Properties

Label 637.2.g.i.263.2
Level $637$
Weight $2$
Character 637.263
Analytic conductor $5.086$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(263,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.263");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.100088711424.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 13x^{6} + 130x^{4} - 507x^{2} + 1521 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 263.2
Root \(-2.49541 - 1.44073i\) of defining polynomial
Character \(\chi\) \(=\) 637.263
Dual form 637.2.g.i.373.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15139 + 1.99426i) q^{2} +2.16731 q^{3} +(-1.65139 - 2.86029i) q^{4} +(-1.08365 - 1.87694i) q^{5} +(-2.49541 + 4.32218i) q^{6} +3.00000 q^{8} +1.69722 q^{9} +4.99082 q^{10} +4.90833 q^{11} +(-3.57907 - 6.19912i) q^{12} +(-1.41176 - 3.31767i) q^{13} +(-2.34861 - 4.06792i) q^{15} +(-0.151388 + 0.262211i) q^{16} +(-3.57907 - 6.19912i) q^{17} +(-1.95416 + 3.38471i) q^{18} +2.16731 q^{19} +(-3.57907 + 6.19912i) q^{20} +(-5.65139 + 9.78849i) q^{22} +(0.302776 - 0.524423i) q^{23} +6.50192 q^{24} +(0.151388 - 0.262211i) q^{25} +(8.24179 + 1.00451i) q^{26} -2.82352 q^{27} +(1.15139 + 1.99426i) q^{29} +10.8167 q^{30} +(3.57907 - 6.19912i) q^{31} +(2.65139 + 4.59234i) q^{32} +10.6379 q^{33} +16.4836 q^{34} +(-2.80278 - 4.85455i) q^{36} +(-4.30278 + 7.45263i) q^{37} +(-2.49541 + 4.32218i) q^{38} +(-3.05971 - 7.19041i) q^{39} +(-3.25096 - 5.63083i) q^{40} +(4.99082 + 8.64436i) q^{41} +(6.25694 - 10.8373i) q^{43} +(-8.10555 - 14.0392i) q^{44} +(-1.83920 - 3.18559i) q^{45} +(0.697224 + 1.20763i) q^{46} +(0.755550 + 1.30865i) q^{47} +(-0.328104 + 0.568293i) q^{48} +(0.348612 + 0.603814i) q^{50} +(-7.75694 - 13.4354i) q^{51} +(-7.15813 + 9.51680i) q^{52} +(-1.19722 + 2.07365i) q^{53} +(3.25096 - 5.63083i) q^{54} +(-5.31893 - 9.21265i) q^{55} +4.69722 q^{57} -5.30278 q^{58} +(1.41176 + 2.44524i) q^{59} +(-7.75694 + 13.4354i) q^{60} +4.33462 q^{61} +(8.24179 + 14.2752i) q^{62} -12.8167 q^{64} +(-4.69722 + 6.24500i) q^{65} +(-12.2483 + 21.2147i) q^{66} +1.00000 q^{67} +(-11.8209 + 20.4743i) q^{68} +(0.656208 - 1.13659i) q^{69} +(-2.00000 + 3.46410i) q^{71} +5.09167 q^{72} +(2.16731 - 3.75389i) q^{73} +(-9.90833 - 17.1617i) q^{74} +(0.328104 - 0.568293i) q^{75} +(-3.57907 - 6.19912i) q^{76} +(17.8625 + 2.17708i) q^{78} +(3.30278 + 5.72058i) q^{79} +0.656208 q^{80} -11.2111 q^{81} -22.9855 q^{82} +2.82352 q^{83} +(-7.75694 + 13.4354i) q^{85} +(14.4083 + 24.9560i) q^{86} +(2.49541 + 4.32218i) q^{87} +14.7250 q^{88} +(-3.25096 + 5.63083i) q^{89} +8.47055 q^{90} -2.00000 q^{92} +(7.75694 - 13.4354i) q^{93} -3.47972 q^{94} +(-2.34861 - 4.06792i) q^{95} +(5.74637 + 9.95301i) q^{96} +(6.83003 - 11.8300i) q^{97} +8.33053 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 6 q^{4} + 24 q^{8} + 28 q^{9} - 4 q^{11} - 26 q^{15} + 6 q^{16} + 6 q^{18} - 38 q^{22} - 12 q^{23} - 6 q^{25} + 2 q^{29} + 14 q^{32} - 8 q^{36} - 20 q^{37} + 26 q^{39} + 14 q^{43} - 36 q^{44}+ \cdots - 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15139 + 1.99426i −0.814154 + 1.41016i 0.0957796 + 0.995403i \(0.469466\pi\)
−0.909934 + 0.414754i \(0.863868\pi\)
\(3\) 2.16731 1.25130 0.625648 0.780106i \(-0.284835\pi\)
0.625648 + 0.780106i \(0.284835\pi\)
\(4\) −1.65139 2.86029i −0.825694 1.43014i
\(5\) −1.08365 1.87694i −0.484625 0.839395i 0.515219 0.857058i \(-0.327711\pi\)
−0.999844 + 0.0176637i \(0.994377\pi\)
\(6\) −2.49541 + 4.32218i −1.01875 + 1.76452i
\(7\) 0 0
\(8\) 3.00000 1.06066
\(9\) 1.69722 0.565741
\(10\) 4.99082 1.57824
\(11\) 4.90833 1.47992 0.739958 0.672653i \(-0.234845\pi\)
0.739958 + 0.672653i \(0.234845\pi\)
\(12\) −3.57907 6.19912i −1.03319 1.78953i
\(13\) −1.41176 3.31767i −0.391551 0.920156i
\(14\) 0 0
\(15\) −2.34861 4.06792i −0.606409 1.05033i
\(16\) −0.151388 + 0.262211i −0.0378470 + 0.0655528i
\(17\) −3.57907 6.19912i −0.868051 1.50351i −0.863985 0.503517i \(-0.832039\pi\)
−0.00406561 0.999992i \(-0.501294\pi\)
\(18\) −1.95416 + 3.38471i −0.460601 + 0.797784i
\(19\) 2.16731 0.497215 0.248607 0.968604i \(-0.420027\pi\)
0.248607 + 0.968604i \(0.420027\pi\)
\(20\) −3.57907 + 6.19912i −0.800304 + 1.38617i
\(21\) 0 0
\(22\) −5.65139 + 9.78849i −1.20488 + 2.08691i
\(23\) 0.302776 0.524423i 0.0631331 0.109350i −0.832731 0.553677i \(-0.813224\pi\)
0.895864 + 0.444328i \(0.146557\pi\)
\(24\) 6.50192 1.32720
\(25\) 0.151388 0.262211i 0.0302776 0.0524423i
\(26\) 8.24179 + 1.00451i 1.61635 + 0.197001i
\(27\) −2.82352 −0.543386
\(28\) 0 0
\(29\) 1.15139 + 1.99426i 0.213807 + 0.370325i 0.952903 0.303275i \(-0.0980802\pi\)
−0.739096 + 0.673601i \(0.764747\pi\)
\(30\) 10.8167 1.97484
\(31\) 3.57907 6.19912i 0.642819 1.11340i −0.341981 0.939707i \(-0.611098\pi\)
0.984801 0.173689i \(-0.0555687\pi\)
\(32\) 2.65139 + 4.59234i 0.468704 + 0.811818i
\(33\) 10.6379 1.85181
\(34\) 16.4836 2.82691
\(35\) 0 0
\(36\) −2.80278 4.85455i −0.467129 0.809092i
\(37\) −4.30278 + 7.45263i −0.707372 + 1.22520i 0.258457 + 0.966023i \(0.416786\pi\)
−0.965829 + 0.259181i \(0.916547\pi\)
\(38\) −2.49541 + 4.32218i −0.404809 + 0.701150i
\(39\) −3.05971 7.19041i −0.489946 1.15139i
\(40\) −3.25096 5.63083i −0.514022 0.890313i
\(41\) 4.99082 + 8.64436i 0.779436 + 1.35002i 0.932267 + 0.361770i \(0.117827\pi\)
−0.152832 + 0.988252i \(0.548839\pi\)
\(42\) 0 0
\(43\) 6.25694 10.8373i 0.954174 1.65268i 0.217928 0.975965i \(-0.430070\pi\)
0.736247 0.676713i \(-0.236596\pi\)
\(44\) −8.10555 14.0392i −1.22196 2.11649i
\(45\) −1.83920 3.18559i −0.274172 0.474880i
\(46\) 0.697224 + 1.20763i 0.102800 + 0.178055i
\(47\) 0.755550 + 1.30865i 0.110208 + 0.190886i 0.915854 0.401511i \(-0.131515\pi\)
−0.805646 + 0.592397i \(0.798182\pi\)
\(48\) −0.328104 + 0.568293i −0.0473577 + 0.0820260i
\(49\) 0 0
\(50\) 0.348612 + 0.603814i 0.0493012 + 0.0853922i
\(51\) −7.75694 13.4354i −1.08619 1.88133i
\(52\) −7.15813 + 9.51680i −0.992654 + 1.31974i
\(53\) −1.19722 + 2.07365i −0.164451 + 0.284838i −0.936460 0.350773i \(-0.885919\pi\)
0.772009 + 0.635612i \(0.219252\pi\)
\(54\) 3.25096 5.63083i 0.442400 0.766259i
\(55\) −5.31893 9.21265i −0.717204 1.24223i
\(56\) 0 0
\(57\) 4.69722 0.622163
\(58\) −5.30278 −0.696289
\(59\) 1.41176 + 2.44524i 0.183795 + 0.318343i 0.943170 0.332311i \(-0.107828\pi\)
−0.759375 + 0.650654i \(0.774495\pi\)
\(60\) −7.75694 + 13.4354i −1.00142 + 1.73450i
\(61\) 4.33462 0.554991 0.277495 0.960727i \(-0.410496\pi\)
0.277495 + 0.960727i \(0.410496\pi\)
\(62\) 8.24179 + 14.2752i 1.04671 + 1.81295i
\(63\) 0 0
\(64\) −12.8167 −1.60208
\(65\) −4.69722 + 6.24500i −0.582619 + 0.774597i
\(66\) −12.2483 + 21.2147i −1.50766 + 2.61135i
