Properties

Label 637.2.q.h.491.2
Level $637$
Weight $2$
Character 637.491
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(491,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.491");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.58891012706304.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 491.2
Root \(0.759479 - 1.19298i\) of defining polynomial
Character \(\chi\) \(=\) 637.491
Dual form 637.2.q.h.589.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20027 + 0.692976i) q^{2} +(-1.41289 - 2.44719i) q^{3} +(-0.0395678 + 0.0685334i) q^{4} +0.518957i q^{5} +(3.39169 + 1.95819i) q^{6} -2.88158i q^{8} +(-2.49250 + 4.31714i) q^{9} +(-0.359625 - 0.622889i) q^{10} +(1.40656 - 0.812080i) q^{11} +0.223619 q^{12} +(-1.42641 - 3.31140i) q^{13} +(1.26999 - 0.733228i) q^{15} +(1.91773 + 3.32161i) q^{16} +(-0.974127 + 1.68724i) q^{17} -6.90897i q^{18} +(-2.15740 - 1.24558i) q^{19} +(-0.0355659 - 0.0205340i) q^{20} +(-1.12550 + 1.94943i) q^{22} +(-4.57029 - 7.91598i) q^{23} +(-7.05179 + 4.07135i) q^{24} +4.73068 q^{25} +(4.00680 + 2.98610i) q^{26} +5.60916 q^{27} +(2.61498 + 4.52928i) q^{29} +(-1.01622 + 1.76014i) q^{30} +5.79391i q^{31} +(0.387453 + 0.223696i) q^{32} +(-3.97463 - 2.29475i) q^{33} -2.70019i q^{34} +(-0.197245 - 0.341639i) q^{36} +(-8.85879 + 5.11463i) q^{37} +3.45262 q^{38} +(-6.08826 + 8.16934i) q^{39} +1.49542 q^{40} +(-3.64513 + 2.10452i) q^{41} +(-0.498655 + 0.863697i) q^{43} +0.128529i q^{44} +(-2.24041 - 1.29350i) q^{45} +(10.9712 + 6.33421i) q^{46} +4.51725i q^{47} +(5.41908 - 9.38612i) q^{48} +(-5.67810 + 3.27825i) q^{50} +5.50532 q^{51} +(0.283381 + 0.0332676i) q^{52} -8.89651 q^{53} +(-6.73251 + 3.88701i) q^{54} +(0.421434 + 0.729946i) q^{55} +7.03944i q^{57} +(-6.27736 - 3.62424i) q^{58} +(5.37392 + 3.10263i) q^{59} +0.116049i q^{60} +(-6.73536 + 11.6660i) q^{61} +(-4.01504 - 6.95426i) q^{62} -8.29100 q^{64} +(1.71847 - 0.740247i) q^{65} +6.36084 q^{66} +(-7.25094 + 4.18633i) q^{67} +(-0.0770880 - 0.133520i) q^{68} +(-12.9146 + 22.3688i) q^{69} +(-4.50168 - 2.59905i) q^{71} +(12.4402 + 7.18234i) q^{72} +11.8395i q^{73} +(7.08863 - 12.2779i) q^{74} +(-6.68392 - 11.5769i) q^{75} +(0.170727 - 0.0985694i) q^{76} +(1.64640 - 14.0244i) q^{78} +0.982310 q^{79} +(-1.72377 + 0.995221i) q^{80} +(-0.447609 - 0.775281i) q^{81} +(2.91676 - 5.05197i) q^{82} -8.91851i q^{83} +(-0.875603 - 0.505530i) q^{85} -1.38223i q^{86} +(7.38934 - 12.7987i) q^{87} +(-2.34008 - 4.05313i) q^{88} +(10.4087 - 6.00949i) q^{89} +3.58546 q^{90} +0.723345 q^{92} +(14.1788 - 8.18614i) q^{93} +(-3.13035 - 5.42193i) q^{94} +(0.646401 - 1.11960i) q^{95} -1.26423i q^{96} +(-3.82981 - 2.21114i) q^{97} +8.09643i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} + 18 q^{6} - 4 q^{9} - 12 q^{10} + 6 q^{11} + 4 q^{12} - 4 q^{13} + 6 q^{15} - 8 q^{16} + 4 q^{17} + 12 q^{20} + 6 q^{22} - 12 q^{23} - 12 q^{24} - 20 q^{25} + 42 q^{26} - 12 q^{27} + 8 q^{29}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20027 + 0.692976i −0.848719 + 0.490008i −0.860218 0.509926i \(-0.829673\pi\)
0.0114993 + 0.999934i \(0.496340\pi\)
\(3\) −1.41289 2.44719i −0.815731 1.41289i −0.908802 0.417228i \(-0.863002\pi\)
0.0930713 0.995659i \(-0.470332\pi\)
\(4\) −0.0395678 + 0.0685334i −0.0197839 + 0.0342667i
\(5\) 0.518957i 0.232085i 0.993244 + 0.116042i \(0.0370208\pi\)
−0.993244 + 0.116042i \(0.962979\pi\)
\(6\) 3.39169 + 1.95819i 1.38465 + 0.799429i
\(7\) 0 0
\(8\) 2.88158i 1.01879i
\(9\) −2.49250 + 4.31714i −0.830833 + 1.43905i
\(10\) −0.359625 0.622889i −0.113723 0.196975i
\(11\) 1.40656 0.812080i 0.424095 0.244851i −0.272733 0.962090i \(-0.587928\pi\)
0.696828 + 0.717239i \(0.254594\pi\)
\(12\) 0.223619 0.0645533
\(13\) −1.42641 3.31140i −0.395616 0.918416i
\(14\) 0 0
\(15\) 1.26999 0.733228i 0.327909 0.189319i
\(16\) 1.91773 + 3.32161i 0.479433 + 0.830403i
\(17\) −0.974127 + 1.68724i −0.236260 + 0.409215i −0.959638 0.281237i \(-0.909255\pi\)
0.723378 + 0.690452i \(0.242589\pi\)
\(18\) 6.90897i 1.62846i
\(19\) −2.15740 1.24558i −0.494942 0.285755i 0.231680 0.972792i \(-0.425578\pi\)
−0.726622 + 0.687037i \(0.758911\pi\)
\(20\) −0.0355659 0.0205340i −0.00795277 0.00459154i
\(21\) 0 0
\(22\) −1.12550 + 1.94943i −0.239958 + 0.415620i
\(23\) −4.57029 7.91598i −0.952971 1.65059i −0.738943 0.673767i \(-0.764675\pi\)
−0.214028 0.976828i \(-0.568658\pi\)
\(24\) −7.05179 + 4.07135i −1.43944 + 0.831061i
\(25\) 4.73068 0.946137
\(26\) 4.00680 + 2.98610i 0.785798 + 0.585622i
\(27\) 5.60916 1.07948
\(28\) 0 0
\(29\) 2.61498 + 4.52928i 0.485589 + 0.841065i 0.999863 0.0165608i \(-0.00527172\pi\)
−0.514274 + 0.857626i \(0.671938\pi\)
\(30\) −1.01622 + 1.76014i −0.185535 + 0.321357i
\(31\) 5.79391i 1.04062i 0.853978 + 0.520308i \(0.174183\pi\)
−0.853978 + 0.520308i \(0.825817\pi\)
\(32\) 0.387453 + 0.223696i 0.0684926 + 0.0395442i
\(33\) −3.97463 2.29475i −0.691894 0.399465i
\(34\) 2.70019i 0.463078i
\(35\) 0 0
\(36\) −0.197245 0.341639i −0.0328742 0.0569398i
\(37\) −8.85879 + 5.11463i −1.45638 + 0.840840i −0.998831 0.0483462i \(-0.984605\pi\)
−0.457546 + 0.889186i \(0.651272\pi\)
\(38\) 3.45262 0.560089
\(39\) −6.08826 + 8.16934i −0.974902 + 1.30814i
\(40\) 1.49542 0.236446
\(41\) −3.64513 + 2.10452i −0.569273 + 0.328670i −0.756859 0.653578i \(-0.773267\pi\)
0.187586 + 0.982248i \(0.439934\pi\)
\(42\) 0 0
\(43\) −0.498655 + 0.863697i −0.0760442 + 0.131712i −0.901540 0.432696i \(-0.857562\pi\)
0.825496 + 0.564408i \(0.190896\pi\)
\(44\) 0.128529i 0.0193764i
\(45\) −2.24041 1.29350i −0.333980 0.192824i
\(46\) 10.9712 + 6.33421i 1.61761 + 0.933928i
\(47\) 4.51725i 0.658909i 0.944171 + 0.329455i \(0.106865\pi\)
−0.944171 + 0.329455i \(0.893135\pi\)
\(48\) 5.41908 9.38612i 0.782177 1.35477i
\(49\) 0 0
\(50\) −5.67810 + 3.27825i −0.803004 + 0.463615i
\(51\) 5.50532 0.770899
