\) 3.17157 0.368688
\(75\) 0 0
\(76\) 0 0
\(77\) −4.24264 −0.483494
\(78\) 0 0
\(79\) 15.4853 1.74223 0.871115 0.491079i \(-0.163397\pi\)
0.871115 + 0.491079i \(0.163397\pi\)
\(80\) 6.34315 0.709185
\(81\) 0 0
\(82\) −12.4853 −1.37877
\(83\) −13.2426 −1.45357 −0.726784 0.686866i \(-0.758986\pi\)
−0.726784 + 0.686866i \(0.758986\pi\)
\(84\) 0 0
\(85\) 2.24264 0.243249
\(86\) −7.07107 −0.762493
\(87\) 0 0
\(88\) 12.0000 1.27920
\(89\) −1.58579 −0.168093 −0.0840465 0.996462i \(-0.526784\pi\)
−0.0840465 + 0.996462i \(0.526784\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) −2.24264 −0.231311
\(95\) 11.4853 1.17837
\(96\) 0 0
\(97\) 11.7279 1.19079 0.595395 0.803433i \(-0.296996\pi\)
0.595395 + 0.803433i \(0.296996\pi\)
\(98\) 1.41421 0.142857
\(99\) 0 0
\(100\) 0 0
\(101\) −10.2426 −1.01918 −0.509590 0.860417i \(-0.670203\pi\)
−0.509590 + 0.860417i \(0.670203\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 2.82843 0.277350
\(105\) 0 0
\(106\) 0.242641 0.0235673
\(107\) 20.1421 1.94721 0.973607 0.228232i \(-0.0732943\pi\)
0.973607 + 0.228232i \(0.0732943\pi\)
\(108\) 0 0
\(109\) 16.7279 1.60224 0.801122 0.598501i \(-0.204237\pi\)
0.801122 + 0.598501i \(0.204237\pi\)
\(110\) 9.51472 0.907193
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) −2.31371 −0.217655 −0.108828 0.994061i \(-0.534710\pi\)
−0.108828 + 0.994061i \(0.534710\pi\)
\(114\) 0 0
\(115\) −9.24264 −0.861881
\(116\) 0 0
\(117\) 0 0
\(118\) −0.485281 −0.0446738
\(119\) −1.41421 −0.129641
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 8.48528 0.768221
\(123\) 0 0
\(124\) 0 0
\(125\) 11.8701 1.06169
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 11.3137 1.00000
\(129\) 0 0
\(130\) 2.24264 0.196693
\(131\) 2.82843 0.247121 0.123560 0.992337i \(-0.460569\pi\)
0.123560 + 0.992337i \(0.460569\pi\)
\(132\) 0 0
\(133\) −7.24264 −0.628017
\(134\) −20.4853 −1.76966
\(135\) 0 0
\(136\) 4.00000 0.342997
\(137\) 4.58579 0.391790 0.195895 0.980625i \(-0.437239\pi\)
0.195895 + 0.980625i \(0.437239\pi\)
\(138\) 0 0
\(139\) 6.24264 0.529494 0.264747 0.964318i \(-0.414712\pi\)
0.264747 + 0.964318i \(0.414712\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 18.4853 1.55125
\(143\) 4.24264 0.354787
\(144\) 0 0
\(145\) 0.272078 0.0225948
\(146\) −13.0711 −1.08177
\(147\) 0 0
\(148\) 0 0
\(149\) −16.2426 −1.33065 −0.665324 0.746554i \(-0.731707\pi\)
−0.665324 + 0.746554i \(0.731707\pi\)
\(150\) 0 0
\(151\) −9.75736 −0.794043 −0.397021 0.917809i \(-0.629956\pi\)
−0.397021 + 0.917809i \(0.629956\pi\)
\(152\) 20.4853 1.66158
\(153\) 0 0
\(154\) −6.00000 −0.483494
\(155\) −5.14214 −0.413026
\(156\) 0 0
\(157\) −3.75736 −0.299870 −0.149935 0.988696i \(-0.547906\pi\)
−0.149935 + 0.988696i \(0.547906\pi\)
\(158\) 21.8995 1.74223
\(159\) 0 0
\(160\) 0 0
\(161\) 5.82843 0.459344
\(162\) 0 0
\(163\) 8.48528 0.664619 0.332309 0.943170i \(-0.392172\pi\)
0.332309 + 0.943170i \(0.392172\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −18.7279 −1.45357
\(167\) −15.3848 −1.19051 −0.595255 0.803537i \(-0.702949\pi\)
−0.595255 + 0.803537i \(0.702949\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 3.17157 0.243249
\(171\) 0 0
\(172\) 0 0
\(173\) −24.7279 −1.88003 −0.940015 0.341134i \(-0.889189\pi\)
−0.940015 + 0.341134i \(0.889189\pi\)
\(174\) 0 0
\(175\) −2.48528 −0.187870
\(176\) 16.9706 1.27920
\(177\) 0 0
\(178\) −2.24264 −0.168093
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) 0 0
\(181\) −18.7279 −1.39204 −0.696018 0.718025i \(-0.745047\pi\)
−0.696018 + 0.718025i \(0.745047\pi\)
\(182\) −1.41421 −0.104828
\(183\) 0 0
\(184\) −16.4853 −1.21531
\(185\) −3.55635 −0.261468
\(186\) 0 0
\(187\) 6.00000 0.438763
\(188\) 0 0
\(189\) 0 0
\(190\) 16.2426 1.17837
\(191\) −15.1716 −1.09778 −0.548888 0.835896i \(-0.684949\pi\)