\(67\) 1.00000 0.122169 0.0610847 0.998133i \(-0.480544\pi\)
0.0610847 + 0.998133i \(0.480544\pi\)
\(68\) −11.8209 + 20.4743i −1.43349 + 2.48288i
\(69\) 0.656208 1.13659i 0.0789982 0.136829i
\(70\) 0 0
\(71\) −2.00000 + 3.46410i −0.237356 + 0.411113i −0.959955 0.280155i \(-0.909614\pi\)
0.722599 + 0.691268i \(0.242948\pi\)
\(72\) 5.09167 0.600059
\(73\) 2.16731 3.75389i 0.253664 0.439359i −0.710868 0.703326i \(-0.751698\pi\)
0.964532 + 0.263967i \(0.0850308\pi\)
\(74\) −9.90833 17.1617i −1.15182 1.99501i
\(75\) 0.328104 0.568293i 0.0378862 0.0656208i
\(76\) −3.57907 6.19912i −0.410547 0.711088i
\(77\) 0 0
\(78\) 17.8625 + 2.17708i 2.02253 + 0.246506i
\(79\) 3.30278 + 5.72058i 0.371591 + 0.643615i 0.989811 0.142391i \(-0.0454789\pi\)
−0.618219 + 0.786006i \(0.712146\pi\)
\(80\) 0.656208 0.0733663
\(81\) −11.2111 −1.24568
\(82\) −22.9855 −2.53832
\(83\) 2.82352 0.309921 0.154961 0.987921i \(-0.450475\pi\)
0.154961 + 0.987921i \(0.450475\pi\)
\(84\) 0 0
\(85\) −7.75694 + 13.4354i −0.841358 + 1.45728i
\(86\) 14.4083 + 24.9560i 1.55369 + 2.69107i
\(87\) 2.49541 + 4.32218i 0.267536 + 0.463386i
\(88\) 14.7250 1.56969
\(89\) −3.25096 + 5.63083i −0.344601 + 0.596867i −0.985281 0.170941i \(-0.945319\pi\)
0.640680 + 0.767808i \(0.278653\pi\)
\(90\) 8.47055 0.892874
\(91\) 0 0
\(92\) −2.00000 −0.208514
\(93\) 7.75694 13.4354i 0.804357 1.39319i
\(94\) −3.47972 −0.358906
\(95\) −2.34861 4.06792i −0.240963 0.417359i
\(96\) 5.74637 + 9.95301i 0.586487 + 1.01583i
\(97\) 6.83003 11.8300i 0.693484 1.20115i −0.277205 0.960811i \(-0.589408\pi\)
0.970689 0.240339i \(-0.0772587\pi\)
\(98\) 0 0
\(99\) 8.33053 0.837250
\(100\) −1.00000 −0.100000
\(101\) −6.50192 −0.646966 −0.323483 0.946234i \(-0.604854\pi\)
−0.323483 + 0.946234i \(0.604854\pi\)
\(102\) 35.7250 3.53730
\(103\) −5.74637 9.95301i −0.566207 0.980699i −0.996936 0.0782182i \(-0.975077\pi\)
0.430729 0.902481i \(-0.358256\pi\)
\(104\) −4.23527 9.95301i −0.415303 0.975973i
\(105\) 0 0
\(106\) −2.75694 4.77516i −0.267778 0.463804i
\(107\) −2.84861 + 4.93394i −0.275386 + 0.476982i −0.970232 0.242176i \(-0.922139\pi\)
0.694847 + 0.719158i \(0.255472\pi\)
\(108\) 4.66272 + 8.07607i 0.448670 + 0.777120i
\(109\) −4.10555 + 7.11102i −0.393240 + 0.681113i −0.992875 0.119162i \(-0.961979\pi\)
0.599634 + 0.800274i \(0.295313\pi\)
\(110\) 24.4966 2.33566
\(111\) −9.32544 + 16.1521i −0.885132 + 1.53309i
\(112\) 0 0
\(113\) −3.40833 + 5.90340i −0.320628 + 0.555345i −0.980618 0.195930i \(-0.937227\pi\)
0.659989 + 0.751275i \(0.270561\pi\)
\(114\) −5.40833 + 9.36750i −0.506536 + 0.877346i
\(115\) −1.31242 −0.122383
\(116\) 3.80278 6.58660i 0.353079 0.611551i
\(117\) −2.39607 5.63083i −0.221517 0.520571i
\(118\) −6.50192 −0.598551
\(119\) 0 0
\(120\) −7.04584 12.2037i −0.643194 1.11404i
\(121\) 13.0917 1.19015
\(122\) −4.99082 + 8.64436i −0.451848 + 0.782624i
\(123\) 10.8167 + 18.7350i 0.975305 + 1.68928i
\(124\) −23.6417 −2.12309
\(125\) −11.4927 −1.02794
\(126\) 0 0
\(127\) −3.95416 6.84881i −0.350875 0.607734i 0.635528 0.772078i \(-0.280783\pi\)
−0.986403 + 0.164344i \(0.947449\pi\)
\(128\) 9.45416 16.3751i 0.835638 1.44737i
\(129\) 13.5607 23.4878i 1.19395 2.06799i
\(130\) −7.04584 16.5579i −0.617961 1.45222i
\(131\) 5.31893 + 9.21265i 0.464717 + 0.804913i 0.999189 0.0402730i \(-0.0128228\pi\)
−0.534472 + 0.845186i \(0.679489\pi\)
\(132\) −17.5672 30.4273i −1.52903 2.64836i
\(133\) 0 0
\(134\) −1.15139 + 1.99426i −0.0994648 + 0.172278i
\(135\) 3.05971 + 5.29958i 0.263338 + 0.456115i
\(136\) −10.7372 18.5974i −0.920707 1.59471i
\(137\) −3.15139 5.45836i −0.269241 0.466339i 0.699425 0.714706i \(-0.253440\pi\)
−0.968666 + 0.248367i \(0.920106\pi\)
\(138\) 1.51110 + 2.61730i 0.128633 + 0.222800i
\(139\) 5.31893 9.21265i 0.451146 0.781407i −0.547312 0.836929i \(-0.684349\pi\)
0.998457 + 0.0555216i \(0.0176822\pi\)
\(140\) 0 0
\(141\) 1.63751 + 2.83625i 0.137903 + 0.238855i
\(142\) −4.60555 7.97705i −0.386489 0.669419i
\(143\) −6.92937 16.2842i −0.579463 1.36175i
\(144\) −0.256939 + 0.445032i −0.0214116 + 0.0370860i
\(145\) 2.49541 4.32218i 0.207233 0.358938i
\(146\) 4.99082 + 8.64436i 0.413044 + 0.715412i
\(147\) 0 0
\(148\) 28.4222 2.33629
\(149\) −17.5139 −1.43479 −0.717396 0.696665i \(-0.754666\pi\)
−0.717396 + 0.696665i \(0.754666\pi\)
\(150\) 0.755550 + 1.30865i 0.0616904 + 0.106851i
\(151\) −4.10555 + 7.11102i −0.334105 + 0.578687i −0.983313 0.181924i \(-0.941767\pi\)
0.649207 + 0.760611i \(0.275101\pi\)
\(152\) 6.50192 0.527376
\(153\) −6.07448 10.5213i −0.491092 0.850597i
\(154\) 0 0
\(155\) −15.5139 −1.24610
\(156\) −15.5139 + 20.6258i −1.24210 + 1.65139i
\(157\) 0.328104 0.568293i 0.0261856 0.0453547i −0.852636 0.522506i \(-0.824997\pi\)
0.878821 + 0.477151i \(0.158331\pi\)
\(158\) −15.2111 −1.21013
\(159\) −2.59475 + 4.49425i −0.205777 + 0.356417i
\(160\) 5.74637 9.95301i 0.454291 0.786855i
\(161\) 0 0
\(162\) 12.9083 22.3579i 1.01417 1.75660i
\(163\) −2.78890 −0.218443 −0.109222 0.994017i \(-0.534836\pi\)
−0.109222 + 0.994017i \(0.534836\pi\)
\(164\) 16.4836 28.5504i 1.28715 2.22941i
\(165\) −11.5278 19.9667i −0.897435 1.55440i
\(166\) −3.25096 + 5.63083i −0.252324 + 0.437037i
\(167\) −5.74637 9.95301i −0.444668 0.770187i 0.553361 0.832941i \(-0.313345\pi\)
−0.998029 + 0.0627542i \(0.980012\pi\)
\(168\) 0 0
\(169\) −9.01388 + 9.36750i −0.693375 + 0.720577i
\(170\) −17.8625 30.9387i −1.36999 2.37289i
\(171\) 3.67841 0.281295
\(172\) −41.3305 −3.15142
\(173\) 10.1803 0.773996 0.386998 0.922080i \(-0.373512\pi\)
0.386998 + 0.922080i \(0.373512\pi\)
\(174\) −11.4927 −0.871263
\(175\) 0 0
\(176\) −0.743061 + 1.28702i −0.0560103 + 0.0970127i
\(177\) 3.05971 + 5.29958i 0.229982 + 0.398341i
\(178\) −7.48624 12.9665i −0.561117 0.971883i
\(179\) 21.6056 1.61487 0.807437 0.589953i \(-0.200854\pi\)
0.807437 + 0.589953i \(0.200854\pi\)
\(180\) −6.07448 + 10.5213i −0.452765 + 0.784212i
\(181\) −24.2979 −1.80605 −0.903025 0.429588i \(-0.858659\pi\)
−0.903025 + 0.429588i \(0.858659\pi\)
\(182\) 0 0
\(183\) 9.39445 0.694458
\(184\) 0.908327 1.57327i 0.0669627 0.115983i
\(185\) 18.6509 1.37124
\(186\) 17.8625 + 30.9387i 1.30974 + 2.26854i
\(187\) −17.5672 30.4273i −1.28464 2.22507i
\(188\) 2.49541 4.32218i 0.181997 0.315227i
\(189\) 0 0
\(190\) 10.8167 0.784723
\(191\) 15.6972 1.13581 0.567906 0.823094i \(-0.307754\pi\)
0.567906 + 0.823094i \(0.307754\pi\)
\(192\) −27.7776 −2.00468
\(193\) 19.8167 1.42643 0.713217 0.700943i \(-0.247237\pi\)
0.713217 + 0.700943i \(0.247237\pi\)
\(194\) 15.7280 + 27.2417i 1.12921 + 1.95584i
\(195\) −10.1803 + 13.5348i −0.729029 + 0.969250i
\(196\) 0 0
\(197\) 0.545837 + 0.945417i 0.0388892 + 0.0673581i 0.884815 0.465943i \(-0.154285\pi\)