\(52\) 0.283381 + 0.0332676i 0.0392979 + 0.00461339i
\(53\) −8.89651 −1.22203 −0.611015 0.791619i \(-0.709238\pi\)
−0.611015 + 0.791619i \(0.709238\pi\)
\(54\) −6.73251 + 3.88701i −0.916178 + 0.528956i
\(55\) 0.421434 + 0.729946i 0.0568262 + 0.0984259i
\(56\) 0 0
\(57\) 7.03944i 0.932397i
\(58\) −6.27736 3.62424i −0.824258 0.475886i
\(59\) 5.37392 + 3.10263i 0.699624 + 0.403928i 0.807207 0.590268i \(-0.200978\pi\)
−0.107583 + 0.994196i \(0.534311\pi\)
\(60\) 0.116049i 0.0149818i
\(61\) −6.73536 + 11.6660i −0.862375 + 1.49368i 0.00725571 + 0.999974i \(0.497690\pi\)
−0.869630 + 0.493703i \(0.835643\pi\)
\(62\) −4.01504 6.95426i −0.509911 0.883191i
\(63\) 0 0
\(64\) −8.29100 −1.03637
\(65\) 1.71847 0.740247i 0.213150 0.0918164i
\(66\) 6.36084 0.782965
\(67\) −7.25094 + 4.18633i −0.885843 + 0.511442i −0.872580 0.488470i \(-0.837555\pi\)
−0.0132624 + 0.999912i \(0.504222\pi\)
\(68\) −0.0770880 0.133520i −0.00934830 0.0161917i
\(69\) −12.9146 + 22.3688i −1.55474 + 2.69288i
\(70\) 0 0
\(71\) −4.50168 2.59905i −0.534251 0.308450i 0.208495 0.978023i \(-0.433144\pi\)
−0.742746 + 0.669573i \(0.766477\pi\)
\(72\) 12.4402 + 7.18234i 1.46609 + 0.846447i
\(73\) 11.8395i 1.38571i 0.721076 + 0.692856i \(0.243648\pi\)
−0.721076 + 0.692856i \(0.756352\pi\)
\(74\) 7.08863 12.2779i 0.824037 1.42727i
\(75\) −6.68392 11.5769i −0.771793 1.33678i
\(76\) 0.170727 0.0985694i 0.0195838 0.0113067i
\(77\) 0 0
\(78\) 1.64640 14.0244i 0.186418 1.58795i
\(79\) 0.982310 0.110518 0.0552592 0.998472i \(-0.482401\pi\)
0.0552592 + 0.998472i \(0.482401\pi\)
\(80\) −1.72377 + 0.995221i −0.192724 + 0.111269i
\(81\) −0.447609 0.775281i −0.0497343 0.0861423i
\(82\) 2.91676 5.05197i 0.322102 0.557897i
\(83\) 8.91851i 0.978934i −0.872022 0.489467i \(-0.837191\pi\)
0.872022 0.489467i \(-0.162809\pi\)
\(84\) 0 0
\(85\) −0.875603 0.505530i −0.0949725 0.0548324i
\(86\) 1.38223i 0.149049i
\(87\) 7.38934 12.7987i 0.792220 1.37217i
\(88\) −2.34008 4.05313i −0.249453 0.432065i
\(89\) 10.4087 6.00949i 1.10332 0.637005i 0.166233 0.986087i \(-0.446840\pi\)
0.937092 + 0.349082i \(0.113506\pi\)
\(90\) 3.58546 0.377941
\(91\) 0 0
\(92\) 0.723345 0.0754139
\(93\) 14.1788 8.18614i 1.47027 0.848863i
\(94\) −3.13035 5.42193i −0.322871 0.559229i
\(95\) 0.646401 1.11960i 0.0663194 0.114869i
\(96\) 1.26423i 0.129030i
\(97\) −3.82981 2.21114i −0.388858 0.224507i 0.292807 0.956172i \(-0.405411\pi\)
−0.681665 + 0.731664i \(0.738744\pi\)
\(98\) 0 0
\(99\) 8.09643i 0.813722i
\(100\) −0.187183 + 0.324210i −0.0187183 + 0.0324210i
\(101\) −9.15132 15.8506i −0.910591 1.57719i −0.813231 0.581940i \(-0.802294\pi\)
−0.0973594 0.995249i \(-0.531040\pi\)
\(102\) −6.60787 + 3.81506i −0.654277 + 0.377747i
\(103\) 5.02046 0.494680 0.247340 0.968929i \(-0.420444\pi\)
0.247340 + 0.968929i \(0.420444\pi\)
\(104\) −9.54206 + 4.11033i −0.935676 + 0.403051i
\(105\) 0 0
\(106\) 10.6782 6.16507i 1.03716 0.598804i
\(107\) −3.07228 5.32134i −0.297008 0.514434i 0.678442 0.734654i \(-0.262656\pi\)
−0.975450 + 0.220221i \(0.929322\pi\)
\(108\) −0.221942 + 0.384415i −0.0213564 + 0.0369903i
\(109\) 11.8962i 1.13945i −0.821834 0.569727i \(-0.807049\pi\)
0.821834 0.569727i \(-0.192951\pi\)
\(110\) −1.01167 0.584088i −0.0964590 0.0556906i
\(111\) 25.0330 + 14.4528i 2.37602 + 1.37180i
\(112\) 0 0
\(113\) −1.77806 + 3.07969i −0.167266 + 0.289713i −0.937458 0.348099i \(-0.886827\pi\)
0.770192 + 0.637812i \(0.220161\pi\)
\(114\) −4.87817 8.44923i −0.456882 0.791343i
\(115\) 4.10805 2.37178i 0.383078 0.221170i
\(116\) −0.413875 −0.0384274
\(117\) 17.8511 + 2.09563i 1.65033 + 0.193741i
\(118\) −8.60020 −0.791713
\(119\) 0 0
\(120\) −2.11286 3.65957i −0.192877 0.334072i
\(121\) −4.18105 + 7.24180i −0.380096 + 0.658345i
\(122\) 18.6698i 1.69028i
\(123\) 10.3003 + 5.94689i 0.928748 + 0.536213i
\(124\) −0.397076 0.229252i −0.0356585 0.0205874i
\(125\) 5.04981i 0.451668i
\(126\) 0 0
\(127\) −0.711749 1.23279i −0.0631575 0.109392i 0.832718 0.553698i \(-0.186784\pi\)
−0.895875 + 0.444306i \(0.853450\pi\)
\(128\) 9.17653 5.29807i 0.811098 0.468288i
\(129\) 2.81818 0.248127
\(130\) −1.54966 + 2.07936i −0.135914 + 0.182372i
\(131\) −8.67374 −0.757828 −0.378914 0.925432i \(-0.623702\pi\)
−0.378914 + 0.925432i \(0.623702\pi\)
\(132\) 0.314535 0.181597i 0.0273767 0.0158060i
\(133\) 0 0
\(134\) 5.80205 10.0495i 0.501221 0.868141i
\(135\) 2.91091i 0.250531i
\(136\) 4.86191 + 2.80703i 0.416906 + 0.240701i
\(137\) 7.37667 + 4.25892i 0.630231 + 0.363864i 0.780842 0.624729i \(-0.214791\pi\)
−0.150611 + 0.988593i \(0.548124\pi\)
\(138\) 35.7981i 3.04733i
\(139\) −2.51922 + 4.36342i −0.213677 + 0.370100i −0.952863 0.303402i \(-0.901877\pi\)
0.739185 + 0.673502i \(0.235211\pi\)
\(140\) 0 0
\(141\) 11.0546 6.38237i 0.930964 0.537493i
\(142\) 7.20431 0.604572
\(143\) −4.69546 3.49933i −0.392654 0.292628i
\(144\) −19.1198 −1.59332
\(145\) −2.35050 + 1.35706i −0.195198 + 0.112698i
\(146\) −8.20451 14.2106i −0.679010 1.17608i
\(147\) 0 0
\(148\) 0.809498i 0.0665403i
\(149\) 2.91409 + 1.68245i 0.238732 + 0.137832i 0.614594 0.788844i \(-0.289320\pi\)
−0.375862 + 0.926676i \(0.622653\pi\)
\(150\) 16.0450 + 9.26360i 1.31007 + 0.756370i
\(151\) 12.6566i 1.02998i 0.857196 + 0.514991i \(0.172205\pi\)
−0.857196 + 0.514991i \(0.827795\pi\)
\(152\) −3.58924 + 6.21674i −0.291125 + 0.504244i
\(153\) −4.85602 8.41087i −0.392586 0.679979i
\(154\) 0 0
\(155\) −3.00679 −0.241511
\(156\) −0.318973 0.740492i −0.0255383 0.0592868i
\(157\) −10.3691 −0.827547 −0.413773 0.910380i \(-0.635789\pi\)
−0.413773 + 0.910380i \(0.635789\pi\)
\(158\) −1.17904 + 0.680717i −0.0937992 + 0.0541550i
\(159\) 12.5698 + 21.7715i 0.996847 + 1.72659i
\(160\) −0.116089 + 0.201071i −0.00917761 + 0.0158961i
\(161\) 0 0
\(162\) 1.07450 + 0.620364i 0.0844209 + 0.0487404i