−0.548888 + 0.835896i \(0.684949\pi\)
\(192\) 0 0
\(193\) −14.4853 −1.04267 −0.521337 0.853351i \(-0.674566\pi\)
−0.521337 + 0.853351i \(0.674566\pi\)
\(194\) 16.5858 1.19079
\(195\) 0 0
\(196\) 0 0
\(197\) −12.3431 −0.879413 −0.439706 0.898142i \(-0.644917\pi\)
−0.439706 + 0.898142i \(0.644917\pi\)
\(198\) 0 0
\(199\) −3.75736 −0.266352 −0.133176 0.991092i \(-0.542518\pi\)
−0.133176 + 0.991092i \(0.542518\pi\)
\(200\) 7.02944 0.497056
\(201\) 0 0
\(202\) −14.4853 −1.01918
\(203\) −0.171573 −0.0120421
\(204\) 0 0
\(205\) 14.0000 0.977802
\(206\) −11.3137 −0.788263
\(207\) 0 0
\(208\) 4.00000 0.277350
\(209\) 30.7279 2.12549
\(210\) 0 0
\(211\) −15.9706 −1.09946 −0.549729 0.835343i \(-0.685269\pi\)
−0.549729 + 0.835343i \(0.685269\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 28.4853 1.94721
\(215\) 7.92893 0.540749
\(216\) 0 0
\(217\) 3.24264 0.220125
\(218\) 23.6569 1.60224
\(219\) 0 0
\(220\) 0 0
\(221\) 1.41421 0.0951303
\(222\) 0 0
\(223\) 0.757359 0.0507165 0.0253583 0.999678i \(-0.491927\pi\)
0.0253583 + 0.999678i \(0.491927\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −3.27208 −0.217655
\(227\) −26.8284 −1.78067 −0.890333 0.455311i \(-0.849528\pi\)
−0.890333 + 0.455311i \(0.849528\pi\)
\(228\) 0 0
\(229\) 29.4558 1.94650 0.973248 0.229755i \(-0.0737925\pi\)
0.973248 + 0.229755i \(0.0737925\pi\)
\(230\) −13.0711 −0.861881
\(231\) 0 0
\(232\) 0.485281 0.0318603
\(233\) 14.6569 0.960202 0.480101 0.877213i \(-0.340600\pi\)
0.480101 + 0.877213i \(0.340600\pi\)
\(234\) 0 0
\(235\) 2.51472 0.164042
\(236\) 0 0
\(237\) 0 0
\(238\) −2.00000 −0.129641
\(239\) −3.51472 −0.227348 −0.113674 0.993518i \(-0.536262\pi\)
−0.113674 + 0.993518i \(0.536262\pi\)
\(240\) 0 0
\(241\) −20.2132 −1.30205 −0.651023 0.759058i \(-0.725660\pi\)
−0.651023 + 0.759058i \(0.725660\pi\)
\(242\) 9.89949 0.636364
\(243\) 0 0
\(244\) 0 0
\(245\) −1.58579 −0.101312
\(246\) 0 0
\(247\) 7.24264 0.460838
\(248\) −9.17157 −0.582395
\(249\) 0 0
\(250\) 16.7868 1.06169
\(251\) −16.5858 −1.04689 −0.523443 0.852061i \(-0.675353\pi\)
−0.523443 + 0.852061i \(0.675353\pi\)
\(252\) 0 0
\(253\) −24.7279 −1.55463
\(254\) 2.82843 0.177471
\(255\) 0 0
\(256\) 0 0
\(257\) 19.4142 1.21103 0.605513 0.795836i \(-0.292968\pi\)
0.605513 + 0.795836i \(0.292968\pi\)
\(258\) 0 0
\(259\) 2.24264 0.139351
\(260\) 0 0
\(261\) 0 0
\(262\) 4.00000 0.247121
\(263\) −1.97056 −0.121510 −0.0607551 0.998153i \(-0.519351\pi\)
−0.0607551 + 0.998153i \(0.519351\pi\)
\(264\) 0 0
\(265\) −0.272078 −0.0167136
\(266\) −10.2426 −0.628017
\(267\) 0 0
\(268\) 0 0
\(269\) −9.17157 −0.559201 −0.279600 0.960116i \(-0.590202\pi\)
−0.279600 + 0.960116i \(0.590202\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 5.65685 0.342997
\(273\) 0 0
\(274\) 6.48528 0.391790
\(275\) 10.5442 0.635837
\(276\) 0 0
\(277\) −7.48528 −0.449747 −0.224873 0.974388i \(-0.572197\pi\)
−0.224873 + 0.974388i \(0.572197\pi\)
\(278\) 8.82843 0.529494
\(279\) 0 0
\(280\) 4.48528 0.268047
\(281\) −15.5563 −0.928014 −0.464007 0.885832i \(-0.653589\pi\)
−0.464007 + 0.885832i \(0.653589\pi\)
\(282\) 0 0
\(283\) −8.48528 −0.504398 −0.252199 0.967675i \(-0.581154\pi\)
−0.252199 + 0.967675i \(0.581154\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 6.00000 0.354787
\(287\) −8.82843 −0.521126
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0.384776 0.0225948
\(291\) 0 0
\(292\) 0 0
\(293\) −15.3848 −0.898788 −0.449394 0.893334i \(-0.648360\pi\)
−0.449394 + 0.893334i \(0.648360\pi\)
\(294\) 0 0
\(295\) 0.544156 0.0316820
\(296\) −6.34315 −0.368688
\(297\) 0 0
\(298\) −22.9706 −1.33065
\(299\) −5.82843 −0.337067
\(300\) 0 0
\(301\) −5.00000 −0.288195
\(302\) −13.7990 −0.794043
\(303\) 0 0
\(304\) 28.9706 1.66158
\(305\) −9.51472 −0.544811
\(306\) 0 0
\(307\) 13.2426 0.755797 0.377899 0.925847i \(-0.376647\pi\)
