L(s) = 1 | + (−1.20 + 0.692i)2-s + (−1.41 − 2.44i)3-s + (−0.0395 + 0.0685i)4-s + 0.518i·5-s + (3.39 + 1.95i)6-s − 2.88i·8-s + (−2.49 + 4.31i)9-s + (−0.359 − 0.622i)10-s + (1.40 − 0.812i)11-s + 0.223·12-s + (−1.42 − 3.31i)13-s + (1.26 − 0.733i)15-s + (1.91 + 3.32i)16-s + (−0.974 + 1.68i)17-s − 6.90i·18-s + (−2.15 − 1.24i)19-s + ⋯ |
L(s) = 1 | + (−0.848 + 0.490i)2-s + (−0.815 − 1.41i)3-s + (−0.0197 + 0.0342i)4-s + 0.232i·5-s + (1.38 + 0.799i)6-s − 1.01i·8-s + (−0.830 + 1.43i)9-s + (−0.113 − 0.196i)10-s + (0.424 − 0.244i)11-s + 0.0645·12-s + (−0.395 − 0.918i)13-s + (0.327 − 0.189i)15-s + (0.479 + 0.830i)16-s + (−0.236 + 0.409i)17-s − 1.62i·18-s + (−0.494 − 0.285i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.794−0.607i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.794−0.607i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.794−0.607i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(491,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.794−0.607i)
|
Particular Values
L(1) |
≈ |
0.00772375+0.0227989i |
L(21) |
≈ |
0.00772375+0.0227989i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(1.42+3.31i)T |
good | 2 | 1+(1.20−0.692i)T+(1−1.73i)T2 |
| 3 | 1+(1.41+2.44i)T+(−1.5+2.59i)T2 |
| 5 | 1−0.518iT−5T2 |
| 11 | 1+(−1.40+0.812i)T+(5.5−9.52i)T2 |
| 17 | 1+(0.974−1.68i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.15+1.24i)T+(9.5+16.4i)T2 |
| 23 | 1+(4.57+7.91i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.61−4.52i)T+(−14.5+25.1i)T2 |
| 31 | 1−5.79iT−31T2 |
| 37 | 1+(8.85−5.11i)T+(18.5−32.0i)T2 |
| 41 | 1+(3.64−2.10i)T+(20.5−35.5i)T2 |
| 43 | 1+(0.498−0.863i)T+(−21.5−37.2i)T2 |
| 47 | 1−4.51iT−47T2 |
| 53 | 1+8.89T+53T2 |
| 59 | 1+(−5.37−3.10i)T+(29.5+51.0i)T2 |
| 61 | 1+(6.73−11.6i)T+(−30.5−52.8i)T2 |
| 67 | 1+(7.25−4.18i)T+(33.5−58.0i)T2 |
| 71 | 1+(4.50+2.59i)T+(35.5+61.4i)T2 |
| 73 | 1−11.8iT−73T2 |
| 79 | 1−0.982T+79T2 |
| 83 | 1+8.91iT−83T2 |
| 89 | 1+(−10.4+6.00i)T+(44.5−77.0i)T2 |
| 97 | 1+(3.82+2.21i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71849413053351531522281592892, −10.23224222937341826202819475824, −8.683486878344473485494772161424, −8.332684333341369261831295585019, −7.24623767568179510942860862963, −6.71265536786903299536550854901, −6.03870700970991045221503031648, −4.68326208909710701250247832133, −2.98616468891736078289439379069, −1.32105192132306422578713666422,
0.02075371238265309940996740853, 1.91679580768653269681176508406, 3.73967751392240169360337710636, 4.69600577704211388938683414450, 5.42522490425985678718252604264, 6.48649889626505182148509261714, 7.903687922570253457729497292766, 9.163831299127219683415092324065, 9.383536739730392928850706201021, 10.20190334696250424671125291527