Properties

Label 2-637-13.10-c1-0-0
Degree 22
Conductor 637637
Sign 0.7940.607i-0.794 - 0.607i
Analytic cond. 5.086475.08647
Root an. cond. 2.255322.25532
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.20 + 0.692i)2-s + (−1.41 − 2.44i)3-s + (−0.0395 + 0.0685i)4-s + 0.518i·5-s + (3.39 + 1.95i)6-s − 2.88i·8-s + (−2.49 + 4.31i)9-s + (−0.359 − 0.622i)10-s + (1.40 − 0.812i)11-s + 0.223·12-s + (−1.42 − 3.31i)13-s + (1.26 − 0.733i)15-s + (1.91 + 3.32i)16-s + (−0.974 + 1.68i)17-s − 6.90i·18-s + (−2.15 − 1.24i)19-s + ⋯
L(s)  = 1  + (−0.848 + 0.490i)2-s + (−0.815 − 1.41i)3-s + (−0.0197 + 0.0342i)4-s + 0.232i·5-s + (1.38 + 0.799i)6-s − 1.01i·8-s + (−0.830 + 1.43i)9-s + (−0.113 − 0.196i)10-s + (0.424 − 0.244i)11-s + 0.0645·12-s + (−0.395 − 0.918i)13-s + (0.327 − 0.189i)15-s + (0.479 + 0.830i)16-s + (−0.236 + 0.409i)17-s − 1.62i·18-s + (−0.494 − 0.285i)19-s + ⋯

Functional equation

Λ(s)=(637s/2ΓC(s)L(s)=((0.7940.607i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.794 - 0.607i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(637s/2ΓC(s+1/2)L(s)=((0.7940.607i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.794 - 0.607i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 637637    =    72137^{2} \cdot 13
Sign: 0.7940.607i-0.794 - 0.607i
Analytic conductor: 5.086475.08647
Root analytic conductor: 2.255322.25532
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ637(491,)\chi_{637} (491, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 637, ( :1/2), 0.7940.607i)(2,\ 637,\ (\ :1/2),\ -0.794 - 0.607i)

Particular Values

L(1)L(1) \approx 0.00772375+0.0227989i0.00772375 + 0.0227989i
L(12)L(\frac12) \approx 0.00772375+0.0227989i0.00772375 + 0.0227989i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
13 1+(1.42+3.31i)T 1 + (1.42 + 3.31i)T
good2 1+(1.200.692i)T+(11.73i)T2 1 + (1.20 - 0.692i)T + (1 - 1.73i)T^{2}
3 1+(1.41+2.44i)T+(1.5+2.59i)T2 1 + (1.41 + 2.44i)T + (-1.5 + 2.59i)T^{2}
5 10.518iT5T2 1 - 0.518iT - 5T^{2}
11 1+(1.40+0.812i)T+(5.59.52i)T2 1 + (-1.40 + 0.812i)T + (5.5 - 9.52i)T^{2}
17 1+(0.9741.68i)T+(8.514.7i)T2 1 + (0.974 - 1.68i)T + (-8.5 - 14.7i)T^{2}
19 1+(2.15+1.24i)T+(9.5+16.4i)T2 1 + (2.15 + 1.24i)T + (9.5 + 16.4i)T^{2}
23 1+(4.57+7.91i)T+(11.5+19.9i)T2 1 + (4.57 + 7.91i)T + (-11.5 + 19.9i)T^{2}
29 1+(2.614.52i)T+(14.5+25.1i)T2 1 + (-2.61 - 4.52i)T + (-14.5 + 25.1i)T^{2}
31 15.79iT31T2 1 - 5.79iT - 31T^{2}
37 1+(8.855.11i)T+(18.532.0i)T2 1 + (8.85 - 5.11i)T + (18.5 - 32.0i)T^{2}
41 1+(3.642.10i)T+(20.535.5i)T2 1 + (3.64 - 2.10i)T + (20.5 - 35.5i)T^{2}
43 1+(0.4980.863i)T+(21.537.2i)T2 1 + (0.498 - 0.863i)T + (-21.5 - 37.2i)T^{2}
47 14.51iT47T2 1 - 4.51iT - 47T^{2}
53 1+8.89T+53T2 1 + 8.89T + 53T^{2}
59 1+(5.373.10i)T+(29.5+51.0i)T2 1 + (-5.37 - 3.10i)T + (29.5 + 51.0i)T^{2}
61 1+(6.7311.6i)T+(30.552.8i)T2 1 + (6.73 - 11.6i)T + (-30.5 - 52.8i)T^{2}
67 1+(7.254.18i)T+(33.558.0i)T2 1 + (7.25 - 4.18i)T + (33.5 - 58.0i)T^{2}
71 1+(4.50+2.59i)T+(35.5+61.4i)T2 1 + (4.50 + 2.59i)T + (35.5 + 61.4i)T^{2}
73 111.8iT73T2 1 - 11.8iT - 73T^{2}
79 10.982T+79T2 1 - 0.982T + 79T^{2}
83 1+8.91iT83T2 1 + 8.91iT - 83T^{2}
89 1+(10.4+6.00i)T+(44.577.0i)T2 1 + (-10.4 + 6.00i)T + (44.5 - 77.0i)T^{2}
97 1+(3.82+2.21i)T+(48.5+84.0i)T2 1 + (3.82 + 2.21i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.71849413053351531522281592892, −10.23224222937341826202819475824, −8.683486878344473485494772161424, −8.332684333341369261831295585019, −7.24623767568179510942860862963, −6.71265536786903299536550854901, −6.03870700970991045221503031648, −4.68326208909710701250247832133, −2.98616468891736078289439379069, −1.32105192132306422578713666422, 0.02075371238265309940996740853, 1.91679580768653269681176508406, 3.73967751392240169360337710636, 4.69600577704211388938683414450, 5.42522490425985678718252604264, 6.48649889626505182148509261714, 7.903687922570253457729497292766, 9.163831299127219683415092324065, 9.383536739730392928850706201021, 10.20190334696250424671125291527

Graph of the ZZ-function along the critical line