0.377899 + 0.925847i \(0.376647\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −7.27208 −0.413026
\(311\) 7.41421 0.420421 0.210211 0.977656i \(-0.432585\pi\)
0.210211 + 0.977656i \(0.432585\pi\)
\(312\) 0 0
\(313\) 23.2132 1.31209 0.656044 0.754723i \(-0.272229\pi\)
0.656044 + 0.754723i \(0.272229\pi\)
\(314\) −5.31371 −0.299870
\(315\) 0 0
\(316\) 0 0
\(317\) 11.3137 0.635441 0.317721 0.948184i \(-0.397083\pi\)
0.317721 + 0.948184i \(0.397083\pi\)
\(318\) 0 0
\(319\) 0.727922 0.0407558
\(320\) −12.6863 −0.709185
\(321\) 0 0
\(322\) 8.24264 0.459344
\(323\) 10.2426 0.569916
\(324\) 0 0
\(325\) 2.48528 0.137859
\(326\) 12.0000 0.664619
\(327\) 0 0
\(328\) 24.9706 1.37877
\(329\) −1.58579 −0.0874272
\(330\) 0 0
\(331\) −18.0000 −0.989369 −0.494685 0.869072i \(-0.664716\pi\)
−0.494685 + 0.869072i \(0.664716\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −21.7574 −1.19051
\(335\) 22.9706 1.25502
\(336\) 0 0
\(337\) −33.0000 −1.79762 −0.898812 0.438334i \(-0.855569\pi\)
−0.898812 + 0.438334i \(0.855569\pi\)
\(338\) 1.41421 0.0769231
\(339\) 0 0
\(340\) 0 0
\(341\) −13.7574 −0.745003
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 14.1421 0.762493
\(345\) 0 0
\(346\) −34.9706 −1.88003
\(347\) 5.65685 0.303676 0.151838 0.988405i \(-0.451481\pi\)
0.151838 + 0.988405i \(0.451481\pi\)
\(348\) 0 0
\(349\) −25.7279 −1.37718 −0.688592 0.725149i \(-0.741771\pi\)
−0.688592 + 0.725149i \(0.741771\pi\)
\(350\) −3.51472 −0.187870
\(351\) 0 0
\(352\) 0 0
\(353\) 8.48528 0.451626 0.225813 0.974171i \(-0.427496\pi\)
0.225813 + 0.974171i \(0.427496\pi\)
\(354\) 0 0
\(355\) −20.7279 −1.10012
\(356\) 0 0
\(357\) 0 0
\(358\) 12.7279 0.672692
\(359\) 27.8995 1.47248 0.736240 0.676721i \(-0.236600\pi\)
0.736240 + 0.676721i \(0.236600\pi\)
\(360\) 0 0
\(361\) 33.4558 1.76083
\(362\) −26.4853 −1.39204
\(363\) 0 0
\(364\) 0 0
\(365\) 14.6569 0.767175
\(366\) 0 0
\(367\) 10.2426 0.534661 0.267331 0.963605i \(-0.413858\pi\)
0.267331 + 0.963605i \(0.413858\pi\)
\(368\) −23.3137 −1.21531
\(369\) 0 0
\(370\) −5.02944 −0.261468
\(371\) 0.171573 0.00890762
\(372\) 0 0
\(373\) 8.48528 0.439351 0.219676 0.975573i \(-0.429500\pi\)
0.219676 + 0.975573i \(0.429500\pi\)
\(374\) 8.48528 0.438763
\(375\) 0 0
\(376\) 4.48528 0.231311
\(377\) 0.171573 0.00883645
\(378\) 0 0
\(379\) 23.7574 1.22033 0.610167 0.792273i \(-0.291102\pi\)
0.610167 + 0.792273i \(0.291102\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −21.4558 −1.09778
\(383\) 20.4853 1.04675 0.523374 0.852103i \(-0.324673\pi\)
0.523374 + 0.852103i \(0.324673\pi\)
\(384\) 0 0
\(385\) 6.72792 0.342887
\(386\) −20.4853 −1.04267
\(387\) 0 0
\(388\) 0 0
\(389\) −29.6569 −1.50366 −0.751831 0.659356i \(-0.770829\pi\)
−0.751831 + 0.659356i \(0.770829\pi\)
\(390\) 0 0
\(391\) −8.24264 −0.416848
\(392\) −2.82843 −0.142857
\(393\) 0 0
\(394\) −17.4558 −0.879413
\(395\) −24.5563 −1.23556
\(396\) 0 0
\(397\) −18.2132 −0.914094 −0.457047 0.889442i \(-0.651093\pi\)
−0.457047 + 0.889442i \(0.651093\pi\)
\(398\) −5.31371 −0.266352
\(399\) 0 0
\(400\) 9.94113 0.497056
\(401\) −6.34315 −0.316762 −0.158381 0.987378i \(-0.550627\pi\)
−0.158381 + 0.987378i \(0.550627\pi\)
\(402\) 0 0
\(403\) −3.24264 −0.161527
\(404\) 0 0
\(405\) 0 0
\(406\) −0.242641 −0.0120421
\(407\) −9.51472 −0.471627
\(408\) 0 0
\(409\) 3.24264 0.160338 0.0801691 0.996781i \(-0.474454\pi\)
0.0801691 + 0.996781i \(0.474454\pi\)
\(410\) 19.7990 0.977802
\(411\) 0 0
\(412\) 0 0
\(413\) −0.343146 −0.0168851
\(414\) 0 0
\(415\) 21.0000 1.03085
\(416\) 0 0
\(417\) 0 0
\(418\) 43.4558 2.12549
\(419\) 20.8701 1.01957 0.509785 0.860302i \(-0.329725\pi\)
0.509785 + 0.860302i \(0.329725\pi\)
\(420\) 0 0
\(421\) 6.72792 0.327899 0.163949 0.986469i \(-0.447577\pi\)
0.163949 + 0.986469i \(0.447577\pi\)
