L(s) = 1 | + (−1.15 + 1.99i)2-s + 2.16·3-s + (−1.65 − 2.86i)4-s + (−1.08 − 1.87i)5-s + (−2.49 + 4.32i)6-s + 2.99·8-s + 1.69·9-s + 4.99·10-s + 4.90·11-s + (−3.57 − 6.19i)12-s + (−1.41 − 3.31i)13-s + (−2.34 − 4.06i)15-s + (−0.151 + 0.262i)16-s + (−3.57 − 6.19i)17-s + (−1.95 + 3.38i)18-s + 2.16·19-s + ⋯ |
L(s) = 1 | + (−0.814 + 1.41i)2-s + 1.25·3-s + (−0.825 − 1.43i)4-s + (−0.484 − 0.839i)5-s + (−1.01 + 1.76i)6-s + 1.06·8-s + 0.565·9-s + 1.57·10-s + 1.47·11-s + (−1.03 − 1.78i)12-s + (−0.391 − 0.920i)13-s + (−0.606 − 1.05i)15-s + (−0.0378 + 0.0655i)16-s + (−0.868 − 1.50i)17-s + (−0.460 + 0.797i)18-s + 0.497·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.270i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.962 - 0.270i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.23016 + 0.169393i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.23016 + 0.169393i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (1.41 + 3.31i)T \) |
good | 2 | \( 1 + (1.15 - 1.99i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 - 2.16T + 3T^{2} \) |
| 5 | \( 1 + (1.08 + 1.87i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 - 4.90T + 11T^{2} \) |
| 17 | \( 1 + (3.57 + 6.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 - 2.16T + 19T^{2} \) |
| 23 | \( 1 + (-0.302 + 0.524i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.15 - 1.99i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.57 + 6.19i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.30 - 7.45i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.99 - 8.64i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.25 + 10.8i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.755 - 1.30i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.19 - 2.07i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.41 - 2.44i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 4.33T + 61T^{2} \) |
| 67 | \( 1 - T + 67T^{2} \) |
| 71 | \( 1 + (2 - 3.46i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.16 + 3.75i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.30 - 5.72i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 2.82T + 83T^{2} \) |
| 89 | \( 1 + (3.25 - 5.63i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.83 + 11.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.916296679028041806498628115490, −9.242901782339395467894175895991, −8.784557651582454611264047471987, −8.072327170604862877894989994300, −7.37310647354239543093029240992, −6.51092678155410581226712808546, −5.25141928611256098321214222566, −4.23556784621099796319445078801, −2.83040553746038624344056564117, −0.821986637802263334066506000391,
1.62399163389801151015124751480, 2.56039916947045974179445163339, 3.62769472018907185756349743647, 4.08165048108663453776057676734, 6.39440366575978540379557153401, 7.35034466346751938506286416582, 8.368711326580630422651221935420, 9.041380741601454772677976772261, 9.504489721769711592022983087192, 10.59190349841236412760291615962