\(163\) 13.6428 + 7.87669i 1.06859 + 0.616950i 0.927796 0.373089i \(-0.121701\pi\)
0.140794 + 0.990039i \(0.455035\pi\)
\(164\) 0.333084i 0.0260095i
\(165\) 1.19088 2.06266i 0.0927098 0.160578i
\(166\) 6.18032 + 10.7046i 0.479686 + 0.830840i
\(167\) 14.2016 8.19930i 1.09895 0.634481i 0.163007 0.986625i \(-0.447881\pi\)
0.935946 + 0.352144i \(0.114547\pi\)
\(168\) 0 0
\(169\) −8.93069 + 9.44684i −0.686976 + 0.726680i
\(170\) 1.40128 0.107473
\(171\) 10.7547 6.20920i 0.822429 0.474830i
\(172\) −0.0394614 0.0683491i −0.00300890 0.00521157i
\(173\) 0.150677 0.260981i 0.0114558 0.0198420i −0.860241 0.509888i \(-0.829687\pi\)
0.871696 + 0.490046i \(0.163020\pi\)
\(174\) 20.4825i 1.55278i
\(175\) 0 0
\(176\) 5.39483 + 3.11470i 0.406650 + 0.234780i
\(177\) 17.5347i 1.31799i
\(178\) −8.32887 + 14.4260i −0.624275 + 1.08128i
\(179\) −4.90791 8.50075i −0.366834 0.635376i 0.622234 0.782831i \(-0.286225\pi\)
−0.989069 + 0.147455i \(0.952892\pi\)
\(180\) 0.177296 0.102362i 0.0132149 0.00762960i
\(181\) −12.4320 −0.924062 −0.462031 0.886864i \(-0.652879\pi\)
−0.462031 + 0.886864i \(0.652879\pi\)
\(182\) 0 0
\(183\) 38.0652 2.81386
\(184\) −22.8105 + 13.1697i −1.68162 + 0.970881i
\(185\) −2.65427 4.59733i −0.195146 0.338003i
\(186\) −11.3456 + 19.6512i −0.831900 + 1.44089i
\(187\) 3.16427i 0.231395i
\(188\) −0.309583 0.178738i −0.0225786 0.0130358i
\(189\) 0 0
\(190\) 1.79176i 0.129988i
\(191\) 6.12346 10.6061i 0.443078 0.767434i −0.554838 0.831958i \(-0.687220\pi\)
0.997916 + 0.0645248i \(0.0205531\pi\)
\(192\) 11.7142 + 20.2897i 0.845403 + 1.46428i
\(193\) −10.0752 + 5.81692i −0.725229 + 0.418711i −0.816674 0.577099i \(-0.804185\pi\)
0.0914452 + 0.995810i \(0.470851\pi\)
\(194\) 6.12908 0.440042
\(195\) −4.23953 3.15955i −0.303599 0.226260i
\(196\) 0 0
\(197\) −1.55984 + 0.900572i −0.111134 + 0.0641631i −0.554537 0.832159i \(-0.687104\pi\)
0.443403 + 0.896322i \(0.353771\pi\)
\(198\) −5.61064 9.71791i −0.398731 0.690622i
\(199\) −3.29657 + 5.70982i −0.233687 + 0.404759i −0.958890 0.283777i \(-0.908413\pi\)
0.725203 + 0.688535i \(0.241746\pi\)
\(200\) 13.6319i 0.963918i
\(201\) 20.4895 + 11.8296i 1.44522 + 0.834397i
\(202\) 21.9681 + 12.6833i 1.54567 + 0.892394i
\(203\) 0 0
\(204\) −0.217833 + 0.377298i −0.0152514 + 0.0264162i
\(205\) −1.09215 1.89166i −0.0762793 0.132120i
\(206\) −6.02590 + 3.47906i −0.419845 + 0.242397i
\(207\) 45.5658 3.16704
\(208\) 8.26369 11.0884i 0.572984 0.768840i
\(209\) −4.04603 −0.279870
\(210\) 0 0
\(211\) −5.35996 9.28373i −0.368995 0.639118i 0.620414 0.784275i \(-0.286965\pi\)
−0.989409 + 0.145157i \(0.953631\pi\)
\(212\) 0.352015 0.609708i 0.0241765 0.0418749i
\(213\) 14.6886i 1.00645i
\(214\) 7.37513 + 4.25803i 0.504154 + 0.291073i
\(215\) −0.448221 0.258781i −0.0305684 0.0176487i
\(216\) 16.1633i 1.09977i
\(217\) 0 0
\(218\) 8.24382 + 14.2787i 0.558342 + 0.967076i
\(219\) 28.9736 16.7279i 1.95785 1.13037i
\(220\) −0.0667009 −0.00449697
\(221\) 6.97662 + 0.819021i 0.469298 + 0.0550933i
\(222\) −40.0617 −2.68877
\(223\) 11.1612 6.44392i 0.747409 0.431517i −0.0773480 0.997004i \(-0.524645\pi\)
0.824757 + 0.565487i \(0.191312\pi\)
\(224\) 0 0
\(225\) −11.7912 + 20.4230i −0.786082 + 1.36153i
\(226\) 4.92862i 0.327847i
\(227\) 0.605486 + 0.349577i 0.0401875 + 0.0232023i 0.519959 0.854191i \(-0.325947\pi\)
−0.479772 + 0.877393i \(0.659280\pi\)
\(228\) −0.482437 0.278535i −0.0319502 0.0184464i
\(229\) 18.2868i 1.20843i −0.796822 0.604214i \(-0.793487\pi\)
0.796822 0.604214i \(-0.206513\pi\)
\(230\) −3.28718 + 5.69356i −0.216750 + 0.375422i
\(231\) 0 0
\(232\) 13.0515 7.53528i 0.856872 0.494715i
\(233\) −26.7796 −1.75439 −0.877194 0.480137i \(-0.840587\pi\)
−0.877194 + 0.480137i \(0.840587\pi\)
\(234\) −22.8783 + 9.85505i −1.49560 + 0.644245i
\(235\) −2.34426 −0.152923
\(236\) −0.425268 + 0.245528i −0.0276826 + 0.0159825i
\(237\) −1.38789 2.40390i −0.0901533 0.156150i
\(238\) 0 0
\(239\) 16.6177i 1.07491i 0.843293 + 0.537454i \(0.180614\pi\)
−0.843293 + 0.537454i \(0.819386\pi\)
\(240\) 4.87099 + 2.81227i 0.314421 + 0.181531i
\(241\) −15.0800 8.70643i −0.971387 0.560830i −0.0717279 0.997424i \(-0.522851\pi\)
−0.899659 + 0.436594i \(0.856185\pi\)
\(242\) 11.5895i 0.745000i
\(243\) 7.14890 12.3823i 0.458602 0.794322i
\(244\) −0.533007 0.923194i −0.0341222 0.0591015i
\(245\) 0 0
\(246\) −16.4842 −1.05099
\(247\) −1.04725 + 8.92073i −0.0666350 + 0.567612i
\(248\) 16.6956 1.06017
\(249\) −21.8253 + 12.6008i −1.38312 + 0.798546i
\(250\) −3.49940 6.06113i −0.221321 0.383340i
\(251\) 3.22491 5.58571i 0.203554 0.352567i −0.746117 0.665815i \(-0.768084\pi\)
0.949671 + 0.313249i \(0.101417\pi\)
\(252\) 0 0
\(253\) −12.8568 7.42288i −0.808300 0.466672i
\(254\) 1.70858 + 0.986451i 0.107206 + 0.0618954i
\(255\) 2.85703i 0.178914i
\(256\) 0.948120 1.64219i 0.0592575 0.102637i
\(257\) 1.83578 + 3.17966i 0.114513 + 0.198342i 0.917585 0.397540i \(-0.130136\pi\)
−0.803072 + 0.595882i \(0.796803\pi\)
\(258\) −3.38257 + 1.95293i −0.210590 + 0.121584i
\(259\) 0 0
\(260\) −0.0172645 + 0.147063i −0.00107070 + 0.00912044i
\(261\) −26.0713 −1.61377
\(262\) 10.4108 6.01070i 0.643183 0.371342i
\(263\) −9.15964 15.8650i −0.564807 0.978275i −0.997068 0.0765263i \(-0.975617\pi\)
0.432260 0.901749i \(-0.357716\pi\)
\(264\) −6.61252 + 11.4532i −0.406973 + 0.704897i
\(265\) 4.61690i 0.283614i
\(266\) 0 0
\(267\) −29.4128 16.9815i −1.80003 1.03925i
\(268\) 0.662575i 0.0404732i
\(269\) 13.7715 23.8529i 0.839661 1.45434i −0.0505171 0.998723i \(-0.516087\pi\)
0.890178 0.455613i \(-0.150580\pi\)
\(270\) −2.01719 3.49388i −0.122762 0.212631i
\(271\) −5.64582 + 3.25961i −0.342959 + 0.198007i −0.661580 0.749875i \(-0.730114\pi\)
0.318621 + 0.947882i \(0.396780\pi\)
\(272\) −7.47246 −0.453084
\(273\) 0 0
\(274\) −11.8053 −0.713186
\(275\) 6.65401 3.84169i 0.401252 0.231663i