\(422\) −22.5858 −1.09946
\(423\) 0 0
\(424\) −0.485281 −0.0235673
\(425\) 3.51472 0.170489
\(426\) 0 0
\(427\) 6.00000 0.290360
\(428\) 0 0
\(429\) 0 0
\(430\) 11.2132 0.540749
\(431\) 12.3431 0.594548 0.297274 0.954792i \(-0.403922\pi\)
0.297274 + 0.954792i \(0.403922\pi\)
\(432\) 0 0
\(433\) −24.9706 −1.20001 −0.600004 0.799997i \(-0.704834\pi\)
−0.600004 + 0.799997i \(0.704834\pi\)
\(434\) 4.58579 0.220125
\(435\) 0 0
\(436\) 0 0
\(437\) −42.2132 −2.01933
\(438\) 0 0
\(439\) −34.4853 −1.64589 −0.822946 0.568119i \(-0.807671\pi\)
−0.822946 + 0.568119i \(0.807671\pi\)
\(440\) −19.0294 −0.907193
\(441\) 0 0
\(442\) 2.00000 0.0951303
\(443\) 3.68629 0.175141 0.0875705 0.996158i \(-0.472090\pi\)
0.0875705 + 0.996158i \(0.472090\pi\)
\(444\) 0 0
\(445\) 2.51472 0.119209
\(446\) 1.07107 0.0507165
\(447\) 0 0
\(448\) 8.00000 0.377964
\(449\) −21.1716 −0.999148 −0.499574 0.866271i \(-0.666510\pi\)
−0.499574 + 0.866271i \(0.666510\pi\)
\(450\) 0 0
\(451\) 37.4558 1.76373
\(452\) 0 0
\(453\) 0 0
\(454\) −37.9411 −1.78067
\(455\) 1.58579 0.0743428
\(456\) 0 0
\(457\) −7.21320 −0.337419 −0.168710 0.985666i \(-0.553960\pi\)
−0.168710 + 0.985666i \(0.553960\pi\)
\(458\) 41.6569 1.94650
\(459\) 0 0
\(460\) 0 0
\(461\) −8.82843 −0.411181 −0.205590 0.978638i \(-0.565911\pi\)
−0.205590 + 0.978638i \(0.565911\pi\)
\(462\) 0 0
\(463\) −4.24264 −0.197172 −0.0985861 0.995129i \(-0.531432\pi\)
−0.0985861 + 0.995129i \(0.531432\pi\)
\(464\) 0.686292 0.0318603
\(465\) 0 0
\(466\) 20.7279 0.960202
\(467\) 3.89949 0.180447 0.0902236 0.995922i \(-0.471242\pi\)
0.0902236 + 0.995922i \(0.471242\pi\)
\(468\) 0 0
\(469\) −14.4853 −0.668868
\(470\) 3.55635 0.164042
\(471\) 0 0
\(472\) 0.970563 0.0446738
\(473\) 21.2132 0.975384
\(474\) 0 0
\(475\) 18.0000 0.825897
\(476\) 0 0
\(477\) 0 0
\(478\) −4.97056 −0.227348
\(479\) 6.21320 0.283889 0.141944 0.989875i \(-0.454665\pi\)
0.141944 + 0.989875i \(0.454665\pi\)
\(480\) 0 0
\(481\) −2.24264 −0.102256
\(482\) −28.5858 −1.30205
\(483\) 0 0
\(484\) 0 0
\(485\) −18.5980 −0.844491
\(486\) 0 0
\(487\) −11.4558 −0.519114 −0.259557 0.965728i \(-0.583577\pi\)
−0.259557 + 0.965728i \(0.583577\pi\)
\(488\) −16.9706 −0.768221
\(489\) 0 0
\(490\) −2.24264 −0.101312
\(491\) −16.6274 −0.750385 −0.375192 0.926947i \(-0.622423\pi\)
−0.375192 + 0.926947i \(0.622423\pi\)
\(492\) 0 0
\(493\) 0.242641 0.0109280
\(494\) 10.2426 0.460838
\(495\) 0 0
\(496\) −12.9706 −0.582395
\(497\) 13.0711 0.586318
\(498\) 0 0
\(499\) −13.2721 −0.594140 −0.297070 0.954856i \(-0.596009\pi\)
−0.297070 + 0.954856i \(0.596009\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −23.4558 −1.04689
\(503\) 28.6274 1.27643 0.638217 0.769857i \(-0.279672\pi\)
0.638217 + 0.769857i \(0.279672\pi\)
\(504\) 0 0
\(505\) 16.2426 0.722788
\(506\) −34.9706 −1.55463
\(507\) 0 0
\(508\) 0 0
\(509\) 5.10051 0.226076 0.113038 0.993591i \(-0.463942\pi\)
0.113038 + 0.993591i \(0.463942\pi\)
\(510\) 0 0
\(511\) −9.24264 −0.408870
\(512\) −22.6274 −1.00000
\(513\) 0 0
\(514\) 27.4558 1.21103
\(515\) 12.6863 0.559025
\(516\) 0 0
\(517\) 6.72792 0.295894
\(518\) 3.17157 0.139351
\(519\) 0 0
\(520\) −4.48528 −0.196693
\(521\) 6.34315 0.277898 0.138949 0.990300i \(-0.455628\pi\)
0.138949 + 0.990300i \(0.455628\pi\)
\(522\) 0 0
\(523\) 30.9706 1.35425 0.677124 0.735869i \(-0.263226\pi\)
0.677124 + 0.735869i \(0.263226\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −2.78680 −0.121510
\(527\) −4.58579 −0.199760
\(528\) 0 0
\(529\) 10.9706 0.476981
\(530\) −0.384776 −0.0167136
\(531\) 0 0
\(532\) 0 0
\(533\) 8.82843 0.382402
\(534\) 0 0
\(535\) −31.9411 −1.38094
\(536\) 40.9706 1.76966
\(537\) 0 0
\(538\) −12.9706 −0.559201
\(539\) −4.24264 −0.182743
\(540\) 0 0
\(541\) −7.21320 −0.310120 −0.155060 0.987905i \(-0.549557\pi\)
−0.155060 + 0.987905i \(0.549557\pi\)