−0.845926 + 0.533301i \(0.820951\pi\)
\(198\) −9.59167 + 16.6133i −0.681651 + 1.18065i
\(199\) 3.57907 + 6.19912i 0.253713 + 0.439444i 0.964545 0.263918i \(-0.0850147\pi\)
−0.710832 + 0.703362i \(0.751681\pi\)
\(200\) 0.454163 0.786634i 0.0321142 0.0556234i
\(201\) 2.16731 0.152870
\(202\) 7.48624 12.9665i 0.526730 0.912323i
\(203\) 0 0
\(204\) −25.6194 + 44.3742i −1.79372 + 3.10681i
\(205\) 10.8167 18.7350i 0.755468 1.30851i
\(206\) 26.4652 1.84392
\(207\) 0.513878 0.890063i 0.0357170 0.0618637i
\(208\) 1.08365 + 0.132076i 0.0751379 + 0.00915781i
\(209\) 10.6379 0.735836
\(210\) 0 0
\(211\) −7.50000 12.9904i −0.516321 0.894295i −0.999820 0.0189499i \(-0.993968\pi\)
0.483499 0.875345i \(-0.339366\pi\)
\(212\) 7.90833 0.543146
\(213\) −4.33462 + 7.50778i −0.297003 + 0.514424i
\(214\) −6.55971 11.3618i −0.448413 0.776674i
\(215\) −27.1214 −1.84967
\(216\) −8.47055 −0.576348
\(217\) 0 0
\(218\) −9.45416 16.3751i −0.640317 1.10906i
\(219\) 4.69722 8.13583i 0.317409 0.549769i
\(220\) −17.5672 + 30.4273i −1.18438 + 2.05141i
\(221\) −15.5139 + 20.6258i −1.04358 + 1.38744i
\(222\) −21.4744 37.1947i −1.44127 2.49635i
\(223\) 8.99734 + 15.5838i 0.602506 + 1.04357i 0.992440 + 0.122729i \(0.0391645\pi\)
−0.389934 + 0.920843i \(0.627502\pi\)
\(224\) 0 0
\(225\) 0.256939 0.445032i 0.0171293 0.0296688i
\(226\) −7.84861 13.5942i −0.522082 0.904272i
\(227\) 9.22610 + 15.9801i 0.612358 + 1.06063i 0.990842 + 0.135027i \(0.0431121\pi\)
−0.378484 + 0.925608i \(0.623555\pi\)
\(228\) −7.75694 13.4354i −0.513716 0.889782i
\(229\) 7.81434 + 13.5348i 0.516386 + 0.894407i 0.999819 + 0.0190256i \(0.00605640\pi\)
−0.483433 + 0.875381i \(0.660610\pi\)
\(230\) 1.51110 2.61730i 0.0996390 0.172580i
\(231\) 0 0
\(232\) 3.45416 + 5.98279i 0.226777 + 0.392789i
\(233\) 6.54584 + 11.3377i 0.428832 + 0.742759i 0.996770 0.0803127i \(-0.0255919\pi\)
−0.567938 + 0.823072i \(0.692259\pi\)
\(234\) 13.9882 + 1.70488i 0.914435 + 0.111451i
\(235\) 1.63751 2.83625i 0.106819 0.185017i
\(236\) 4.66272 8.07607i 0.303517 0.525707i
\(237\) 7.15813 + 12.3982i 0.464971 + 0.805353i
\(238\) 0 0
\(239\) 4.39445 0.284253 0.142127 0.989848i \(-0.454606\pi\)
0.142127 + 0.989848i \(0.454606\pi\)
\(240\) 1.42221 0.0918029
\(241\) 4.66272 + 8.07607i 0.300352 + 0.520225i 0.976216 0.216802i \(-0.0695624\pi\)
−0.675863 + 0.737027i \(0.736229\pi\)
\(242\) −15.0736 + 26.1082i −0.968967 + 1.67830i
\(243\) −15.8274 −1.01533
\(244\) −7.15813 12.3982i −0.458252 0.793717i
\(245\) 0 0
\(246\) −49.8167 −3.17619
\(247\) −3.05971 7.19041i −0.194685 0.457515i
\(248\) 10.7372 18.5974i 0.681813 1.18093i
\(249\) 6.11943 0.387803
\(250\) 13.2326 22.9196i 0.836904 1.44956i
\(251\) −14.9725 + 25.9331i −0.945054 + 1.63688i −0.189411 + 0.981898i \(0.560658\pi\)
−0.755643 + 0.654984i \(0.772675\pi\)
\(252\) 0 0
\(253\) 1.48612 2.57404i 0.0934317 0.161828i
\(254\) 18.2111 1.14267
\(255\) −16.8117 + 29.1187i −1.05279 + 1.82348i
\(256\) 8.95416 + 15.5091i 0.559635 + 0.969317i
\(257\) −3.15162 + 5.45877i −0.196593 + 0.340508i −0.947421 0.319988i \(-0.896321\pi\)
0.750829 + 0.660497i \(0.229654\pi\)
\(258\) 31.2273 + 54.0872i 1.94413 + 3.36732i
\(259\) 0 0
\(260\) 25.6194 + 3.12250i 1.58885 + 0.193649i
\(261\) 1.95416 + 3.38471i 0.120960 + 0.209508i
\(262\) −24.4966 −1.51340
\(263\) 15.4222 0.950974 0.475487 0.879723i \(-0.342272\pi\)
0.475487 + 0.879723i \(0.342272\pi\)
\(264\) 31.9136 1.96414
\(265\) 5.18951 0.318789
\(266\) 0 0
\(267\) −7.04584 + 12.2037i −0.431198 + 0.746857i
\(268\) −1.65139 2.86029i −0.100875 0.174720i
\(269\) 0.328104 + 0.568293i 0.0200049 + 0.0346494i 0.875855 0.482575i \(-0.160298\pi\)
−0.855850 + 0.517225i \(0.826965\pi\)
\(270\) −14.0917 −0.857592
\(271\) −7.25747 + 12.5703i −0.440860 + 0.763592i −0.997754 0.0669918i \(-0.978660\pi\)
0.556893 + 0.830584i \(0.311993\pi\)
\(272\) 2.16731 0.131412
\(273\) 0 0
\(274\) 14.5139 0.876815
\(275\) 0.743061 1.28702i 0.0448083 0.0776102i
\(276\) −4.33462 −0.260913
\(277\) 0.105551 + 0.182820i 0.00634196 + 0.0109846i 0.869179 0.494498i \(-0.164648\pi\)
−0.862837 + 0.505482i \(0.831315\pi\)
\(278\) 12.2483 + 21.2147i 0.734604 + 1.27237i
\(279\) 6.07448 10.5213i 0.363670 0.629894i
\(280\) 0 0
\(281\) 23.8167 1.42078 0.710391 0.703807i \(-0.248518\pi\)
0.710391 + 0.703807i \(0.248518\pi\)
\(282\) −7.54163 −0.449098
\(283\) 18.6509 1.10868 0.554340 0.832290i \(-0.312971\pi\)
0.554340 + 0.832290i \(0.312971\pi\)
\(284\) 13.2111 0.783935
\(285\) −5.09017 8.81643i −0.301515 0.522240i
\(286\) 40.4534 + 4.93046i 2.39206 + 0.291544i
\(287\) 0 0
\(288\) 4.50000 + 7.79423i 0.265165 + 0.459279i
\(289\) −17.1194 + 29.6517i −1.00703 + 1.74422i
\(290\) 5.74637 + 9.95301i 0.337439 + 0.584461i
\(291\) 14.8028 25.6392i 0.867754 1.50299i
\(292\) −14.3163 −0.837796
\(293\) 14.3163 24.7965i 0.836365 1.44863i −0.0565490 0.998400i \(-0.518010\pi\)
0.892914 0.450227i \(-0.148657\pi\)
\(294\) 0 0
\(295\) 3.05971 5.29958i 0.178143 0.308554i
\(296\) −12.9083 + 22.3579i −0.750281 + 1.29953i
\(297\) −13.8587 −0.804166
\(298\) 20.1653 34.9273i 1.16814 2.02328i
\(299\) −2.16731 0.264152i −0.125339 0.0152763i
\(300\) −2.16731 −0.125130
\(301\) 0 0
\(302\) −9.45416 16.3751i −0.544026 0.942281i
\(303\) −14.0917 −0.809545
\(304\) −0.328104 + 0.568293i −0.0188181 + 0.0325938i
\(305\) −4.69722 8.13583i −0.268962 0.465856i
\(306\) 27.9763 1.59930
\(307\) 3.67841 0.209938 0.104969 0.994476i \(-0.466526\pi\)
0.104969 + 0.994476i \(0.466526\pi\)
\(308\) 0 0
\(309\) −12.4542 21.5712i −0.708493 1.22715i
\(310\) 17.8625 30.9387i 1.01452 1.75720i
\(311\) −5.31893 + 9.21265i −0.301609 + 0.522402i −0.976501 0.215515i \(-0.930857\pi\)
0.674892 + 0.737917i \(0.264190\pi\)
\(312\) −9.17914 21.5712i −0.519667 1.22123i
\(313\) 2.82352 + 4.89047i 0.159595 + 0.276426i 0.934723 0.355378i \(-0.115648\pi\)
−0.775128 + 0.631804i \(0.782315\pi\)
\(314\) 0.755550 + 1.30865i 0.0426382 + 0.0738514i
\(315\) 0 0
\(316\) 10.9083 18.8938i 0.613641 1.06286i
\(317\) 3.10555 + 5.37897i 0.174425 + 0.302113i 0.939962 0.341279i \(-0.110860\pi\)
−0.765537 + 0.643392i \(0.777527\pi\)
\(318\) −5.97514 10.3492i −0.335069 0.580357i
\(319\) 5.65139 + 9.78849i 0.316417 + 0.548050i
\(320\) 13.8888 + 24.0561i 0.776409 + 1.34478i
\(321\) −6.17382 + 10.6934i −0.344589 + 0.596846i
\(322\) 0 0
\(323\) −7.75694 13.4354i −0.431608 0.747566i
\(324\) 18.5139 + 32.0670i 1.02855 + 1.78150i
\(325\) −1.08365 0.132076i −0.0601103 0.00732625i
\(326\) 3.21110 5.56179i 0.177847 0.308039i
\(327\) −8.89799 + 15.4118i −0.492060 + 0.852273i
\(328\) 14.9725 + 25.9331i 0.826717 + 1.43192i
\(329\) 0 0
\(330\) 53.0917 2.92260
\(331\) 4.30278 0.236502 0.118251 0.992984i \(-0.462271\pi\)