\(276\) −1.02200 1.77016i −0.0615174 0.106551i
\(277\) 2.72093 4.71279i 0.163485 0.283164i −0.772631 0.634855i \(-0.781060\pi\)
0.936116 + 0.351691i \(0.114393\pi\)
\(278\) 6.98304i 0.418815i
\(279\) −25.0131 14.4413i −1.49749 0.864579i
\(280\) 0 0
\(281\) 3.54237i 0.211320i 0.994402 + 0.105660i \(0.0336955\pi\)
−0.994402 + 0.105660i \(0.966304\pi\)
\(282\) −8.84566 + 15.3211i −0.526752 + 0.912360i
\(283\) 7.06956 + 12.2448i 0.420242 + 0.727880i 0.995963 0.0897658i \(-0.0286119\pi\)
−0.575721 + 0.817646i \(0.695279\pi\)
\(284\) 0.356243 0.205677i 0.0211391 0.0122047i
\(285\) −3.65317 −0.216395
\(286\) 8.06077 + 0.946296i 0.476643 + 0.0559556i
\(287\) 0 0
\(288\) −1.93145 + 1.11512i −0.113812 + 0.0657093i
\(289\) 6.60215 + 11.4353i 0.388362 + 0.672663i
\(290\) 1.88082 3.25768i 0.110446 0.191298i
\(291\) 12.4964i 0.732551i
\(292\) −0.811403 0.468464i −0.0474838 0.0274148i
\(293\) 7.23071 + 4.17465i 0.422423 + 0.243886i 0.696113 0.717932i \(-0.254911\pi\)
−0.273691 + 0.961818i \(0.588244\pi\)
\(294\) 0 0
\(295\) −1.61013 + 2.78883i −0.0937455 + 0.162372i
\(296\) 14.7382 + 25.5274i 0.856642 + 1.48375i
\(297\) 7.88964 4.55508i 0.457803 0.264313i
\(298\) −4.66359 −0.270155
\(299\) −19.6938 + 26.4255i −1.13892 + 1.52823i
\(300\) 1.05787 0.0610762
\(301\) 0 0
\(302\) −8.77074 15.1914i −0.504699 0.874165i
\(303\) −25.8596 + 44.7901i −1.48559 + 2.57312i
\(304\) 9.55474i 0.548002i
\(305\) −6.05415 3.49536i −0.346659 0.200144i
\(306\) 11.6571 + 6.73021i 0.666390 + 0.384741i
\(307\) 8.33362i 0.475625i 0.971311 + 0.237813i \(0.0764304\pi\)
−0.971311 + 0.237813i \(0.923570\pi\)
\(308\) 0 0
\(309\) −7.09334 12.2860i −0.403526 0.698927i
\(310\) 3.60896 2.08363i 0.204975 0.118342i
\(311\) −14.6227 −0.829176 −0.414588 0.910009i \(-0.636074\pi\)
−0.414588 + 0.910009i \(0.636074\pi\)
\(312\) 23.5406 + 17.5438i 1.33273 + 0.993224i
\(313\) −17.1328 −0.968404 −0.484202 0.874956i \(-0.660890\pi\)
−0.484202 + 0.874956i \(0.660890\pi\)
\(314\) 12.4458 7.18556i 0.702355 0.405505i
\(315\) 0 0
\(316\) −0.0388678 + 0.0673210i −0.00218649 + 0.00378710i
\(317\) 14.0000i 0.786320i 0.919470 + 0.393160i \(0.128618\pi\)
−0.919470 + 0.393160i \(0.871382\pi\)
\(318\) −30.1742 17.4211i −1.69209 0.976926i
\(319\) 7.35627 + 4.24714i 0.411872 + 0.237794i
\(320\) 4.30267i 0.240527i
\(321\) −8.68157 + 15.0369i −0.484558 + 0.839279i
\(322\) 0 0
\(323\) 4.20317 2.42670i 0.233871 0.135025i
\(324\) 0.0708435 0.00393575
\(325\) −6.74791 15.6652i −0.374307 0.868947i
\(326\) −21.8334 −1.20924
\(327\) −29.1124 + 16.8081i −1.60992 + 0.929487i
\(328\) 6.06434 + 10.5037i 0.334847 + 0.579972i
\(329\) 0 0
\(330\) 3.30100i 0.181714i
\(331\) 5.99286 + 3.45998i 0.329397 + 0.190178i 0.655574 0.755131i \(-0.272427\pi\)
−0.326176 + 0.945309i \(0.605760\pi\)
\(332\) 0.611216 + 0.352886i 0.0335448 + 0.0193671i
\(333\) 50.9928i 2.79439i
\(334\) −11.3638 + 19.6827i −0.621801 + 1.07699i
\(335\) −2.17253 3.76292i −0.118698 0.205591i
\(336\) 0 0
\(337\) 11.1559 0.607703 0.303852 0.952719i \(-0.401727\pi\)
0.303852 + 0.952719i \(0.401727\pi\)
\(338\) 4.17280 17.5275i 0.226970 0.953371i
\(339\) 10.0488 0.545776
\(340\) 0.0692913 0.0400054i 0.00375785 0.00216960i
\(341\) 4.70512 + 8.14950i 0.254796 + 0.441320i
\(342\) −8.60566 + 14.9054i −0.465341 + 0.805994i
\(343\) 0 0
\(344\) 2.48881 + 1.43692i 0.134188 + 0.0774734i
\(345\) −11.6084 6.70213i −0.624977 0.360830i
\(346\) 0.417663i 0.0224537i
\(347\) 2.46255 4.26527i 0.132197 0.228971i −0.792326 0.610097i \(-0.791130\pi\)
0.924523 + 0.381126i \(0.124464\pi\)
\(348\) 0.584759 + 1.01283i 0.0313464 + 0.0542935i
\(349\) −1.31926 + 0.761675i −0.0706183 + 0.0407715i −0.534893 0.844920i \(-0.679648\pi\)
0.464275 + 0.885691i \(0.346315\pi\)
\(350\) 0 0
\(351\) −8.00098 18.5741i −0.427061 0.991415i
\(352\) 0.726636 0.0387298
\(353\) −15.5261 + 8.96401i −0.826372 + 0.477106i −0.852609 0.522550i \(-0.824981\pi\)
0.0262367 + 0.999656i \(0.491648\pi\)
\(354\) 12.1511 + 21.0463i 0.645824 + 1.11860i
\(355\) 1.34879 2.33618i 0.0715865 0.123991i
\(356\) 0.951129i 0.0504097i
\(357\) 0 0
\(358\) 11.7816 + 6.80213i 0.622679 + 0.359504i
\(359\) 20.0014i 1.05563i −0.849359 0.527816i \(-0.823011\pi\)
0.849359 0.527816i \(-0.176989\pi\)
\(360\) −3.72733 + 6.45592i −0.196447 + 0.340257i
\(361\) −6.39707 11.0801i −0.336688 0.583161i
\(362\) 14.9217 8.61507i 0.784269 0.452798i
\(363\) 23.6294 1.24022
\(364\) 0 0
\(365\) −6.14421 −0.321602
\(366\) −45.6885 + 26.3783i −2.38818 + 1.37882i
\(367\) 13.7078 + 23.7427i 0.715544 + 1.23936i 0.962749 + 0.270395i \(0.0871543\pi\)
−0.247206 + 0.968963i \(0.579512\pi\)
\(368\) 17.5292 30.3615i 0.913772 1.58270i
\(369\) 20.9820i 1.09228i
\(370\) 6.37169 + 3.67870i 0.331248 + 0.191246i
\(371\) 0 0
\(372\) 1.29563i 0.0671752i
\(373\) 7.94643 13.7636i 0.411451 0.712653i −0.583598 0.812043i \(-0.698356\pi\)
0.995049 + 0.0993893i \(0.0316889\pi\)
\(374\) −2.19277 3.79798i −0.113385 0.196389i
\(375\) 12.3578 7.13481i 0.638156 0.368440i
\(376\) 13.0168 0.671292
\(377\) 11.2682 15.1199i 0.580341 0.778712i
\(378\) 0 0
\(379\) 7.60284 4.38950i 0.390532 0.225474i −0.291859 0.956461i \(-0.594274\pi\)
0.682390 + 0.730988i \(0.260940\pi\)
\(380\) 0.0511533 + 0.0886001i 0.00262411 + 0.00454509i
\(381\) −2.01124 + 3.48357i −0.103039 + 0.178469i
\(382\) 16.9736i 0.868447i
\(383\) −6.89562 3.98119i −0.352349 0.203429i 0.313370 0.949631i \(-0.398542\pi\)
−0.665720 + 0.746202i \(0.731875\pi\)
\(384\) −25.9308 14.9712i −1.32328 0.763994i
\(385\) 0 0
\(386\) 8.06198 13.9638i 0.410344 0.710736i
\(387\) −2.48580 4.30553i −0.126360 0.218862i
\(388\) 0.303074 0.174980i 0.0153863 0.00888326i
\(389\) −32.0434 −1.62467 −0.812333 0.583194i \(-0.801803\pi\)
−0.812333 + 0.583194i \(0.801803\pi\)
\(390\) 7.27808 + 0.854411i 0.368540 + 0.0432648i
\(391\) 17.8082 0.900598