\(542\) 28.2843 1.21491
\(543\) 0 0
\(544\) 0 0
\(545\) −26.5269 −1.13629
\(546\) 0 0
\(547\) 35.4853 1.51724 0.758621 0.651533i \(-0.225874\pi\)
0.758621 + 0.651533i \(0.225874\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 14.9117 0.635837
\(551\) 1.24264 0.0529383
\(552\) 0 0
\(553\) 15.4853 0.658501
\(554\) −10.5858 −0.449747
\(555\) 0 0
\(556\) 0 0
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) 0 0
\(559\) 5.00000 0.211477
\(560\) 6.34315 0.268047
\(561\) 0 0
\(562\) −22.0000 −0.928014
\(563\) 6.34315 0.267332 0.133666 0.991026i \(-0.457325\pi\)
0.133666 + 0.991026i \(0.457325\pi\)
\(564\) 0 0
\(565\) 3.66905 0.154358
\(566\) −12.0000 −0.504398
\(567\) 0 0
\(568\) −36.9706 −1.55125
\(569\) −5.14214 −0.215570 −0.107785 0.994174i \(-0.534376\pi\)
−0.107785 + 0.994174i \(0.534376\pi\)
\(570\) 0 0
\(571\) 42.4558 1.77672 0.888361 0.459146i \(-0.151844\pi\)
0.888361 + 0.459146i \(0.151844\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −12.4853 −0.521126
\(575\) −14.4853 −0.604078
\(576\) 0 0
\(577\) −6.97056 −0.290188 −0.145094 0.989418i \(-0.546349\pi\)
−0.145094 + 0.989418i \(0.546349\pi\)
\(578\) −21.2132 −0.882353
\(579\) 0 0
\(580\) 0 0
\(581\) −13.2426 −0.549397
\(582\) 0 0
\(583\) −0.727922 −0.0301475
\(584\) 26.1421 1.08177
\(585\) 0 0
\(586\) −21.7574 −0.898788
\(587\) 6.55635 0.270609 0.135305 0.990804i \(-0.456799\pi\)
0.135305 + 0.990804i \(0.456799\pi\)
\(588\) 0 0
\(589\) −23.4853 −0.967694
\(590\) 0.769553 0.0316820
\(591\) 0 0
\(592\) −8.97056 −0.368688
\(593\) 0.556349 0.0228465 0.0114233 0.999935i \(-0.496364\pi\)
0.0114233 + 0.999935i \(0.496364\pi\)
\(594\) 0 0
\(595\) 2.24264 0.0919393
\(596\) 0 0
\(597\) 0 0
\(598\) −8.24264 −0.337067
\(599\) 28.7990 1.17669 0.588347 0.808608i \(-0.299779\pi\)
0.588347 + 0.808608i \(0.299779\pi\)
\(600\) 0 0
\(601\) −38.9706 −1.58964 −0.794821 0.606844i \(-0.792435\pi\)
−0.794821 + 0.606844i \(0.792435\pi\)
\(602\) −7.07107 −0.288195
\(603\) 0 0
\(604\) 0 0
\(605\) −11.1005 −0.451300
\(606\) 0 0
\(607\) −26.7279 −1.08485 −0.542426 0.840103i \(-0.682494\pi\)
−0.542426 + 0.840103i \(0.682494\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −13.4558 −0.544811
\(611\) 1.58579 0.0641541
\(612\) 0 0
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) 18.7279 0.755797
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) −12.3431 −0.496916 −0.248458 0.968643i \(-0.579924\pi\)
−0.248458 + 0.968643i \(0.579924\pi\)
\(618\) 0 0
\(619\) 0.970563 0.0390102 0.0195051 0.999810i \(-0.493791\pi\)
0.0195051 + 0.999810i \(0.493791\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 10.4853 0.420421
\(623\) −1.58579 −0.0635332
\(624\) 0 0
\(625\) −6.39697 −0.255879
\(626\) 32.8284 1.31209
\(627\) 0 0
\(628\) 0 0
\(629\) −3.17157 −0.126459
\(630\) 0 0
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) −43.7990 −1.74223
\(633\) 0 0
\(634\) 16.0000 0.635441
\(635\) −3.17157 −0.125860
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 1.02944 0.0407558
\(639\) 0 0
\(640\) −17.9411 −0.709185
\(641\) −15.3431 −0.606018 −0.303009 0.952988i \(-0.597991\pi\)
−0.303009 + 0.952988i \(0.597991\pi\)
\(642\) 0 0
\(643\) −12.4853 −0.492371 −0.246186 0.969223i \(-0.579177\pi\)
−0.246186 + 0.969223i \(0.579177\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 14.4853 0.569916
\(647\) −14.5269 −0.571112 −0.285556 0.958362i \(-0.592178\pi\)
−0.285556 + 0.958362i \(0.592178\pi\)
\(648\) 0 0
\(649\) 1.45584 0.0571469
\(650\) 3.51472 0.137859
\(651\) 0 0
\(652\) 0 0
\(653\) −17.3137 −0.677538 −0.338769 0.940870i \(-0.610010\pi\)
−0.338769 + 0.940870i \(0.610010\pi\)
\(654\) 0 0
\(655\) −4.48528 −0.175254
\(656\) 35.3137 1.37877
\(657\) 0 0
\(658\) −2.24264 −0.0874272
\(659\) 15.3431 0.597684 0.298842 0.954303i \(-0.403400\pi\)