0.118251 + 0.992984i \(0.462271\pi\)
\(332\) −4.66272 8.07607i −0.255900 0.443232i
\(333\) −7.30278 + 12.6488i −0.400190 + 0.693149i
\(334\) 26.4652 1.44811
\(335\) −1.08365 1.87694i −0.0592063 0.102548i
\(336\) 0 0
\(337\) 18.1194 0.987028 0.493514 0.869738i \(-0.335712\pi\)
0.493514 + 0.869738i \(0.335712\pi\)
\(338\) −8.30278 28.7617i −0.451611 1.56443i
\(339\) −7.38689 + 12.7945i −0.401201 + 0.694901i
\(340\) 51.2389 2.77882
\(341\) 17.5672 30.4273i 0.951319 1.64773i
\(342\) −4.23527 + 7.33571i −0.229017 + 0.396670i
\(343\) 0 0
\(344\) 18.7708 32.5120i 1.01205 1.75293i
\(345\) −2.84441 −0.153138
\(346\) −11.7215 + 20.3023i −0.630152 + 1.09146i
\(347\) −7.60555 13.1732i −0.408287 0.707174i 0.586411 0.810014i \(-0.300541\pi\)
−0.994698 + 0.102839i \(0.967207\pi\)
\(348\) 8.24179 14.2752i 0.441806 0.765231i
\(349\) −5.09017 8.81643i −0.272470 0.471932i 0.697023 0.717048i \(-0.254507\pi\)
−0.969494 + 0.245116i \(0.921174\pi\)
\(350\) 0 0
\(351\) 3.98612 + 9.36750i 0.212763 + 0.500000i
\(352\) 13.0139 + 22.5407i 0.693642 + 1.20142i
\(353\) −26.4652 −1.40860 −0.704301 0.709902i \(-0.748739\pi\)
−0.704301 + 0.709902i \(0.748739\pi\)
\(354\) −14.0917 −0.748964
\(355\) 8.66923 0.460115
\(356\) 21.4744 1.13814
\(357\) 0 0
\(358\) −24.8764 + 43.0871i −1.31476 + 2.27723i
\(359\) 6.04584 + 10.4717i 0.319087 + 0.552675i 0.980298 0.197525i \(-0.0632904\pi\)
−0.661211 + 0.750200i \(0.729957\pi\)
\(360\) −5.51761 9.55678i −0.290804 0.503687i
\(361\) −14.3028 −0.752778
\(362\) 27.9763 48.4564i 1.47040 2.54681i
\(363\) 28.3737 1.48923
\(364\) 0 0
\(365\) −9.39445 −0.491728
\(366\) −10.8167 + 18.7350i −0.565396 + 0.979294i
\(367\) 25.6103 1.33685 0.668424 0.743780i \(-0.266969\pi\)
0.668424 + 0.743780i \(0.266969\pi\)
\(368\) 0.0916731 + 0.158782i 0.00477879 + 0.00827711i
\(369\) 8.47055 + 14.6714i 0.440959 + 0.763764i
\(370\) −21.4744 + 37.1947i −1.11640 + 1.93366i
\(371\) 0 0
\(372\) −51.2389 −2.65661
\(373\) −12.6972 −0.657437 −0.328719 0.944428i \(-0.606617\pi\)
−0.328719 + 0.944428i \(0.606617\pi\)
\(374\) 80.9068 4.18359
\(375\) −24.9083 −1.28626
\(376\) 2.26665 + 3.92595i 0.116894 + 0.202466i
\(377\) 4.99082 6.63534i 0.257041 0.341737i
\(378\) 0 0
\(379\) 6.05971 + 10.4957i 0.311267 + 0.539130i 0.978637 0.205596i \(-0.0659134\pi\)
−0.667370 + 0.744726i \(0.732580\pi\)
\(380\) −7.75694 + 13.4354i −0.397923 + 0.689222i
\(381\) −8.56989 14.8435i −0.439049 0.760455i
\(382\) −18.0736 + 31.3044i −0.924725 + 1.60167i
\(383\) −22.3293 −1.14097 −0.570487 0.821307i \(-0.693245\pi\)
−0.570487 + 0.821307i \(0.693245\pi\)
\(384\) 20.4901 35.4899i 1.04563 1.81108i
\(385\) 0 0
\(386\) −22.8167 + 39.5196i −1.16134 + 2.01149i
\(387\) 10.6194 18.3934i 0.539816 0.934989i
\(388\) −45.1161 −2.29042
\(389\) −14.5139 + 25.1388i −0.735883 + 1.27459i 0.218452 + 0.975848i \(0.429899\pi\)
−0.954335 + 0.298739i \(0.903434\pi\)
\(390\) −15.2705 35.8861i −0.773252 1.81716i
\(391\) −4.33462 −0.219211
\(392\) 0 0
\(393\) 11.5278 + 19.9667i 0.581498 + 1.00718i
\(394\) −2.51388 −0.126647
\(395\) 7.15813 12.3982i 0.360165 0.623824i
\(396\) −13.7569 23.8277i −0.691312 1.19739i
\(397\) 4.33462 0.217548 0.108774 0.994066i \(-0.465307\pi\)
0.108774 + 0.994066i \(0.465307\pi\)
\(398\) −16.4836 −0.826247
\(399\) 0 0
\(400\) 0.0458365 + 0.0793912i 0.00229183 + 0.00396956i
\(401\) 5.05971 8.76368i 0.252670 0.437637i −0.711590 0.702595i \(-0.752025\pi\)
0.964260 + 0.264958i \(0.0853579\pi\)
\(402\) −2.49541 + 4.32218i −0.124460 + 0.215571i
\(403\) −25.6194 3.12250i −1.27619 0.155543i
\(404\) 10.7372 + 18.5974i 0.534196 + 0.925254i
\(405\) 12.1490 + 21.0426i 0.603687 + 1.04562i
\(406\) 0 0
\(407\) −21.1194 + 36.5799i −1.04685 + 1.81320i
\(408\) −23.2708 40.3062i −1.15208 1.99546i
\(409\) −1.73986 3.01353i −0.0860306 0.149009i 0.819799 0.572651i \(-0.194085\pi\)
−0.905830 + 0.423642i \(0.860752\pi\)
\(410\) 24.9083 + 43.1425i 1.23013 + 2.13066i
\(411\) −6.83003 11.8300i −0.336900 0.583529i
\(412\) −18.9790 + 32.8726i −0.935027 + 1.61952i
\(413\) 0 0
\(414\) 1.18335 + 2.04962i 0.0581583 + 0.100733i
\(415\) −3.05971 5.29958i −0.150195 0.260146i
\(416\) 11.4927 15.2797i 0.563478 0.749149i
\(417\) 11.5278 19.9667i 0.564517 0.977772i
\(418\) −12.2483 + 21.2147i −0.599084 + 1.03764i
\(419\) 8.56989 + 14.8435i 0.418667 + 0.725152i 0.995806 0.0914942i \(-0.0291643\pi\)
−0.577139 + 0.816646i \(0.695831\pi\)
\(420\) 0 0
\(421\) 5.02776 0.245038 0.122519 0.992466i \(-0.460903\pi\)
0.122519 + 0.992466i \(0.460903\pi\)
\(422\) 34.5416 1.68146
\(423\) 1.28234 + 2.22107i 0.0623494 + 0.107992i
\(424\) −3.59167 + 6.22096i −0.174427 + 0.302117i
\(425\) −2.16731 −0.105130
\(426\) −9.98165 17.2887i −0.483612 0.837641i
\(427\) 0 0
\(428\) 18.8167 0.909537
\(429\) −15.0181 35.2929i −0.725080 1.70396i
\(430\) 31.2273 54.0872i 1.50591 2.60832i
\(431\) −20.9361 −1.00846 −0.504228 0.863571i \(-0.668223\pi\)
−0.504228 + 0.863571i \(0.668223\pi\)
\(432\) 0.427446 0.740358i 0.0205655 0.0356205i
\(433\) −8.56989 + 14.8435i −0.411843 + 0.713332i −0.995091 0.0989613i \(-0.968448\pi\)
0.583249 + 0.812294i \(0.301781\pi\)
\(434\) 0 0
\(435\) 5.40833 9.36750i 0.259309 0.449137i
\(436\) 27.1194 1.29879
\(437\) 0.656208 1.13659i 0.0313907 0.0543703i
\(438\) 10.8167 + 18.7350i 0.516840 + 0.895193i
\(439\) 1.83920 3.18559i 0.0877804 0.152040i −0.818792 0.574090i \(-0.805356\pi\)
0.906573 + 0.422050i \(0.138689\pi\)
\(440\) −15.9568 27.6380i −0.760710 1.31759i
\(441\) 0 0
\(442\) −23.2708 54.6871i −1.10688 2.60120i
\(443\) 10.1194 + 17.5274i 0.480789 + 0.832750i 0.999757 0.0220431i \(-0.00701711\pi\)
−0.518968 + 0.854793i \(0.673684\pi\)
\(444\) 61.5997 2.92339
\(445\) 14.0917 0.668009
\(446\) −41.4377 −1.96213
\(447\) −37.9580 −1.79535
\(448\) 0 0
\(449\) 10.2111 17.6861i 0.481892 0.834661i −0.517892 0.855446i \(-0.673283\pi\)
0.999784 + 0.0207849i \(0.00661652\pi\)
\(450\) 0.591673 + 1.02481i 0.0278917 + 0.0483099i
\(451\) 24.4966 + 42.4294i 1.15350 + 1.99792i
\(452\) 22.5139 1.05896
\(453\) −8.89799 + 15.4118i −0.418064 + 0.724109i
\(454\) −42.4913 −1.99421
\(455\) 0 0
\(456\) 14.0917 0.659903
\(457\) −10.3028 + 17.8449i −0.481944 + 0.834751i −0.999785 0.0207258i \(-0.993402\pi\)
0.517842 + 0.855476i \(0.326736\pi\)
\(458\) −35.9893 −1.68167
\(459\) 10.1056 + 17.5033i 0.471687 + 0.816985i
\(460\) 2.16731 + 3.75389i 0.101051 + 0.175026i
\(461\) 12.5764 21.7830i 0.585741 1.01453i −0.409041 0.912516i \(-0.634137\pi\)
0.994783 0.102018i \(-0.0325299\pi\)
\(462\) 0 0
\(463\) −13.7889 −0.640824 −0.320412 0.947278i \(-0.603821\pi\)
−0.320412 + 0.947278i \(0.603821\pi\)
\(464\) −0.697224 −0.0323678
\(465\) −33.6234 −1.55925
\(466\) −30.1472 −1.39654