\(392\) 0 0
\(393\) 12.2550 + 21.2263i 0.618184 + 1.07073i
\(394\) 1.24815 2.16186i 0.0628809 0.108913i
\(395\) 0.509777i 0.0256496i
\(396\) −0.554876 0.320358i −0.0278836 0.0160986i
\(397\) −5.57251 3.21729i −0.279676 0.161471i 0.353601 0.935396i \(-0.384957\pi\)
−0.633277 + 0.773925i \(0.718290\pi\)
\(398\) 9.13777i 0.458035i
\(399\) 0 0
\(400\) 9.07219 + 15.7135i 0.453609 + 0.785675i
\(401\) −0.462092 + 0.266789i −0.0230758 + 0.0133228i −0.511494 0.859287i \(-0.670908\pi\)
0.488418 + 0.872610i \(0.337574\pi\)
\(402\) −32.7906 −1.63545
\(403\) 19.1859 8.26451i 0.955719 0.411685i
\(404\) 1.44839 0.0720601
\(405\) 0.402337 0.232290i 0.0199923 0.0115426i
\(406\) 0 0
\(407\) −8.30697 + 14.3881i −0.411761 + 0.713191i
\(408\) 15.8640i 0.785387i
\(409\) 34.4269 + 19.8764i 1.70230 + 0.982824i 0.943424 + 0.331590i \(0.107585\pi\)
0.758877 + 0.651234i \(0.225748\pi\)
\(410\) 2.62176 + 1.51367i 0.129479 + 0.0747550i
\(411\) 24.0695i 1.18726i
\(412\) −0.198648 + 0.344069i −0.00978670 + 0.0169511i
\(413\) 0 0
\(414\) −54.6913 + 31.5760i −2.68793 + 1.55188i
\(415\) 4.62832 0.227195
\(416\) 0.188078 1.60209i 0.00922128 0.0785490i
\(417\) 14.2375 0.697213
\(418\) 4.85633 2.80380i 0.237531 0.137139i
\(419\) 11.9088 + 20.6266i 0.581783 + 1.00768i 0.995268 + 0.0971665i \(0.0309779\pi\)
−0.413485 + 0.910511i \(0.635689\pi\)
\(420\) 0 0
\(421\) 23.2419i 1.13274i −0.824151 0.566370i \(-0.808347\pi\)
0.824151 0.566370i \(-0.191653\pi\)
\(422\) 12.8668 + 7.42865i 0.626346 + 0.361621i
\(423\) −19.5016 11.2593i −0.948200 0.547444i
\(424\) 25.6360i 1.24500i
\(425\) −4.60828 + 7.98178i −0.223535 + 0.387173i
\(426\) −10.1789 17.6303i −0.493168 0.854192i
\(427\) 0 0
\(428\) 0.486253 0.0235039
\(429\) −1.92937 + 16.4348i −0.0931510 + 0.793482i
\(430\) 0.717316 0.0345920
\(431\) −2.34424 + 1.35345i −0.112918 + 0.0651932i −0.555395 0.831586i \(-0.687433\pi\)
0.442477 + 0.896780i \(0.354100\pi\)
\(432\) 10.7569 + 18.6314i 0.517540 + 0.896406i
\(433\) 2.90945 5.03932i 0.139819 0.242174i −0.787609 0.616176i \(-0.788681\pi\)
0.927428 + 0.374002i \(0.122015\pi\)
\(434\) 0 0
\(435\) 6.64198 + 3.83475i 0.318459 + 0.183862i
\(436\) 0.815290 + 0.470708i 0.0390453 + 0.0225428i
\(437\) 22.7706i 1.08927i
\(438\) −23.1841 + 40.1560i −1.10778 + 1.91873i
\(439\) −19.0851 33.0563i −0.910882 1.57769i −0.812822 0.582513i \(-0.802070\pi\)
−0.0980599 0.995181i \(-0.531264\pi\)
\(440\) 2.10340 1.21440i 0.100276 0.0578942i
\(441\) 0 0
\(442\) −8.94139 + 3.85158i −0.425298 + 0.183201i
\(443\) −31.6740 −1.50488 −0.752440 0.658661i \(-0.771123\pi\)
−0.752440 + 0.658661i \(0.771123\pi\)
\(444\) −1.98100 + 1.14373i −0.0940139 + 0.0542790i
\(445\) 3.11867 + 5.40169i 0.147839 + 0.256065i
\(446\) −8.93097 + 15.4689i −0.422894 + 0.732473i
\(447\) 9.50845i 0.449734i
\(448\) 0 0
\(449\) 27.1975 + 15.7025i 1.28353 + 0.741045i 0.977491 0.210975i \(-0.0676638\pi\)
0.306036 + 0.952020i \(0.400997\pi\)
\(450\) 32.6842i 1.54075i
\(451\) −3.41807 + 5.92027i −0.160951 + 0.278775i
\(452\) −0.140708 0.243713i −0.00661834 0.0114633i
\(453\) 30.9732 17.8824i 1.45525 0.840187i
\(454\) −0.968995 −0.0454772
\(455\) 0 0
\(456\) 20.2847 0.949920
\(457\) 27.5640 15.9141i 1.28939 0.744429i 0.310844 0.950461i \(-0.399388\pi\)
0.978545 + 0.206032i \(0.0660551\pi\)
\(458\) 12.6723 + 21.9491i 0.592140 + 1.02562i
\(459\) −5.46403 + 9.46398i −0.255039 + 0.441741i
\(460\) 0.375385i 0.0175024i
\(461\) −1.01005 0.583153i −0.0470427 0.0271601i 0.476294 0.879286i \(-0.341980\pi\)
−0.523337 + 0.852126i \(0.675313\pi\)
\(462\) 0 0
\(463\) 20.3441i 0.945469i 0.881205 + 0.472734i \(0.156733\pi\)
−0.881205 + 0.472734i \(0.843267\pi\)
\(464\) −10.0297 + 17.3719i −0.465615 + 0.806470i
\(465\) 4.24825 + 7.35819i 0.197008 + 0.341228i
\(466\) 32.1427 18.5576i 1.48898 0.859664i
\(467\) −1.56939 −0.0726229 −0.0363114 0.999341i \(-0.511561\pi\)
−0.0363114 + 0.999341i \(0.511561\pi\)
\(468\) −0.849948 + 1.14048i −0.0392889 + 0.0527185i
\(469\) 0 0
\(470\) 2.81375 1.62452i 0.129788 0.0749334i
\(471\) 14.6504 + 25.3753i 0.675055 + 1.16923i
\(472\) 8.94049 15.4854i 0.411519 0.712773i
\(473\) 1.61979i 0.0744781i
\(474\) 3.33169 + 1.92355i 0.153030 + 0.0883517i
\(475\) −10.2060 5.89243i −0.468283 0.270363i
\(476\) 0 0
\(477\) 22.1745 38.4074i 1.01530 1.75856i
\(478\) −11.5157 19.9457i −0.526714 0.912295i
\(479\) −6.68501 + 3.85959i −0.305446 + 0.176349i −0.644887 0.764278i \(-0.723095\pi\)
0.339441 + 0.940627i \(0.389762\pi\)
\(480\) 0.656080 0.0299458
\(481\) 29.5729 + 22.0394i 1.34841 + 1.00491i
\(482\) 24.1334 1.09925
\(483\) 0 0
\(484\) −0.330870 0.573083i −0.0150395 0.0260492i
\(485\) 1.14749 1.98751i 0.0521047 0.0902481i
\(486\) 19.8161i 0.898875i
\(487\) −0.0659739 0.0380900i −0.00298956 0.00172602i 0.498504 0.866887i \(-0.333883\pi\)
−0.501494 + 0.865161i \(0.667216\pi\)
\(488\) 33.6165 + 19.4085i 1.52175 + 0.878582i
\(489\) 44.5155i 2.01306i
\(490\) 0 0
\(491\) 0.893574 + 1.54772i 0.0403264 + 0.0698474i 0.885484 0.464670i \(-0.153827\pi\)
−0.845158 + 0.534517i \(0.820494\pi\)
\(492\) −0.815121 + 0.470610i −0.0367485 + 0.0212167i
\(493\) −10.1893 −0.458902
\(494\) −4.92487 11.4330i −0.221580 0.514395i
\(495\) −4.20170 −0.188852
\(496\) −19.2451 + 11.1112i −0.864131 + 0.498906i
\(497\) 0 0
\(498\) 17.4642 30.2488i 0.782589 1.35548i
\(499\) 8.33493i 0.373123i −0.982443 0.186561i \(-0.940266\pi\)
0.982443 0.186561i \(-0.0597343\pi\)
\(500\) −0.346080 0.199810i −0.0154772 0.00893576i
\(501\) −40.1305 23.1694i −1.79290 1.03513i
\(502\) 8.93914i 0.398973i
\(503\) 0.720238 1.24749i 0.0321138 0.0556228i −0.849522 0.527554i \(-0.823109\pi\)
0.881636 + 0.471931i \(0.156443\pi\)
\(504\) 0 0
\(505\) 8.22576 4.74914i 0.366041 0.211334i
\(506\) 20.5755 0.914693
\(507\) 35.7363 + 8.50779i 1.58710 + 0.377844i
\(508\) 0.112649 0.00499801