0.298842 + 0.954303i \(0.403400\pi\)
\(660\) 0 0
\(661\) −10.7574 −0.418413 −0.209206 0.977872i \(-0.567088\pi\)
−0.209206 + 0.977872i \(0.567088\pi\)
\(662\) −25.4558 −0.989369
\(663\) 0 0
\(664\) 37.4558 1.45357
\(665\) 11.4853 0.445380
\(666\) 0 0
\(667\) −1.00000 −0.0387202
\(668\) 0 0
\(669\) 0 0
\(670\) 32.4853 1.25502
\(671\) −25.4558 −0.982712
\(672\) 0 0
\(673\) −26.9411 −1.03850 −0.519252 0.854621i \(-0.673789\pi\)
−0.519252 + 0.854621i \(0.673789\pi\)
\(674\) −46.6690 −1.79762
\(675\) 0 0
\(676\) 0 0
\(677\) 41.3553 1.58941 0.794707 0.606993i \(-0.207624\pi\)
0.794707 + 0.606993i \(0.207624\pi\)
\(678\) 0 0
\(679\) 11.7279 0.450076
\(680\) −6.34315 −0.243249
\(681\) 0 0
\(682\) −19.4558 −0.745003
\(683\) 21.1716 0.810108 0.405054 0.914293i \(-0.367253\pi\)
0.405054 + 0.914293i \(0.367253\pi\)
\(684\) 0 0
\(685\) −7.27208 −0.277852
\(686\) 1.41421 0.0539949
\(687\) 0 0
\(688\) 20.0000 0.762493
\(689\) −0.171573 −0.00653641
\(690\) 0 0
\(691\) 28.6985 1.09174 0.545871 0.837869i \(-0.316199\pi\)
0.545871 + 0.837869i \(0.316199\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 8.00000 0.303676
\(695\) −9.89949 −0.375509
\(696\) 0 0
\(697\) 12.4853 0.472914
\(698\) −36.3848 −1.37718
\(699\) 0 0
\(700\) 0 0
\(701\) 10.7990 0.407872 0.203936 0.978984i \(-0.434627\pi\)
0.203936 + 0.978984i \(0.434627\pi\)
\(702\) 0 0
\(703\) −16.2426 −0.612603
\(704\) −33.9411 −1.27920
\(705\) 0 0
\(706\) 12.0000 0.451626
\(707\) −10.2426 −0.385214
\(708\) 0 0
\(709\) 0.727922 0.0273377 0.0136688 0.999907i \(-0.495649\pi\)
0.0136688 + 0.999907i \(0.495649\pi\)
\(710\) −29.3137 −1.10012
\(711\) 0 0
\(712\) 4.48528 0.168093
\(713\) 18.8995 0.707792
\(714\) 0 0
\(715\) −6.72792 −0.251610
\(716\) 0 0
\(717\) 0 0
\(718\) 39.4558 1.47248
\(719\) 1.75736 0.0655384 0.0327692 0.999463i \(-0.489567\pi\)
0.0327692 + 0.999463i \(0.489567\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 47.3137 1.76083
\(723\) 0 0
\(724\) 0 0
\(725\) 0.426407 0.0158364
\(726\) 0 0
\(727\) 42.0000 1.55769 0.778847 0.627214i \(-0.215805\pi\)
0.778847 + 0.627214i \(0.215805\pi\)
\(728\) 2.82843 0.104828
\(729\) 0 0
\(730\) 20.7279 0.767175
\(731\) 7.07107 0.261533
\(732\) 0 0
\(733\) −16.6985 −0.616773 −0.308386 0.951261i \(-0.599789\pi\)
−0.308386 + 0.951261i \(0.599789\pi\)
\(734\) 14.4853 0.534661
\(735\) 0 0
\(736\) 0 0
\(737\) 61.4558 2.26376
\(738\) 0 0
\(739\) −17.6985 −0.651049 −0.325525 0.945534i \(-0.605541\pi\)
−0.325525 + 0.945534i \(0.605541\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.242641 0.00890762
\(743\) 29.6569 1.08800 0.544002 0.839084i \(-0.316908\pi\)
0.544002 + 0.839084i \(0.316908\pi\)
\(744\) 0 0
\(745\) 25.7574 0.943677
\(746\) 12.0000 0.439351
\(747\) 0 0
\(748\) 0 0
\(749\) 20.1421 0.735978
\(750\) 0 0
\(751\) 15.4853 0.565066 0.282533 0.959258i \(-0.408825\pi\)
0.282533 + 0.959258i \(0.408825\pi\)
\(752\) 6.34315 0.231311
\(753\) 0 0
\(754\) 0.242641 0.00883645
\(755\) 15.4731 0.563123
\(756\) 0 0
\(757\) 21.4853 0.780896 0.390448 0.920625i \(-0.372320\pi\)
0.390448 + 0.920625i \(0.372320\pi\)
\(758\) 33.5980 1.22033
\(759\) 0 0
\(760\) −32.4853 −1.17837
\(761\) −34.7574 −1.25995 −0.629977 0.776614i \(-0.716936\pi\)
−0.629977 + 0.776614i \(0.716936\pi\)
\(762\) 0 0
\(763\) 16.7279 0.605591
\(764\) 0 0
\(765\) 0 0
\(766\) 28.9706 1.04675
\(767\) 0.343146 0.0123903
\(768\) 0 0
\(769\) 52.2132 1.88286 0.941428 0.337214i \(-0.109484\pi\)
0.941428 + 0.337214i \(0.109484\pi\)
\(770\) 9.51472 0.342887
\(771\) 0 0
\(772\) 0 0
\(773\) 32.8284 1.18076 0.590378 0.807127i \(-0.298979\pi\)
0.590378 + 0.807127i \(0.298979\pi\)
\(774\) 0 0
\(775\) −8.05887 −0.289483
\(776\) −33.1716 −1.19079
\(777\) 0 0
\(778\) −41.9411 −1.50366
\(779\) 63.9411 2.29093
\(780\) 0 0
\(781\) −55.4558 −1.98437
\(782\) −11.6569 −0.416848
\(783\) 0 0