\(467\) −6.40258 11.0896i −0.296276 0.513165i 0.679005 0.734134i \(-0.262412\pi\)
−0.975281 + 0.220968i \(0.929078\pi\)
\(468\) −12.1490 + 16.1521i −0.561586 + 0.746633i
\(469\) 0 0
\(470\) 3.77082 + 6.53125i 0.173935 + 0.301264i
\(471\) 0.711103 1.23167i 0.0327659 0.0567522i
\(472\) 4.23527 + 7.33571i 0.194944 + 0.337653i
\(473\) 30.7111 53.1932i 1.41210 2.44583i
\(474\) −32.9671 −1.51423
\(475\) 0.328104 0.568293i 0.0150544 0.0260751i
\(476\) 0 0
\(477\) −2.03196 + 3.51946i −0.0930370 + 0.161145i
\(478\) −5.05971 + 8.76368i −0.231426 + 0.400842i
\(479\) −16.4836 −0.753154 −0.376577 0.926385i \(-0.622899\pi\)
−0.376577 + 0.926385i \(0.622899\pi\)
\(480\) 12.4542 21.5712i 0.568452 0.984588i
\(481\) 30.7998 + 3.75389i 1.40435 + 0.171163i
\(482\) −21.4744 −0.978132
\(483\) 0 0
\(484\) −21.6194 37.4460i −0.982701 1.70209i
\(485\) −29.6056 −1.34432
\(486\) 18.2234 31.5639i 0.826632 1.43177i
\(487\) 15.6514 + 27.1090i 0.709232 + 1.22843i 0.965142 + 0.261725i \(0.0842915\pi\)
−0.255910 + 0.966701i \(0.582375\pi\)
\(488\) 13.0038 0.588657
\(489\) −6.04440 −0.273337
\(490\) 0 0
\(491\) −9.86249 17.0823i −0.445088 0.770915i 0.552970 0.833201i \(-0.313494\pi\)
−0.998058 + 0.0622859i \(0.980161\pi\)
\(492\) 35.7250 61.8775i 1.61061 2.78965i
\(493\) 8.24179 14.2752i 0.371191 0.642922i
\(494\) 17.8625 + 2.17708i 0.803671 + 0.0979516i
\(495\) −9.02741 15.6359i −0.405752 0.702783i
\(496\) 1.08365 + 1.87694i 0.0486575 + 0.0842773i
\(497\) 0 0
\(498\) −7.04584 + 12.2037i −0.315731 + 0.546863i
\(499\) 4.16527 + 7.21445i 0.186463 + 0.322963i 0.944069 0.329749i \(-0.106964\pi\)
−0.757606 + 0.652713i \(0.773631\pi\)
\(500\) 18.9790 + 32.8726i 0.848766 + 1.47011i
\(501\) −12.4542 21.5712i −0.556411 0.963732i
\(502\) −34.4782 59.7181i −1.53884 2.66535i
\(503\) 9.75289 16.8925i 0.434860 0.753199i −0.562424 0.826849i \(-0.690131\pi\)
0.997284 + 0.0736495i \(0.0234646\pi\)
\(504\) 0 0
\(505\) 7.04584 + 12.2037i 0.313536 + 0.543060i
\(506\) 3.42221 + 5.92743i 0.152136 + 0.263507i
\(507\) −19.5359 + 20.3023i −0.867618 + 0.901655i
\(508\) −13.0597 + 22.6201i −0.579431 + 1.00360i
\(509\) −10.7372 + 18.5974i −0.475918 + 0.824314i −0.999619 0.0275878i \(-0.991217\pi\)
0.523701 + 0.851902i \(0.324551\pi\)
\(510\) −38.7135 67.0538i −1.71426 2.96919i
\(511\) 0 0
\(512\) −3.42221 −0.151242
\(513\) −6.11943 −0.270179
\(514\) −7.25747 12.5703i −0.320113 0.554453i
\(515\) −12.4542 + 21.5712i −0.548796 + 0.950543i
\(516\) −89.5760 −3.94336
\(517\) 3.70849 + 6.42329i 0.163099 + 0.282496i
\(518\) 0 0
\(519\) 22.0639 0.968498
\(520\) −14.0917 + 18.7350i −0.617961 + 0.821584i
\(521\) 10.8365 18.7694i 0.474757 0.822304i −0.524825 0.851210i \(-0.675869\pi\)
0.999582 + 0.0289063i \(0.00920245\pi\)
\(522\) −9.00000 −0.393919
\(523\) −12.1490 + 21.0426i −0.531237 + 0.920129i 0.468099 + 0.883676i \(0.344939\pi\)
−0.999335 + 0.0364529i \(0.988394\pi\)
\(524\) 17.5672 30.4273i 0.767428 1.32922i
\(525\) 0 0
\(526\) −17.7569 + 30.7559i −0.774239 + 1.34102i
\(527\) −51.2389 −2.23200
\(528\) −1.61044 + 2.78937i −0.0700855 + 0.121392i
\(529\) 11.3167 + 19.6010i 0.492028 + 0.852218i
\(530\) −5.97514 + 10.3492i −0.259543 + 0.449542i
\(531\) 2.39607 + 4.15012i 0.103981 + 0.180100i
\(532\) 0 0
\(533\) 21.6333 28.7617i 0.937043 1.24581i
\(534\) −16.2250 28.1025i −0.702124 1.21611i
\(535\) 12.3476 0.533835
\(536\) 3.00000 0.129580
\(537\) 46.8259 2.02069
\(538\) −1.51110 −0.0651481
\(539\) 0 0
\(540\) 10.1056 17.5033i 0.434874 0.753223i
\(541\) −13.9680 24.1934i −0.600533 1.04015i −0.992740 0.120277i \(-0.961622\pi\)
0.392207 0.919877i \(-0.371712\pi\)
\(542\) −16.7123 28.9466i −0.717856 1.24336i
\(543\) −52.6611 −2.25990
\(544\) 18.9790 32.8726i 0.813717 1.40940i
\(545\) 17.7960 0.762296
\(546\) 0 0
\(547\) 29.0000 1.23995 0.619975 0.784621i \(-0.287143\pi\)
0.619975 + 0.784621i \(0.287143\pi\)
\(548\) −10.4083 + 18.0278i −0.444622 + 0.770107i
\(549\) 7.35682 0.313981
\(550\) 1.71110 + 2.96372i 0.0729617 + 0.126373i
\(551\) 2.49541 + 4.32218i 0.106308 + 0.184131i
\(552\) 1.96862 3.40976i 0.0837902 0.145129i
\(553\) 0 0
\(554\) −0.486122 −0.0206533
\(555\) 40.4222 1.71583
\(556\) −35.1345 −1.49003
\(557\) 6.09167 0.258112 0.129056 0.991637i \(-0.458805\pi\)
0.129056 + 0.991637i \(0.458805\pi\)
\(558\) 13.9882 + 24.2282i 0.592166 + 1.02566i
\(559\) −44.7880 5.45877i −1.89433 0.230881i
\(560\) 0 0
\(561\) −38.0736 65.9454i −1.60747 2.78422i
\(562\) −27.4222 + 47.4967i −1.15674 + 2.00353i
\(563\) −0.656208 1.13659i −0.0276559 0.0479014i 0.851866 0.523759i \(-0.175471\pi\)
−0.879522 + 0.475858i \(0.842138\pi\)
\(564\) 5.40833 9.36750i 0.227732 0.394443i
\(565\) 14.7738 0.621538
\(566\) −21.4744 + 37.1947i −0.902636 + 1.56341i
\(567\) 0 0
\(568\) −6.00000 + 10.3923i −0.251754 + 0.436051i
\(569\) 17.3028 29.9693i 0.725370 1.25638i −0.233451 0.972368i \(-0.575002\pi\)
0.958822 0.284009i \(-0.0916647\pi\)
\(570\) 23.4430 0.981920
\(571\) 5.36249 9.28811i 0.224413 0.388695i −0.731730 0.681595i \(-0.761287\pi\)
0.956143 + 0.292899i \(0.0946201\pi\)
\(572\) −35.1345 + 46.7115i −1.46905 + 1.95311i
\(573\) 34.0207 1.42124
\(574\) 0 0
\(575\) −0.0916731 0.158782i −0.00382303 0.00662169i
\(576\) −21.7527 −0.906364
\(577\) −16.5829 + 28.7225i −0.690356 + 1.19573i 0.281366 + 0.959601i \(0.409213\pi\)
−0.971721 + 0.236131i \(0.924121\pi\)
\(578\) −39.4222 68.2813i −1.63975 2.84013i
\(579\) 42.9488 1.78489
\(580\) −16.4836 −0.684443
\(581\) 0 0
\(582\) 34.0875 + 59.0412i 1.41297 + 2.44734i
\(583\) −5.87637 + 10.1782i −0.243374 + 0.421537i
\(584\) 6.50192 11.2617i 0.269052 0.466011i
\(585\) −7.97224 + 10.5992i −0.329612 + 0.438221i
\(586\) 32.9671 + 57.1008i 1.36186 + 2.35881i
\(587\) −0.984312 1.70488i −0.0406269 0.0703679i 0.844997 0.534771i \(-0.179602\pi\)
−0.885624 + 0.464403i \(0.846269\pi\)
\(588\) 0 0
\(589\) 7.75694 13.4354i 0.319619 0.553597i
\(590\) 7.04584 + 12.2037i 0.290072 + 0.502420i
\(591\) 1.18300 + 2.04901i 0.0486620 + 0.0842850i
\(592\) −1.30278 2.25647i −0.0535437 0.0927405i
\(593\) −3.15162 5.45877i −0.129422 0.224165i 0.794031 0.607877i \(-0.207979\pi\)
−0.923453 + 0.383712i \(0.874645\pi\)
\(594\) 15.9568 27.6380i 0.654715 1.13400i
\(595\) 0 0
\(596\) 28.9222 + 50.0947i 1.18470 + 2.05196i
\(597\) 7.75694 + 13.4354i 0.317470 + 0.549875i
\(598\) 3.02220 4.01804i 0.123587 0.164310i
\(599\) 5.25694 9.10529i 0.214793 0.372032i −0.738416 0.674346i \(-0.764426\pi\)
0.953208 + 0.302314i \(0.0977591\pi\)
\(600\) 0.984312 1.70488i 0.0401844 0.0696014i
\(601\) −4.56338 7.90400i −0.186144 0.322411i 0.757817 0.652467i \(-0.226266\pi\)
−0.943961 + 0.330056i \(0.892932\pi\)
\(602\) 0 0
\(603\) 1.69722 0.0691163
\(604\) 27.1194 1.10347