\(509\) −12.8394 + 7.41282i −0.569096 + 0.328568i −0.756788 0.653660i \(-0.773233\pi\)
0.187692 + 0.982228i \(0.439899\pi\)
\(510\) −1.97985 3.42920i −0.0876693 0.151848i
\(511\) 0 0
\(512\) 23.8204i 1.05272i
\(513\) −12.1012 6.98664i −0.534282 0.308468i
\(514\) −4.40686 2.54430i −0.194378 0.112224i
\(515\) 2.60540i 0.114808i
\(516\) −0.111509 + 0.193139i −0.00490891 + 0.00850248i
\(517\) 3.66837 + 6.35380i 0.161335 + 0.279440i
\(518\) 0 0
\(519\) −0.851561 −0.0373794
\(520\) −2.13308 4.95192i −0.0935419 0.217156i
\(521\) 0.334388 0.0146498 0.00732489 0.999973i \(-0.497668\pi\)
0.00732489 + 0.999973i \(0.497668\pi\)
\(522\) 31.2926 18.0668i 1.36964 0.790763i
\(523\) −16.2533 28.1515i −0.710705 1.23098i −0.964593 0.263744i \(-0.915043\pi\)
0.253887 0.967234i \(-0.418291\pi\)
\(524\) 0.343201 0.594441i 0.0149928 0.0259683i
\(525\) 0 0
\(526\) 21.9881 + 12.6948i 0.958726 + 0.553521i
\(527\) −9.77570 5.64400i −0.425836 0.245857i
\(528\) 17.6029i 0.766068i
\(529\) −30.2751 + 52.4380i −1.31631 + 2.27991i
\(530\) 3.19941 + 5.54153i 0.138973 + 0.240709i
\(531\) −26.7890 + 15.4666i −1.16254 + 0.671194i
\(532\) 0 0
\(533\) 12.1683 + 9.06855i 0.527070 + 0.392803i
\(534\) 47.0710 2.03696
\(535\) 2.76155 1.59438i 0.119392 0.0689311i
\(536\) 12.0633 + 20.8942i 0.521053 + 0.902491i
\(537\) −13.8686 + 24.0212i −0.598476 + 1.03659i
\(538\) 38.1732i 1.64576i
\(539\) 0 0
\(540\) −0.199495 0.115178i −0.00858488 0.00495649i
\(541\) 10.6015i 0.455796i 0.973685 + 0.227898i \(0.0731852\pi\)
−0.973685 + 0.227898i \(0.926815\pi\)
\(542\) 4.51767 7.82483i 0.194051 0.336105i
\(543\) 17.5650 + 30.4235i 0.753786 + 1.30560i
\(544\) −0.754856 + 0.435816i −0.0323642 + 0.0186855i
\(545\) 6.17364 0.264450
\(546\) 0 0
\(547\) 10.2327 0.437519 0.218760 0.975779i \(-0.429799\pi\)
0.218760 + 0.975779i \(0.429799\pi\)
\(548\) −0.583756 + 0.337032i −0.0249368 + 0.0143973i
\(549\) −33.5758 58.1549i −1.43298 2.48199i
\(550\) −5.32440 + 9.22214i −0.227033 + 0.393233i
\(551\) 13.0286i 0.555038i
\(552\) 64.4574 + 37.2145i 2.74349 + 1.58396i
\(553\) 0 0
\(554\) 7.54216i 0.320436i
\(555\) −7.50037 + 12.9910i −0.318373 + 0.551438i
\(556\) −0.199360 0.345301i −0.00845474 0.0146440i
\(557\) 27.7067 15.9965i 1.17397 0.677793i 0.219359 0.975644i \(-0.429603\pi\)
0.954612 + 0.297851i \(0.0962700\pi\)
\(558\) 40.0300 1.69460
\(559\) 3.57133 + 0.419257i 0.151051 + 0.0177327i
\(560\) 0 0
\(561\) 7.74359 4.47076i 0.326934 0.188756i
\(562\) −2.45478 4.25180i −0.103549 0.179351i
\(563\) −5.39566 + 9.34556i −0.227400 + 0.393868i −0.957037 0.289967i \(-0.906356\pi\)
0.729637 + 0.683835i \(0.239689\pi\)
\(564\) 1.01014i 0.0425348i
\(565\) −1.59823 0.922737i −0.0672380 0.0388199i
\(566\) −16.9708 9.79808i −0.713335 0.411844i
\(567\) 0 0
\(568\) −7.48937 + 12.9720i −0.314247 + 0.544292i
\(569\) −12.3007 21.3054i −0.515672 0.893170i −0.999835 0.0181917i \(-0.994209\pi\)
0.484163 0.874978i \(-0.339124\pi\)
\(570\) 4.38479 2.53156i 0.183659 0.106035i
\(571\) −16.5724 −0.693534 −0.346767 0.937951i \(-0.612721\pi\)
−0.346767 + 0.937951i \(0.612721\pi\)
\(572\) 0.425610 0.183335i 0.0177956 0.00766563i
\(573\) −34.6070 −1.44573
\(574\) 0 0
\(575\) −21.6206 37.4480i −0.901641 1.56169i
\(576\) 20.6653 35.7934i 0.861054 1.49139i
\(577\) 14.6611i 0.610348i 0.952297 + 0.305174i \(0.0987147\pi\)
−0.952297 + 0.305174i \(0.901285\pi\)
\(578\) −15.8487 9.15027i −0.659221 0.380601i
\(579\) 28.4702 + 16.4373i 1.18318 + 0.683111i
\(580\) 0.214784i 0.00891840i
\(581\) 0 0
\(582\) −8.65969 14.9990i −0.358956 0.621730i
\(583\) −12.5135 + 7.22467i −0.518256 + 0.299215i
\(584\) 34.1166 1.41175
\(585\) −1.08754 + 9.26394i −0.0449644 + 0.383017i
\(586\) −11.5717 −0.478024
\(587\) −30.5998 + 17.6668i −1.26299 + 0.729186i −0.973652 0.228041i \(-0.926768\pi\)
−0.289336 + 0.957227i \(0.593435\pi\)
\(588\) 0 0
\(589\) 7.21676 12.4998i 0.297362 0.515045i
\(590\) 4.46313i 0.183744i
\(591\) 4.40775 + 2.54481i 0.181310 + 0.104680i
\(592\) −33.9776 19.6170i −1.39647 0.806253i
\(593\) 16.4294i 0.674675i −0.941384 0.337338i \(-0.890474\pi\)
0.941384 0.337338i \(-0.109526\pi\)
\(594\) −6.31313 + 10.9347i −0.259031 + 0.448655i
\(595\) 0 0
\(596\) −0.230608 + 0.133142i −0.00944608 + 0.00545370i
\(597\) 18.6307 0.762504
\(598\) 5.32564 45.3651i 0.217782 1.85512i
\(599\) 12.0819 0.493653 0.246826 0.969060i \(-0.420612\pi\)
0.246826 + 0.969060i \(0.420612\pi\)
\(600\) −33.3598 + 19.2603i −1.36191 + 0.786297i
\(601\) 3.90743 + 6.76787i 0.159387 + 0.276067i 0.934648 0.355574i \(-0.115715\pi\)
−0.775261 + 0.631642i \(0.782381\pi\)
\(602\) 0 0
\(603\) 41.7377i 1.69969i
\(604\) −0.867401 0.500794i −0.0352941 0.0203770i
\(605\) −3.75818 2.16979i −0.152792 0.0882144i
\(606\) 71.6803i 2.91181i
\(607\) 17.7825 30.8001i 0.721768 1.25014i −0.238523 0.971137i \(-0.576663\pi\)
0.960291 0.279002i \(-0.0900035\pi\)
\(608\) −0.557261 0.965205i −0.0225999 0.0391442i
\(609\) 0 0
\(610\) 9.68882 0.392289
\(611\) 14.9584 6.44347i 0.605153 0.260675i
\(612\) 0.768568 0.0310675
\(613\) −10.3376 + 5.96839i −0.417530 + 0.241061i −0.694020 0.719956i \(-0.744162\pi\)
0.276490 + 0.961017i \(0.410829\pi\)
\(614\) −5.77500 10.0026i −0.233060 0.403672i
\(615\) −3.08618 + 5.34542i −0.124447 + 0.215548i
\(616\) 0 0
\(617\) −20.4124 11.7851i −0.821772 0.474450i 0.0292550 0.999572i \(-0.490687\pi\)
−0.851027 + 0.525122i \(0.824020\pi\)
\(618\) 17.0278 + 9.83103i 0.684960 + 0.395462i
\(619\) 28.5571i 1.14781i −0.818923 0.573904i \(-0.805428\pi\)
0.818923 0.573904i \(-0.194572\pi\)
\(620\) 0.118972 0.206066i 0.00477803 0.00827579i
\(621\) −25.6355 44.4020i −1.02872 1.78179i
\(622\) 17.5512 10.1332i 0.703738 0.406303i
\(623\) 0 0
\(624\) −38.8110 4.55623i −1.55368 0.182395i
\(625\) 21.0328 0.841311
\(626\) 20.5640 11.8726i 0.821903 0.474526i