\(784\) −4.00000 −0.142857
\(785\) 5.95837 0.212663
\(786\) 0 0
\(787\) −24.7574 −0.882505 −0.441252 0.897383i \(-0.645466\pi\)
−0.441252 + 0.897383i \(0.645466\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) −34.7279 −1.23556
\(791\) −2.31371 −0.0822660
\(792\) 0 0
\(793\) −6.00000 −0.213066
\(794\) −25.7574 −0.914094
\(795\) 0 0
\(796\) 0 0
\(797\) 24.3431 0.862278 0.431139 0.902285i \(-0.358112\pi\)
0.431139 + 0.902285i \(0.358112\pi\)
\(798\) 0 0
\(799\) 2.24264 0.0793389
\(800\) 0 0
\(801\) 0 0
\(802\) −8.97056 −0.316762
\(803\) 39.2132 1.38380
\(804\) 0 0
\(805\) −9.24264 −0.325760
\(806\) −4.58579 −0.161527
\(807\) 0 0
\(808\) 28.9706 1.01918
\(809\) −17.4853 −0.614750 −0.307375 0.951589i \(-0.599451\pi\)
−0.307375 + 0.951589i \(0.599451\pi\)
\(810\) 0 0
\(811\) −21.9411 −0.770457 −0.385229 0.922821i \(-0.625877\pi\)
−0.385229 + 0.922821i \(0.625877\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −13.4558 −0.471627
\(815\) −13.4558 −0.471338
\(816\) 0 0
\(817\) 36.2132 1.26694
\(818\) 4.58579 0.160338
\(819\) 0 0
\(820\) 0 0
\(821\) 20.1421 0.702965 0.351483 0.936194i \(-0.385678\pi\)
0.351483 + 0.936194i \(0.385678\pi\)
\(822\) 0 0
\(823\) 10.4853 0.365494 0.182747 0.983160i \(-0.441501\pi\)
0.182747 + 0.983160i \(0.441501\pi\)
\(824\) 22.6274 0.788263
\(825\) 0 0
\(826\) −0.485281 −0.0168851
\(827\) 49.4558 1.71975 0.859874 0.510506i \(-0.170542\pi\)
0.859874 + 0.510506i \(0.170542\pi\)
\(828\) 0 0
\(829\) 50.7279 1.76185 0.880927 0.473253i \(-0.156920\pi\)
0.880927 + 0.473253i \(0.156920\pi\)
\(830\) 29.6985 1.03085
\(831\) 0 0
\(832\) −8.00000 −0.277350
\(833\) −1.41421 −0.0489996
\(834\) 0 0
\(835\) 24.3970 0.844292
\(836\) 0 0
\(837\) 0 0
\(838\) 29.5147 1.01957
\(839\) 33.1716 1.14521 0.572605 0.819831i \(-0.305933\pi\)
0.572605 + 0.819831i \(0.305933\pi\)
\(840\) 0 0
\(841\) −28.9706 −0.998985
\(842\) 9.51472 0.327899
\(843\) 0 0
\(844\) 0 0
\(845\) −1.58579 −0.0545527
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) −0.686292 −0.0235673
\(849\) 0 0
\(850\) 4.97056 0.170489
\(851\) 13.0711 0.448070
\(852\) 0 0
\(853\) 39.7279 1.36026 0.680129 0.733092i \(-0.261924\pi\)
0.680129 + 0.733092i \(0.261924\pi\)
\(854\) 8.48528 0.290360
\(855\) 0 0
\(856\) −56.9706 −1.94721
\(857\) 54.7696 1.87089 0.935446 0.353469i \(-0.114998\pi\)
0.935446 + 0.353469i \(0.114998\pi\)
\(858\) 0 0
\(859\) 30.9706 1.05670 0.528351 0.849026i \(-0.322811\pi\)
0.528351 + 0.849026i \(0.322811\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 17.4558 0.594548
\(863\) −28.2843 −0.962808 −0.481404 0.876499i \(-0.659873\pi\)
−0.481404 + 0.876499i \(0.659873\pi\)
\(864\) 0 0
\(865\) 39.2132 1.33329
\(866\) −35.3137 −1.20001
\(867\) 0 0
\(868\) 0 0
\(869\) −65.6985 −2.22867
\(870\) 0 0
\(871\) 14.4853 0.490815
\(872\) −47.3137 −1.60224
\(873\) 0 0
\(874\) −59.6985 −2.01933
\(875\) 11.8701 0.401281
\(876\) 0 0
\(877\) −10.2426 −0.345869 −0.172935 0.984933i \(-0.555325\pi\)
−0.172935 + 0.984933i \(0.555325\pi\)
\(878\) −48.7696 −1.64589
\(879\) 0 0
\(880\) −26.9117 −0.907193
\(881\) −13.1127 −0.441778 −0.220889 0.975299i \(-0.570896\pi\)
−0.220889 + 0.975299i \(0.570896\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 5.21320 0.175141
\(887\) −19.1127 −0.641742 −0.320871 0.947123i \(-0.603976\pi\)
−0.320871 + 0.947123i \(0.603976\pi\)
\(888\) 0 0
\(889\) 2.00000 0.0670778
\(890\) 3.55635 0.119209
\(891\) 0 0
\(892\) 0 0
\(893\) 11.4853 0.384340
\(894\) 0 0
\(895\) −14.2721 −0.477063
\(896\) 11.3137 0.377964
\(897\) 0 0
\(898\) −29.9411 −0.999148
\(899\) −0.556349 −0.0185553
\(900\) 0 0
\(901\) −0.242641 −0.00808353
\(902\) 52.9706 1.76373
\(903\) 0 0
\(904\) 6.54416 0.217655
\(905\) 29.6985 0.987211
\(906\) 0 0
\(907\) 1.97056 0.0654315 0.0327157 0.999465i \(-0.489584\pi\)