\(605\) −14.1868 24.5723i −0.576777 0.999008i
\(606\) 16.2250 28.1025i 0.659095 1.14159i
\(607\) 38.8129 1.57537 0.787683 0.616081i \(-0.211281\pi\)
0.787683 + 0.616081i \(0.211281\pi\)
\(608\) 5.74637 + 9.95301i 0.233046 + 0.403648i
\(609\) 0 0
\(610\) 21.6333 0.875907
\(611\) 3.27502 4.35416i 0.132493 0.176151i
\(612\) −20.0626 + 34.7495i −0.810984 + 1.40467i
\(613\) 31.9083 1.28877 0.644383 0.764703i \(-0.277114\pi\)
0.644383 + 0.764703i \(0.277114\pi\)
\(614\) −4.23527 + 7.33571i −0.170922 + 0.296045i
\(615\) 23.4430 40.6045i 0.945314 1.63733i
\(616\) 0 0
\(617\) −7.92221 + 13.7217i −0.318936 + 0.552413i −0.980266 0.197681i \(-0.936659\pi\)
0.661330 + 0.750095i \(0.269992\pi\)
\(618\) 57.3583 2.30729
\(619\) 14.9725 25.9331i 0.601794 1.04234i −0.390755 0.920495i \(-0.627786\pi\)
0.992549 0.121844i \(-0.0388807\pi\)
\(620\) 25.6194 + 44.3742i 1.02890 + 1.78211i
\(621\) −0.854892 + 1.48072i −0.0343056 + 0.0594191i
\(622\) −12.2483 21.2147i −0.491112 0.850631i
\(623\) 0 0
\(624\) 2.34861 + 0.286249i 0.0940197 + 0.0114591i
\(625\) 11.6972 + 20.2602i 0.467889 + 0.810407i
\(626\) −13.0038 −0.519738
\(627\) 23.0555 0.920748
\(628\) −2.16731 −0.0864850
\(629\) 61.5997 2.45614
\(630\) 0 0
\(631\) −11.4542 + 19.8392i −0.455983 + 0.789786i −0.998744 0.0501013i \(-0.984046\pi\)
0.542761 + 0.839887i \(0.317379\pi\)
\(632\) 9.90833 + 17.1617i 0.394132 + 0.682657i
\(633\) −16.2548 28.1542i −0.646071 1.11903i
\(634\) −14.3028 −0.568036
\(635\) −8.56989 + 14.8435i −0.340086 + 0.589046i
\(636\) 17.1398 0.679637
\(637\) 0 0
\(638\) −26.0278 −1.03045
\(639\) −3.39445 + 5.87936i −0.134282 + 0.232584i
\(640\) −40.9802 −1.61988
\(641\) 7.25694 + 12.5694i 0.286632 + 0.496461i 0.973004 0.230790i \(-0.0741310\pi\)
−0.686372 + 0.727251i \(0.740798\pi\)
\(642\) −14.2169 24.6244i −0.561097 0.971849i
\(643\) −8.56989 + 14.8435i −0.337963 + 0.585370i −0.984050 0.177895i \(-0.943071\pi\)
0.646086 + 0.763265i \(0.276405\pi\)
\(644\) 0 0
\(645\) −58.7805 −2.31448
\(646\) 35.7250 1.40558
\(647\) −32.9671 −1.29607 −0.648036 0.761610i \(-0.724409\pi\)
−0.648036 + 0.761610i \(0.724409\pi\)
\(648\) −33.6333 −1.32124
\(649\) 6.92937 + 12.0020i 0.272002 + 0.471121i
\(650\) 1.51110 2.00902i 0.0592702 0.0788002i
\(651\) 0 0
\(652\) 4.60555 + 7.97705i 0.180367 + 0.312405i
\(653\) 23.3764 40.4891i 0.914788 1.58446i 0.107577 0.994197i \(-0.465691\pi\)
0.807211 0.590262i \(-0.200976\pi\)
\(654\) −20.4901 35.4899i −0.801226 1.38776i
\(655\) 11.5278 19.9667i 0.450427 0.780162i
\(656\) −3.02220 −0.117997
\(657\) 3.67841 6.37119i 0.143508 0.248564i
\(658\) 0 0
\(659\) 9.81665 17.0029i 0.382403 0.662341i −0.609003 0.793168i \(-0.708430\pi\)
0.991405 + 0.130828i \(0.0417634\pi\)
\(660\) −38.0736 + 65.9454i −1.48201 + 2.56692i
\(661\) −22.9855 −0.894032 −0.447016 0.894526i \(-0.647513\pi\)
−0.447016 + 0.894526i \(0.647513\pi\)
\(662\) −4.95416 + 8.58086i −0.192549 + 0.333505i
\(663\) −33.6234 + 44.7025i −1.30582 + 1.73610i
\(664\) 8.47055 0.328721
\(665\) 0 0
\(666\) −16.8167 29.1273i −0.651632 1.12866i
\(667\) 1.39445 0.0539933
\(668\) −18.9790 + 32.8726i −0.734319 + 1.27188i
\(669\) 19.5000 + 33.7750i 0.753914 + 1.30582i
\(670\) 4.99082 0.192812
\(671\) 21.2757 0.821340
\(672\) 0 0
\(673\) 1.10555 + 1.91487i 0.0426159 + 0.0738129i 0.886547 0.462639i \(-0.153098\pi\)
−0.843931 + 0.536452i \(0.819764\pi\)
\(674\) −20.8625 + 36.1349i −0.803593 + 1.39186i
\(675\) −0.427446 + 0.740358i −0.0164524 + 0.0284964i
\(676\) 41.6791 + 10.3129i 1.60304 + 0.396651i
\(677\) 13.2326 + 22.9196i 0.508571 + 0.880870i 0.999951 + 0.00992485i \(0.00315923\pi\)
−0.491380 + 0.870945i \(0.663507\pi\)
\(678\) −17.0104 29.4628i −0.653279 1.13151i
\(679\) 0 0
\(680\) −23.2708 + 40.3062i −0.892395 + 1.54567i
\(681\) 19.9958 + 34.6337i 0.766241 + 1.32717i
\(682\) 40.4534 + 70.0673i 1.54904 + 2.68302i
\(683\) 1.80278 + 3.12250i 0.0689813 + 0.119479i 0.898453 0.439069i \(-0.144692\pi\)
−0.829472 + 0.558549i \(0.811358\pi\)
\(684\) −6.07448 10.5213i −0.232263 0.402292i
\(685\) −6.83003 + 11.8300i −0.260962 + 0.451999i
\(686\) 0 0
\(687\) 16.9361 + 29.3342i 0.646152 + 1.11917i
\(688\) 1.89445 + 3.28128i 0.0722252 + 0.125098i
\(689\) 8.56989 + 1.04450i 0.326487 + 0.0397923i
\(690\) 3.27502 5.67250i 0.124678 0.215948i
\(691\) 18.8796 32.7005i 0.718215 1.24399i −0.243491 0.969903i \(-0.578293\pi\)
0.961706 0.274082i \(-0.0883741\pi\)
\(692\) −16.8117 29.1187i −0.639084 1.10693i
\(693\) 0 0
\(694\) 35.0278 1.32964
\(695\) −23.0555 −0.874545
\(696\) 7.48624 + 12.9665i 0.283765 + 0.491495i
\(697\) 35.7250 61.8775i 1.35318 2.34378i
\(698\) 23.4430 0.887331
\(699\) 14.1868 + 24.5723i 0.536596 + 0.929411i
\(700\) 0 0
\(701\) 9.02776 0.340974 0.170487 0.985360i \(-0.445466\pi\)
0.170487 + 0.985360i \(0.445466\pi\)
\(702\) −23.2708 2.83625i −0.878300 0.107047i
\(703\) −9.32544 + 16.1521i −0.351716 + 0.609189i
\(704\) −62.9083 −2.37095
\(705\) 3.54899 6.14703i 0.133663 0.231510i
\(706\) 30.4717 52.7786i 1.14682 1.98635i
\(707\) 0 0
\(708\) 10.1056 17.5033i 0.379790 0.657815i
\(709\) 32.7250 1.22901 0.614506 0.788912i \(-0.289355\pi\)
0.614506 + 0.788912i \(0.289355\pi\)
\(710\) −9.98165 + 17.2887i −0.374605 + 0.648834i
\(711\) 5.60555 + 9.70910i 0.210225 + 0.364120i
\(712\) −9.75289 + 16.8925i −0.365505 + 0.633073i
\(713\) −2.16731 3.75389i −0.0811663 0.140584i
\(714\) 0 0
\(715\) −23.0555 + 30.6525i −0.862227 + 1.14634i
\(716\) −35.6791 61.7981i −1.33339 2.30950i
\(717\) 9.52412 0.355685
\(718\) −27.8444 −1.03914
\(719\) −22.7868 −0.849805 −0.424902 0.905239i \(-0.639692\pi\)
−0.424902 + 0.905239i \(0.639692\pi\)
\(720\) 1.11373 0.0415064
\(721\) 0 0
\(722\) 16.4680 28.5235i 0.612877 1.06153i
\(723\) 10.1056 + 17.5033i 0.375829 + 0.650956i
\(724\) 40.1253 + 69.4990i 1.49124 + 2.58291i
\(725\) 0.697224 0.0258943
\(726\) −32.6691 + 56.5846i −1.21246 + 2.10005i
\(727\) 37.1031 1.37608 0.688038 0.725674i \(-0.258472\pi\)
0.688038 + 0.725674i \(0.258472\pi\)
\(728\) 0 0
\(729\) −0.669468 −0.0247951
\(730\) 10.8167 18.7350i 0.400342 0.693413i
\(731\) −89.5760 −3.31309
\(732\) −15.5139 26.8708i −0.573409 0.993174i
\(733\) 3.35030 + 5.80290i 0.123746 + 0.214335i 0.921242 0.388990i \(-0.127176\pi\)
−0.797496 + 0.603324i \(0.793842\pi\)
\(734\) −29.4874 + 51.0737i −1.08840 + 1.88517i
\(735\) 0 0
\(736\) 3.21110 0.118363
\(737\) 4.90833 0.180801
\(738\) −39.0115 −1.43603
\(739\) −33.2111 −1.22169 −0.610845 0.791750i \(-0.709170\pi\)
−0.610845 + 0.791750i \(0.709170\pi\)
\(740\) −30.7998 53.3469i −1.13222 1.96107i
\(741\) −6.63134 15.5838i −0.243609 0.572487i
\(742\) 0 0
\(743\) 20.6514 + 35.7693i 0.757626 + 1.31225i 0.944058 + 0.329779i \(0.106974\pi\)