\(627\) 5.71659 + 9.90142i 0.228298 + 0.395425i
\(628\) 0.410283 0.710632i 0.0163721 0.0283573i
\(629\) 19.9292i 0.794628i
\(630\) 0 0
\(631\) −38.9646 22.4962i −1.55116 0.895561i −0.998048 0.0624526i \(-0.980108\pi\)
−0.553109 0.833109i \(-0.686559\pi\)
\(632\) 2.83061i 0.112596i
\(633\) −15.1460 + 26.2337i −0.602001 + 1.04270i
\(634\) −9.70169 16.8038i −0.385303 0.667365i
\(635\) 0.639763 0.369367i 0.0253882 0.0146579i
\(636\) −1.98943 −0.0788860
\(637\) 0 0
\(638\) −11.7727 −0.466085
\(639\) 22.4409 12.9562i 0.887747 0.512541i
\(640\) 2.74947 + 4.76222i 0.108682 + 0.188243i
\(641\) −1.26650 + 2.19364i −0.0500238 + 0.0866437i −0.889953 0.456052i \(-0.849263\pi\)
0.839929 + 0.542696i \(0.182596\pi\)
\(642\) 24.0645i 0.949749i
\(643\) −15.9150 9.18853i −0.627627 0.362360i 0.152206 0.988349i \(-0.451362\pi\)
−0.779832 + 0.625988i \(0.784696\pi\)
\(644\) 0 0
\(645\) 1.46251i 0.0575863i
\(646\) −3.36329 + 5.82539i −0.132327 + 0.229197i
\(647\) −10.4643 18.1248i −0.411396 0.712558i 0.583647 0.812008i \(-0.301625\pi\)
−0.995043 + 0.0994494i \(0.968292\pi\)
\(648\) −2.23404 + 1.28982i −0.0877612 + 0.0506690i
\(649\) 10.0783 0.395609
\(650\) 18.9549 + 14.1263i 0.743473 + 0.554079i
\(651\) 0 0
\(652\) −1.07963 + 0.623326i −0.0422817 + 0.0244113i
\(653\) 24.0580 + 41.6696i 0.941461 + 1.63066i 0.762686 + 0.646769i \(0.223880\pi\)
0.178775 + 0.983890i \(0.442786\pi\)
\(654\) 23.2952 40.3484i 0.910913 1.57775i
\(655\) 4.50130i 0.175880i
\(656\) −13.9808 8.07180i −0.545857 0.315151i
\(657\) −51.1129 29.5100i −1.99410 1.15130i
\(658\) 0 0
\(659\) 1.10819 1.91944i 0.0431690 0.0747708i −0.843634 0.536919i \(-0.819588\pi\)
0.886803 + 0.462148i \(0.152921\pi\)
\(660\) 0.0942408 + 0.163230i 0.00366832 + 0.00635371i
\(661\) 0.552034 0.318717i 0.0214716 0.0123966i −0.489226 0.872157i \(-0.662721\pi\)
0.510697 + 0.859761i \(0.329387\pi\)
\(662\) −9.59073 −0.372754
\(663\) −7.85287 18.2303i −0.304980 0.708006i
\(664\) −25.6994 −0.997331
\(665\) 0 0
\(666\) 35.3368 + 61.2052i 1.36927 + 2.37165i
\(667\) 23.9024 41.4002i 0.925506 1.60302i
\(668\) 1.29771i 0.0502100i
\(669\) −31.5390 18.2091i −1.21937 0.704003i
\(670\) 5.21523 + 3.01102i 0.201482 + 0.116326i
\(671\) 21.8786i 0.844614i
\(672\) 0 0
\(673\) 7.70343 + 13.3427i 0.296945 + 0.514324i 0.975436 0.220285i \(-0.0706988\pi\)
−0.678490 + 0.734609i \(0.737365\pi\)
\(674\) −13.3901 + 7.73081i −0.515769 + 0.297780i
\(675\) 26.5352 1.02134
\(676\) −0.294057 0.985841i −0.0113099 0.0379170i
\(677\) 11.6812 0.448945 0.224473 0.974480i \(-0.427934\pi\)
0.224473 + 0.974480i \(0.427934\pi\)
\(678\) −12.0613 + 6.96358i −0.463210 + 0.267435i
\(679\) 0 0
\(680\) −1.45673 + 2.52312i −0.0558629 + 0.0967574i
\(681\) 1.97565i 0.0757072i
\(682\) −11.2948 6.52107i −0.432501 0.249705i
\(683\) 19.8419 + 11.4557i 0.759227 + 0.438340i 0.829018 0.559221i \(-0.188900\pi\)
−0.0697909 + 0.997562i \(0.522233\pi\)
\(684\) 0.982737i 0.0375759i
\(685\) −2.21020 + 3.82817i −0.0844473 + 0.146267i
\(686\) 0 0
\(687\) −44.7514 + 25.8372i −1.70737 + 0.985752i
\(688\) −3.82515 −0.145833
\(689\) 12.6901 + 29.4599i 0.483454 + 1.12233i
\(690\) 18.5777 0.707239
\(691\) 40.9046 23.6163i 1.55608 0.898405i 0.558458 0.829533i \(-0.311393\pi\)
0.997625 0.0688729i \(-0.0219403\pi\)
\(692\) 0.0119239 + 0.0206529i 0.000453280 + 0.000785104i
\(693\) 0 0
\(694\) 6.82596i 0.259110i
\(695\) −2.26443 1.30737i −0.0858946 0.0495913i
\(696\) −36.8805 21.2930i −1.39795 0.807109i
\(697\) 8.20026i 0.310607i
\(698\) 1.05565 1.82843i 0.0399568 0.0692071i
\(699\) 37.8365 + 65.5347i 1.43111 + 2.47875i
\(700\) 0 0
\(701\) 12.2098 0.461158 0.230579 0.973054i \(-0.425938\pi\)
0.230579 + 0.973054i \(0.425938\pi\)
\(702\) 22.4748 + 16.7495i 0.848256 + 0.632169i
\(703\) 25.4827 0.961097
\(704\) −11.6618 + 6.73295i −0.439521 + 0.253758i
\(705\) 3.31218 + 5.73686i 0.124744 + 0.216063i
\(706\) 12.4237 21.5185i 0.467572 0.809858i
\(707\) 0 0
\(708\) 1.20171 + 0.693808i 0.0451630 + 0.0260749i
\(709\) −15.4910 8.94374i −0.581777 0.335889i 0.180062 0.983655i \(-0.442370\pi\)
−0.761839 + 0.647766i \(0.775703\pi\)
\(710\) 3.73873i 0.140312i
\(711\) −2.44841 + 4.24076i −0.0918224 + 0.159041i
\(712\) −17.3169 29.9937i −0.648977 1.12406i
\(713\) 45.8644 26.4798i 1.71764 0.991678i
\(714\) 0 0
\(715\) 1.81600 2.43674i 0.0679146 0.0911290i
\(716\) 0.776780 0.0290296
\(717\) 40.6667 23.4789i 1.51872 0.876836i
\(718\) 13.8605 + 24.0070i 0.517268 + 0.895935i
\(719\) −4.56317 + 7.90364i −0.170178 + 0.294756i −0.938482 0.345329i \(-0.887767\pi\)
0.768304 + 0.640085i \(0.221101\pi\)
\(720\) 9.92235i 0.369784i
\(721\) 0 0
\(722\) 15.3564 + 8.86604i 0.571507 + 0.329960i
\(723\) 49.2048i 1.82995i
\(724\) 0.491906 0.852006i 0.0182815 0.0316646i
\(725\) 12.3706 + 21.4266i 0.459434 + 0.795763i
\(726\) −28.3617 + 16.3746i −1.05260 + 0.607719i
\(727\) −33.6859 −1.24934 −0.624670 0.780889i \(-0.714767\pi\)
−0.624670 + 0.780889i \(0.714767\pi\)
\(728\) 0 0
\(729\) −43.0880 −1.59585
\(730\) 7.37471 4.25779i 0.272950 0.157588i
\(731\) −0.971507 1.68270i −0.0359325 0.0622369i
\(732\) −1.50616 + 2.60874i −0.0556691 + 0.0964218i
\(733\) 46.4344i 1.71509i 0.514406 + 0.857547i \(0.328013\pi\)
−0.514406 + 0.857547i \(0.671987\pi\)
\(734\) −32.9062 18.9984i −1.21459 0.701245i
\(735\) 0 0
\(736\) 4.08942i 0.150738i
\(737\) −6.79927 + 11.7767i −0.250454 + 0.433799i
\(738\) 14.5400 + 25.1841i 0.535226 + 0.927039i
\(739\) −1.60237 + 0.925127i −0.0589440 + 0.0340314i −0.529182 0.848508i \(-0.677501\pi\)
0.470238 + 0.882539i \(0.344168\pi\)
\(740\) 0.420095 0.0154430
\(741\) 23.3104 10.0412i 0.856328 0.368871i
\(742\) 0 0
\(743\) 28.7095 16.5755i 1.05325 0.608094i 0.129693 0.991554i \(-0.458601\pi\)
0.923558 + 0.383460i \(0.125268\pi\)
\(744\) −23.5890 40.8574i −0.864816 1.49791i
\(745\) −0.873120 + 1.51229i −0.0319886 + 0.0554059i