0.0327157 + 0.999465i \(0.489584\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 2.24264 0.0743428
\(911\) 43.9706 1.45681 0.728405 0.685147i \(-0.240262\pi\)
0.728405 + 0.685147i \(0.240262\pi\)
\(912\) 0 0
\(913\) 56.1838 1.85941
\(914\) −10.2010 −0.337419
\(915\) 0 0
\(916\) 0 0
\(917\) 2.82843 0.0934029
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 26.1421 0.861881
\(921\) 0 0
\(922\) −12.4853 −0.411181
\(923\) −13.0711 −0.430239
\(924\) 0 0
\(925\) −5.57359 −0.183259
\(926\) −6.00000 −0.197172
\(927\) 0 0
\(928\) 0 0
\(929\) −36.8995 −1.21063 −0.605317 0.795985i \(-0.706953\pi\)
−0.605317 + 0.795985i \(0.706953\pi\)
\(930\) 0 0
\(931\) −7.24264 −0.237368
\(932\) 0 0
\(933\) 0 0
\(934\) 5.51472 0.180447
\(935\) −9.51472 −0.311165
\(936\) 0 0
\(937\) 45.2132 1.47705 0.738525 0.674226i \(-0.235522\pi\)
0.738525 + 0.674226i \(0.235522\pi\)
\(938\) −20.4853 −0.668868
\(939\) 0 0
\(940\) 0 0
\(941\) −40.0711 −1.30628 −0.653140 0.757237i \(-0.726549\pi\)
−0.653140 + 0.757237i \(0.726549\pi\)
\(942\) 0 0
\(943\) −51.4558 −1.67563
\(944\) 1.37258 0.0446738
\(945\) 0 0
\(946\) 30.0000 0.975384
\(947\) −15.1716 −0.493010 −0.246505 0.969142i \(-0.579282\pi\)
−0.246505 + 0.969142i \(0.579282\pi\)
\(948\) 0 0
\(949\) 9.24264 0.300029
\(950\) 25.4558 0.825897
\(951\) 0 0
\(952\) 4.00000 0.129641
\(953\) −11.1421 −0.360929 −0.180465 0.983581i \(-0.557760\pi\)
−0.180465 + 0.983581i \(0.557760\pi\)
\(954\) 0 0
\(955\) 24.0589 0.778527
\(956\) 0 0
\(957\) 0 0
\(958\) 8.78680 0.283889
\(959\) 4.58579 0.148083
\(960\) 0 0
\(961\) −20.4853 −0.660816
\(962\) −3.17157 −0.102256
\(963\) 0 0
\(964\) 0 0
\(965\) 22.9706 0.739449
\(966\) 0 0
\(967\) 17.6985 0.569145 0.284572 0.958655i \(-0.408148\pi\)
0.284572 + 0.958655i \(0.408148\pi\)
\(968\) −19.7990 −0.636364
\(969\) 0 0
\(970\) −26.3015 −0.844491
\(971\) −43.4558 −1.39456 −0.697282 0.716797i \(-0.745608\pi\)
−0.697282 + 0.716797i \(0.745608\pi\)
\(972\) 0 0
\(973\) 6.24264 0.200130
\(974\) −16.2010 −0.519114
\(975\) 0 0
\(976\) −24.0000 −0.768221
\(977\) −24.0416 −0.769160 −0.384580 0.923092i \(-0.625654\pi\)
−0.384580 + 0.923092i \(0.625654\pi\)
\(978\) 0 0
\(979\) 6.72792 0.215025
\(980\) 0 0
\(981\) 0 0
\(982\) −23.5147 −0.750385
\(983\) 15.0416 0.479754 0.239877 0.970803i \(-0.422893\pi\)
0.239877 + 0.970803i \(0.422893\pi\)
\(984\) 0 0
\(985\) 19.5736 0.623667
\(986\) 0.343146 0.0109280
\(987\) 0 0
\(988\) 0 0
\(989\) −29.1421 −0.926666
\(990\) 0 0
\(991\) 1.02944 0.0327012 0.0163506 0.999866i \(-0.494795\pi\)
0.0163506 + 0.999866i \(0.494795\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 18.4853 0.586318
\(995\) 5.95837 0.188893
\(996\) 0 0
\(997\) −11.5147 −0.364675 −0.182337 0.983236i \(-0.558366\pi\)
−0.182337 + 0.983236i \(0.558366\pi\)
\(998\) −18.7696 −0.594140
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.a.h.1.2 2
3.2 odd 2 91.2.a.c.1.1 2
7.6 odd 2 5733.2.a.s.1.2 2
12.11 even 2 1456.2.a.q.1.1 2
15.14 odd 2 2275.2.a.j.1.2 2
21.2 odd 6 637.2.e.f.508.2 4
21.5 even 6 637.2.e.g.508.2 4
21.11 odd 6 637.2.e.f.79.2 4
21.17 even 6 637.2.e.g.79.2 4
21.20 even 2 637.2.a.g.1.1 2
24.5 odd 2 5824.2.a.bl.1.1 2
24.11 even 2 5824.2.a.bk.1.2 2
39.5 even 4 1183.2.c.d.337.4 4
39.8 even 4 1183.2.c.d.337.2 4
39.38 odd 2 1183.2.a.d.1.2 2
273.272 even 2 8281.2.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.a.c.1.1 2 3.2 odd 2
637.2.a.g.1.1 2 21.20 even 2
637.2.e.f.79.2 4 21.11 odd 6
637.2.e.f.508.2 4 21.2 odd 6
637.2.e.g.79.2 4 21.17 even 6
637.2.e.g.508.2 4 21.5 even 6
819.2.a.h.1.2 2 1.1 even 1 trivial
1183.2.a.d.1.2 2 39.38 odd 2
1183.2.c.d.337.2 4 39.8 even 4
1183.2.c.d.337.4 4 39.5 even 4
1456.2.a.q.1.1 2 12.11 even 2
2275.2.a.j.1.2 2 15.14 odd 2
5733.2.a.s.1.2 2 7.6 odd 2
5824.2.a.bk.1.2 2 24.11 even 2
5824.2.a.bl.1.1 2 24.5 odd 2
8281.2.a.v.1.2 2 273.272 even 2