−0.186432 + 0.982468i \(0.559692\pi\)
\(744\) 23.2708 40.3062i 0.853150 1.47770i
\(745\) 18.9790 + 32.8726i 0.695336 + 1.20436i
\(746\) 14.6194 25.3216i 0.535255 0.927089i
\(747\) 4.79214 0.175335
\(748\) −58.0206 + 100.495i −2.12144 + 3.67445i
\(749\) 0 0
\(750\) 28.6791 49.6737i 1.04721 1.81383i
\(751\) 5.80278 10.0507i 0.211746 0.366755i −0.740515 0.672040i \(-0.765418\pi\)
0.952261 + 0.305285i \(0.0987516\pi\)
\(752\) −0.457524 −0.0166842
\(753\) −32.4500 + 56.2050i −1.18254 + 2.04822i
\(754\) 7.48624 + 17.5929i 0.272633 + 0.640694i
\(755\) 17.7960 0.647662
\(756\) 0 0
\(757\) −3.11943 5.40301i −0.113378 0.196376i 0.803752 0.594964i \(-0.202834\pi\)
−0.917130 + 0.398588i \(0.869500\pi\)
\(758\) −27.9083 −1.01368
\(759\) 3.22088 5.57873i 0.116911 0.202495i
\(760\) −7.04584 12.2037i −0.255579 0.442676i
\(761\) −42.2926 −1.53311 −0.766553 0.642182i \(-0.778029\pi\)
−0.766553 + 0.642182i \(0.778029\pi\)
\(762\) 39.4691 1.42981
\(763\) 0 0
\(764\) −25.9222 44.8986i −0.937832 1.62437i
\(765\) −13.1653 + 22.8029i −0.475991 + 0.824441i
\(766\) 25.7097 44.5305i 0.928928 1.60895i
\(767\) 6.11943 8.13583i 0.220960 0.293768i
\(768\) 19.4064 + 33.6129i 0.700269 + 1.21290i
\(769\) −23.5424 40.7766i −0.848959 1.47044i −0.882138 0.470991i \(-0.843896\pi\)
0.0331785 0.999449i \(-0.489437\pi\)
\(770\) 0 0
\(771\) −6.83053 + 11.8308i −0.245996 + 0.426077i
\(772\) −32.7250 56.6813i −1.17780 2.04001i
\(773\) −14.2169 24.6244i −0.511347 0.885679i −0.999914 0.0131525i \(-0.995813\pi\)
0.488566 0.872527i \(-0.337520\pi\)
\(774\) 24.4542 + 42.3559i 0.878987 + 1.52245i
\(775\) −1.08365 1.87694i −0.0389260 0.0674218i
\(776\) 20.4901 35.4899i 0.735551 1.27401i
\(777\) 0 0
\(778\) −33.4222 57.8890i −1.19824 2.07542i
\(779\) 10.8167 + 18.7350i 0.387547 + 0.671251i
\(780\) 55.5252 + 6.76742i 1.98812 + 0.242312i
\(781\) −9.81665 + 17.0029i −0.351267 + 0.608413i
\(782\) 4.99082 8.64436i 0.178472 0.309122i
\(783\) −3.25096 5.63083i −0.116180 0.201230i
\(784\) 0 0
\(785\) −1.42221 −0.0507607
\(786\) −53.0917 −1.89372
\(787\) 15.6287 + 27.0697i 0.557102 + 0.964930i 0.997737 + 0.0672428i \(0.0214202\pi\)
−0.440634 + 0.897687i \(0.645246\pi\)
\(788\) 1.80278 3.12250i 0.0642212 0.111234i
\(789\) 33.4247 1.18995
\(790\) 16.4836 + 28.5504i 0.586459 + 1.01578i
\(791\) 0 0
\(792\) 24.9916 0.888038
\(793\) −6.11943 14.3808i −0.217307 0.510678i
\(794\) −4.99082 + 8.64436i −0.177118 + 0.306777i
\(795\) 11.2473 0.398899
\(796\) 11.8209 20.4743i 0.418979 0.725693i
\(797\) −13.0038 + 22.5233i −0.460620 + 0.797817i −0.998992 0.0448902i \(-0.985706\pi\)
0.538372 + 0.842707i \(0.319040\pi\)
\(798\) 0 0
\(799\) 5.40833 9.36750i 0.191333 0.331398i
\(800\) 1.60555 0.0567648
\(801\) −5.51761 + 9.55678i −0.194955 + 0.337672i
\(802\) 11.6514 + 20.1808i 0.411425 + 0.712609i
\(803\) 10.6379 18.4253i 0.375402 0.650215i
\(804\) −3.57907 6.19912i −0.126224 0.218626i
\(805\) 0 0
\(806\) 35.7250 47.4967i 1.25836 1.67300i
\(807\) 0.711103 + 1.23167i 0.0250320 + 0.0433567i
\(808\) −19.5058 −0.686211
\(809\) 20.0278 0.704138 0.352069 0.935974i \(-0.385478\pi\)
0.352069 + 0.935974i \(0.385478\pi\)
\(810\) −55.9526 −1.96598
\(811\) 0.854892 0.0300193 0.0150097 0.999887i \(-0.495222\pi\)
0.0150097 + 0.999887i \(0.495222\pi\)
\(812\) 0 0
\(813\) −15.7292 + 27.2437i −0.551647 + 0.955480i
\(814\) −48.6333 84.2354i −1.70460 2.95245i
\(815\) 3.02220 + 5.23460i 0.105863 + 0.183360i
\(816\) 4.69722 0.164436
\(817\) 13.5607 23.4878i 0.474429 0.821736i
\(818\) 8.01302 0.280169
\(819\) 0 0
\(820\) −71.4500 −2.49514
\(821\) 27.9222 48.3627i 0.974492 1.68787i 0.292889 0.956146i \(-0.405383\pi\)
0.681602 0.731723i \(-0.261283\pi\)
\(822\) 31.4560 1.09716
\(823\) −21.1333 36.6040i −0.736661 1.27593i −0.953991 0.299836i \(-0.903068\pi\)
0.217330 0.976098i \(-0.430265\pi\)
\(824\) −17.2391 29.8590i −0.600553 1.04019i
\(825\) 1.61044 2.78937i 0.0560684 0.0971133i
\(826\) 0 0
\(827\) −16.7527 −0.582550 −0.291275 0.956639i \(-0.594079\pi\)
−0.291275 + 0.956639i \(0.594079\pi\)
\(828\) −3.39445 −0.117965
\(829\) 50.7631 1.76308 0.881538 0.472113i \(-0.156508\pi\)
0.881538 + 0.472113i \(0.156508\pi\)
\(830\) 14.0917 0.489129
\(831\) 0.228762 + 0.396228i 0.00793567 + 0.0137450i
\(832\) 18.0940 + 42.5214i 0.627297 + 1.47417i
\(833\) 0 0
\(834\) 26.5458 + 45.9787i 0.919207 + 1.59211i
\(835\) −12.4542 + 21.5712i −0.430994 + 0.746504i
\(836\) −17.5672 30.4273i −0.607575 1.05235i
\(837\) −10.1056 + 17.5033i −0.349299 + 0.605004i
\(838\) −39.4691 −1.36344
\(839\) −6.73069 + 11.6579i −0.232369 + 0.402475i −0.958505 0.285076i \(-0.907981\pi\)
0.726136 + 0.687551i \(0.241314\pi\)
\(840\) 0 0
\(841\) 11.8486 20.5224i 0.408573 0.707669i
\(842\) −5.78890 + 10.0267i −0.199499 + 0.345542i
\(843\) 51.6180 1.77782
\(844\) −24.7708 + 42.9043i −0.852647 + 1.47683i
\(845\) 27.3502 + 6.76742i 0.940875 + 0.232806i
\(846\) −5.90587 −0.203048
\(847\) 0 0
\(848\) −0.362490 0.627852i −0.0124480 0.0215605i
\(849\) 40.4222 1.38729
\(850\) 2.49541 4.32218i 0.0855919 0.148250i
\(851\) 2.60555 + 4.51295i 0.0893171 + 0.154702i
\(852\) 28.6325 0.980934
\(853\) 12.8052 0.438440 0.219220 0.975675i \(-0.429649\pi\)
0.219220 + 0.975675i \(0.429649\pi\)
\(854\) 0 0
\(855\) −3.98612 6.90417i −0.136322 0.236117i
\(856\) −8.54584 + 14.8018i −0.292091 + 0.505916i
\(857\) −1.64052 + 2.84146i −0.0560391 + 0.0970626i −0.892684 0.450683i \(-0.851180\pi\)
0.836645 + 0.547746i \(0.184514\pi\)
\(858\) 87.6749 + 10.6858i 2.99317 + 0.364808i
\(859\) −1.51110 2.61730i −0.0515581 0.0893012i 0.839095 0.543986i \(-0.183085\pi\)
−0.890653 + 0.454684i \(0.849752\pi\)
\(860\) 44.7880 + 77.5751i 1.52726 + 2.64529i
\(861\) 0 0
\(862\) 24.1056 41.7520i 0.821038 1.42208i
\(863\) −4.90833 8.50147i −0.167081 0.289393i 0.770311 0.637668i \(-0.220101\pi\)
−0.937392 + 0.348275i \(0.886768\pi\)
\(864\) −7.48624 12.9665i −0.254687 0.441131i
\(865\) −11.0320 19.1079i −0.375098 0.649689i
\(866\) −19.7345 34.1812i −0.670607 1.16153i
\(867\) −37.1031 + 64.2644i −1.26009 + 2.18253i
\(868\) 0 0
\(869\) 16.2111 + 28.0785i 0.549924 + 0.952496i
\(870\) 12.4542 + 21.5712i 0.422236 + 0.731334i
\(871\) −1.41176 3.31767i −0.0478356 0.112415i
\(872\) −12.3167 + 21.3331i −0.417095 + 0.722429i
\(873\) 11.5921 20.0781i 0.392333 0.679540i
\(874\) 1.51110 + 2.61730i 0.0511137 + 0.0885316i
\(875\) 0 0
\(876\) −31.0278 −1.04833
\(877\) −45.6056 −1.53999 −0.769995 0.638050i \(-0.779741\pi\)
−0.769995 + 0.638050i \(0.779741\pi\)
\(878\) 4.23527 + 7.33571i 0.142934 + 0.247568i
\(879\) 31.0278 53.7417i 1.04654 1.81266i
\(880\) 3.22088 0.108576
\(881\) −9.42478 16.3242i −0.317529 0.549976i 0.662443 0.749112i \(-0.269520\pi\)
