L(s) = 1 | + (0.134 + 0.232i)2-s + 1.14·3-s + (0.964 − 1.66i)4-s + (−1.28 + 2.21i)5-s + (0.153 + 0.265i)6-s + 1.05·8-s − 1.69·9-s − 0.686·10-s + 3.94·11-s + (1.10 − 1.90i)12-s + (3.15 − 1.74i)13-s + (−1.46 + 2.53i)15-s + (−1.78 − 3.09i)16-s + (0.392 − 0.679i)17-s + (−0.227 − 0.393i)18-s + 7.49·19-s + ⋯ |
L(s) = 1 | + (0.0947 + 0.164i)2-s + 0.659·3-s + (0.482 − 0.834i)4-s + (−0.572 + 0.992i)5-s + (0.0625 + 0.108i)6-s + 0.372·8-s − 0.564·9-s − 0.217·10-s + 1.18·11-s + (0.318 − 0.550i)12-s + (0.874 − 0.484i)13-s + (−0.378 + 0.654i)15-s + (−0.446 − 0.773i)16-s + (0.0952 − 0.164i)17-s + (−0.0535 − 0.0926i)18-s + 1.71·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.110i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.110i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.10256 + 0.116852i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.10256 + 0.116852i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-3.15 + 1.74i)T \) |
good | 2 | \( 1 + (-0.134 - 0.232i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 - 1.14T + 3T^{2} \) |
| 5 | \( 1 + (1.28 - 2.21i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 - 3.94T + 11T^{2} \) |
| 17 | \( 1 + (-0.392 + 0.679i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 - 7.49T + 19T^{2} \) |
| 23 | \( 1 + (-3.97 - 6.88i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.17 - 2.03i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.27 + 2.21i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.37 + 5.85i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.21 - 2.11i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.12 - 1.94i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.658 + 1.14i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.63 + 8.03i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.48 - 7.76i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 9.44T + 61T^{2} \) |
| 67 | \( 1 + 1.35T + 67T^{2} \) |
| 71 | \( 1 + (6.15 + 10.6i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.384 - 0.665i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.09 - 5.36i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 1.07T + 83T^{2} \) |
| 89 | \( 1 + (-3.83 - 6.63i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.18 + 2.05i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79425901372035853135569831530, −9.589601312280158847178103287551, −9.033875640800908777216968937787, −7.68479973598498888600173975747, −7.17342794707318778613847795629, −6.13791271734633170549377549826, −5.31341062796277158378853398467, −3.60753819574254890310851901149, −3.04274769886717482463794801712, −1.41306680102806652831764531541,
1.39073571632842701878859956515, 2.99022730877226756757896403161, 3.77938695102700815279686275971, 4.72354286717446626936206168784, 6.18031554966600123735391862101, 7.20778509067091064825312967349, 8.146541540915947626765274099141, 8.768593540217079824458690079728, 9.267991484368935091323252530342, 10.79705862303205479255916628044