−0.979972 + 0.199136i \(0.936186\pi\)
\(882\) 0 0
\(883\) −24.3944 −0.820939 −0.410469 0.911874i \(-0.634635\pi\)
−0.410469 + 0.911874i \(0.634635\pi\)
\(884\) 84.6152 + 10.3129i 2.84592 + 0.346861i
\(885\) 6.63134 11.4858i 0.222910 0.386092i
\(886\) −46.6056 −1.56574
\(887\) −17.3385 + 30.0311i −0.582169 + 1.00835i 0.413053 + 0.910707i \(0.364462\pi\)
−0.995222 + 0.0976388i \(0.968871\pi\)
\(888\) −27.9763 + 48.4564i −0.938824 + 1.62609i
\(889\) 0 0
\(890\) −16.2250 + 28.1025i −0.543863 + 0.941998i
\(891\) −55.0278 −1.84350
\(892\) 29.7162 51.4699i 0.994971 1.72334i
\(893\) 1.63751 + 2.83625i 0.0547972 + 0.0949115i
\(894\) 43.7043 75.6981i 1.46169 2.53172i
\(895\) −23.4129 40.5524i −0.782608 1.35552i
\(896\) 0 0
\(897\) −4.69722 0.572498i −0.156836 0.0191152i
\(898\) 23.5139 + 40.7272i 0.784668 + 1.35909i
\(899\) 16.4836 0.549758
\(900\) −1.69722 −0.0565741
\(901\) 17.1398 0.571009
\(902\) −112.820 −3.75651
\(903\) 0 0
\(904\) −10.2250 + 17.7102i −0.340078 + 0.589032i
\(905\) 26.3305 + 45.6058i 0.875256 + 1.51599i
\(906\) −20.4901 35.4899i −0.680737 1.17907i
\(907\) −38.8444 −1.28981 −0.644904 0.764264i \(-0.723103\pi\)
−0.644904 + 0.764264i \(0.723103\pi\)
\(908\) 30.4717 52.7786i 1.01124 1.75152i
\(909\) −11.0352 −0.366015
\(910\) 0 0
\(911\) 35.9361 1.19062 0.595308 0.803498i \(-0.297030\pi\)
0.595308 + 0.803498i \(0.297030\pi\)
\(912\) −0.711103 + 1.23167i −0.0235470 + 0.0407845i
\(913\) 13.8587 0.458657
\(914\) −23.7250 41.0929i −0.784753 1.35923i
\(915\) −10.1803 17.6329i −0.336551 0.582924i
\(916\) 25.8090 44.7025i 0.852754 1.47701i
\(917\) 0 0
\(918\) −46.5416 −1.53610
\(919\) 53.4500 1.76315 0.881576 0.472043i \(-0.156483\pi\)
0.881576 + 0.472043i \(0.156483\pi\)
\(920\) −3.93725 −0.129807
\(921\) 7.97224 0.262694
\(922\) 28.9606 + 50.1613i 0.953768 + 1.65197i
\(923\) 14.3163 + 1.74487i 0.471226 + 0.0574330i
\(924\) 0 0
\(925\) 1.30278 + 2.25647i 0.0428350 + 0.0741924i
\(926\) 15.8764 27.4987i 0.521730 0.903663i
\(927\) −9.75289 16.8925i −0.320327 0.554822i
\(928\) −6.10555 + 10.5751i −0.200425 + 0.347145i
\(929\) −17.1398 −0.562338 −0.281169 0.959658i \(-0.590722\pi\)
−0.281169 + 0.959658i \(0.590722\pi\)
\(930\) 38.7135 67.0538i 1.26947 2.19878i
\(931\) 0 0
\(932\) 21.6194 37.4460i 0.708168 1.22658i
\(933\) −11.5278 + 19.9667i −0.377402 + 0.653679i
\(934\) 29.4874 0.964858
\(935\) −38.0736 + 65.9454i −1.24514 + 2.15665i
\(936\) −7.18821 16.8925i −0.234954 0.552148i
\(937\) −19.7646 −0.645682 −0.322841 0.946453i \(-0.604638\pi\)
−0.322841 + 0.946453i \(0.604638\pi\)
\(938\) 0 0
\(939\) 6.11943 + 10.5992i 0.199700 + 0.345891i
\(940\) −10.8167 −0.352800
\(941\) 2.72417 4.71841i 0.0888055 0.153816i −0.818201 0.574932i \(-0.805028\pi\)
0.907006 + 0.421117i \(0.138362\pi\)
\(942\) 1.63751 + 2.83625i 0.0533529 + 0.0924100i
\(943\) 6.04440 0.196833
\(944\) −0.854892 −0.0278244
\(945\) 0 0
\(946\) 70.7208 + 122.492i 2.29933 + 3.98256i
\(947\) −13.9403 + 24.1453i −0.452998 + 0.784616i −0.998571 0.0534475i \(-0.982979\pi\)
0.545572 + 0.838064i \(0.316312\pi\)
\(948\) 23.6417 40.9486i 0.767847 1.32995i
\(949\) −15.5139 1.89083i −0.503602 0.0613790i
\(950\) 0.755550 + 1.30865i 0.0245133 + 0.0424582i
\(951\) 6.73069 + 11.6579i 0.218257 + 0.378033i
\(952\) 0 0
\(953\) −17.1972 + 29.7865i −0.557073 + 0.964878i 0.440666 + 0.897671i \(0.354742\pi\)
−0.997739 + 0.0672073i \(0.978591\pi\)
\(954\) −4.67914 8.10452i −0.151493 0.262393i
\(955\) −17.0104 29.4628i −0.550442 0.953394i
\(956\) −7.25694 12.5694i −0.234706 0.406523i
\(957\) 12.2483 + 21.2147i 0.395931 + 0.685773i
\(958\) 18.9790 32.8726i 0.613183 1.06206i
\(959\) 0 0
\(960\) 30.1013 + 52.1371i 0.971517 + 1.68272i
\(961\) −10.1194 17.5274i −0.326433 0.565399i
\(962\) −42.9488 + 57.1008i −1.38472 + 1.84100i
\(963\) −4.83473 + 8.37400i −0.155797 + 0.269849i
\(964\) 15.3999 26.6734i 0.495998 0.859094i
\(965\) −21.4744 37.1947i −0.691285 1.19734i
\(966\) 0 0
\(967\) −42.4500 −1.36510 −0.682549 0.730839i \(-0.739129\pi\)
−0.682549 + 0.730839i \(0.739129\pi\)
\(968\) 39.2750 1.26235
\(969\) −16.8117 29.1187i −0.540069 0.935427i
\(970\) 34.0875 59.0412i 1.09448 1.89570i
\(971\) −31.4560 −1.00947 −0.504736 0.863274i \(-0.668410\pi\)
−0.504736 + 0.863274i \(0.668410\pi\)
\(972\) 26.1371 + 45.2708i 0.838348 + 1.45206i
\(973\) 0 0
\(974\) −72.0833 −2.30970
\(975\) −2.34861 0.286249i −0.0752158 0.00916731i
\(976\) −0.656208 + 1.13659i −0.0210047 + 0.0363812i
\(977\) −3.97224 −0.127083 −0.0635417 0.997979i \(-0.520240\pi\)
−0.0635417 + 0.997979i \(0.520240\pi\)
\(978\) 6.95945 12.0541i 0.222539 0.385448i
\(979\) −15.9568 + 27.6380i −0.509981 + 0.883313i
\(980\) 0 0
\(981\) −6.96804 + 12.0690i −0.222472 + 0.385334i
\(982\) 45.4222 1.44948
\(983\) −14.6444 + 25.3648i −0.467083 + 0.809011i −0.999293 0.0376012i \(-0.988028\pi\)
0.532210 + 0.846612i \(0.321362\pi\)
\(984\) 32.4500 + 56.2050i 1.03447 + 1.79175i
\(985\) 1.18300 2.04901i 0.0376934 0.0652869i
\(986\) 18.9790 + 32.8726i 0.604414 + 1.04688i
\(987\) 0 0
\(988\) −15.5139 + 20.6258i −0.493562 + 0.656195i
\(989\) −3.78890 6.56256i −0.120480 0.208677i
\(990\) 41.5762 1.32138
\(991\) −6.66947 −0.211863 −0.105931 0.994373i \(-0.533782\pi\)
−0.105931 + 0.994373i \(0.533782\pi\)
\(992\) 37.9580 1.20517
\(993\) 9.32544 0.295934
\(994\) 0 0
\(995\) 7.75694 13.4354i 0.245912 0.425931i
\(996\) −10.1056 17.5033i −0.320207 0.554614i
\(997\) −26.3659 45.6670i −0.835016 1.44629i −0.894018 0.448032i \(-0.852125\pi\)
0.0590018 0.998258i \(-0.481208\pi\)
\(998\) −19.1833 −0.607238
\(999\) 12.1490 21.0426i 0.384376 0.665759i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.g.i.263.2 8
7.2 even 3 637.2.h.j.471.3 8
7.3 odd 6 637.2.f.h.393.2 yes 8
7.4 even 3 637.2.f.h.393.1 yes 8
7.5 odd 6 637.2.h.j.471.4 8
7.6 odd 2 inner 637.2.g.i.263.1 8
13.9 even 3 637.2.h.j.165.3 8
91.3 odd 6 8281.2.a.bu.1.3 4
91.9 even 3 inner 637.2.g.i.373.2 8
91.10 odd 6 8281.2.a.bo.1.1 4
91.48 odd 6 637.2.h.j.165.4 8
91.61 odd 6 inner 637.2.g.i.373.1 8
91.74 even 3 637.2.f.h.295.1 8
91.81 even 3 8281.2.a.bu.1.4 4
91.87 odd 6 637.2.f.h.295.2 yes 8
91.88 even 6 8281.2.a.bo.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.f.h.295.1 8 91.74 even 3
637.2.f.h.295.2 yes 8 91.87 odd 6
637.2.f.h.393.1 yes 8 7.4 even 3
637.2.f.h.393.2 yes 8 7.3 odd 6
637.2.g.i.263.1 8 7.6 odd 2 inner
637.2.g.i.263.2 8 1.1 even 1 trivial
637.2.g.i.373.1 8 91.61 odd 6 inner
637.2.g.i.373.2 8 91.9 even 3 inner
637.2.h.j.165.3 8 13.9 even 3
637.2.h.j.165.4 8 91.48 odd 6
637.2.h.j.471.3 8 7.2 even 3
637.2.h.j.471.4 8 7.5 odd 6
8281.2.a.bo.1.1 4 91.10 odd 6
8281.2.a.bo.1.2 4 91.88 even 6
8281.2.a.bu.1.3 4 91.3 odd 6
8281.2.a.bu.1.4 4 91.81 even 3