\(746\) 22.0268i 0.806457i
\(747\) 38.5024 + 22.2294i 1.40873 + 0.813331i
\(748\) −0.216858 0.125203i −0.00792913 0.00457788i
\(749\) 0 0
\(750\) −9.88850 + 17.1274i −0.361077 + 0.625404i
\(751\) −10.3871 17.9910i −0.379032 0.656503i 0.611890 0.790943i \(-0.290410\pi\)
−0.990922 + 0.134441i \(0.957076\pi\)
\(752\) −15.0046 + 8.66289i −0.547160 + 0.315903i
\(753\) −18.2257 −0.664182
\(754\) −3.04717 + 25.9565i −0.110971 + 0.945280i
\(755\) −6.56824 −0.239043
\(756\) 0 0
\(757\) −21.8075 37.7717i −0.792607 1.37283i −0.924348 0.381551i \(-0.875390\pi\)
0.131741 0.991284i \(-0.457943\pi\)
\(758\) −6.08364 + 10.5372i −0.220968 + 0.382727i
\(759\) 41.9508i 1.52272i
\(760\) −3.22622 1.86266i −0.117027 0.0675657i
\(761\) −10.7302 6.19511i −0.388971 0.224573i 0.292743 0.956191i \(-0.405432\pi\)
−0.681714 + 0.731619i \(0.738765\pi\)
\(762\) 5.57497i 0.201960i
\(763\) 0 0
\(764\) 0.484583 + 0.839323i 0.0175316 + 0.0303656i
\(765\) 4.36488 2.52007i 0.157813 0.0911132i
\(766\) 11.0355 0.398728
\(767\) 2.60862 22.2208i 0.0941917 0.802347i
\(768\) −5.35835 −0.193353
\(769\) 4.80955 2.77680i 0.173437 0.100134i −0.410769 0.911740i \(-0.634740\pi\)
0.584205 + 0.811606i \(0.301406\pi\)
\(770\) 0 0
\(771\) 5.18750 8.98501i 0.186823 0.323587i
\(772\) 0.920651i 0.0331349i
\(773\) −37.9355 21.9021i −1.36445 0.787764i −0.374235 0.927334i \(-0.622095\pi\)
−0.990212 + 0.139570i \(0.955428\pi\)
\(774\) 5.96726 + 3.44520i 0.214489 + 0.123835i
\(775\) 27.4092i 0.984566i
\(776\) −6.37159 + 11.0359i −0.228727 + 0.396166i
\(777\) 0 0
\(778\) 38.4608 22.2053i 1.37889 0.796100i
\(779\) 10.4853 0.375677
\(780\) 0.384283 0.165534i 0.0137596 0.00592705i
\(781\) −8.44253 −0.302098
\(782\) −21.3746 + 12.3406i −0.764354 + 0.441300i
\(783\) 14.6678 + 25.4054i 0.524185 + 0.907916i
\(784\) 0 0
\(785\) 5.38113i 0.192061i
\(786\) −29.4187 16.9849i −1.04933 0.605830i
\(787\) −21.4782 12.4005i −0.765616 0.442029i 0.0656923 0.997840i \(-0.479074\pi\)
−0.831309 + 0.555811i \(0.812408\pi\)
\(788\) 0.142535i 0.00507758i
\(789\) −25.8831 + 44.8308i −0.921462 + 1.59602i
\(790\) −0.353263 0.611870i −0.0125685 0.0217693i
\(791\) 0 0
\(792\) 23.3305 0.829015
\(793\) 48.2381 + 5.66293i 1.71299 + 0.201096i
\(794\) 8.91801 0.316489
\(795\) −11.2985 + 6.52316i −0.400715 + 0.231353i
\(796\) −0.260876 0.451850i −0.00924649 0.0160154i
\(797\) 8.23575 14.2647i 0.291725 0.505283i −0.682492 0.730893i \(-0.739104\pi\)
0.974218 + 0.225610i \(0.0724373\pi\)
\(798\) 0 0
\(799\) −7.62168 4.40038i −0.269636 0.155674i
\(800\) 1.83292 + 1.05823i 0.0648034 + 0.0374142i
\(801\) 59.9146i 2.11698i
\(802\) 0.369756 0.640437i 0.0130566 0.0226146i
\(803\) 9.61464 + 16.6530i 0.339293 + 0.587673i
\(804\) −1.62145 + 0.936144i −0.0571841 + 0.0330152i
\(805\) 0 0
\(806\) −17.3012 + 23.2150i −0.609408 + 0.817715i
\(807\) −77.8301 −2.73975
\(808\) −45.6747 + 26.3703i −1.60683 + 0.927704i
\(809\) −0.690968 1.19679i −0.0242932 0.0420770i 0.853623 0.520891i \(-0.174400\pi\)
−0.877916 + 0.478814i \(0.841067\pi\)
\(810\) −0.321942 + 0.557621i −0.0113119 + 0.0195928i
\(811\) 6.83571i 0.240034i −0.992772 0.120017i \(-0.961705\pi\)
0.992772 0.120017i \(-0.0382950\pi\)
\(812\) 0 0
\(813\) 15.9538 + 9.21093i 0.559524 + 0.323041i
\(814\) 23.0261i 0.807066i
\(815\) −4.08767 + 7.08004i −0.143185 + 0.248003i
\(816\) 10.5577 + 18.2865i 0.369595 + 0.640157i
\(817\) 2.15160 1.24223i 0.0752750 0.0434601i
\(818\) −55.0954 −1.92637
\(819\) 0 0
\(820\) 0.172856 0.00603640
\(821\) −9.13009 + 5.27126i −0.318642 + 0.183968i −0.650787 0.759260i \(-0.725561\pi\)
0.332145 + 0.943228i \(0.392228\pi\)
\(822\) 16.6796 + 28.8899i 0.581767 + 1.00765i
\(823\) 7.41652 12.8458i 0.258524 0.447776i −0.707323 0.706891i \(-0.750097\pi\)
0.965847 + 0.259114i \(0.0834307\pi\)
\(824\) 14.4669i 0.503977i
\(825\) −18.8027 10.8558i −0.654627 0.377949i
\(826\) 0 0
\(827\) 55.6758i 1.93604i 0.250879 + 0.968018i \(0.419280\pi\)
−0.250879 + 0.968018i \(0.580720\pi\)
\(828\) −1.80294 + 3.12278i −0.0626564 + 0.108524i
\(829\) 0.0232424 + 0.0402570i 0.000807242 + 0.00139818i 0.866429 0.499301i \(-0.166410\pi\)
−0.865622 + 0.500699i \(0.833076\pi\)
\(830\) −5.55524 + 3.20732i −0.192825 + 0.111328i
\(831\) −15.3775 −0.533438
\(832\) 11.8264 + 27.4548i 0.410006 + 0.951823i
\(833\) 0 0
\(834\) −17.0888 + 9.86624i −0.591738 + 0.341640i
\(835\) 4.25508 + 7.37002i 0.147253 + 0.255050i
\(836\) 0.160092 0.277288i 0.00553691 0.00959022i
\(837\) 32.4990i 1.12333i
\(838\) −28.5875 16.5050i −0.987540 0.570157i
\(839\) −22.1248 12.7738i −0.763833 0.440999i 0.0668370 0.997764i \(-0.478709\pi\)
−0.830670 + 0.556765i \(0.812043\pi\)
\(840\) 0 0
\(841\) 0.823775 1.42682i 0.0284060 0.0492007i
\(842\) 16.1061 + 27.8965i 0.555052 + 0.961378i
\(843\) 8.66886 5.00497i 0.298572 0.172380i
\(844\) 0.848327 0.0292006
\(845\) −4.90250 4.63464i −0.168651 0.159437i
\(846\) 31.2096 1.07301
\(847\) 0 0
\(848\) −17.0611 29.5507i −0.585881 1.01478i
\(849\) 19.9770 34.6012i 0.685609 1.18751i
\(850\) 12.7737i 0.438135i
\(851\) 80.9745 + 46.7507i 2.77577 + 1.60259i
\(852\) −1.00666 0.581197i −0.0344877 0.0199115i
\(853\) 22.6671i 0.776105i 0.921637 + 0.388053i \(0.126852\pi\)
−0.921637 + 0.388053i \(0.873148\pi\)
\(854\) 0 0
\(855\) 3.22231 + 5.58120i 0.110201 + 0.190873i
\(856\) −15.3339 + 8.85303i −0.524102 + 0.302590i
\(857\) −37.0535 −1.26572 −0.632862 0.774264i \(-0.718120\pi\)
−0.632862 + 0.774264i \(0.718120\pi\)
\(858\) −9.07319 21.0633i −0.309754 0.719088i
\(859\) 4.24339 0.144782 0.0723912 0.997376i \(-0.476937\pi\)
0.0723912 + 0.997376i \(0.476937\pi\)
\(860\) 0.0354702 0.0204788i 0.00120953 0.000698320i
\(861\) 0 0
\(862\) 1.87581 3.24900i 0.0638904 0.110661i
\(863\) 7.50051i 0.255320i 0.991818 + 0.127660i \(0.0407467\pi\)
−0.991818 + 0.127660i \(0.959253\pi\)
\(864\) 2.17328 + 1.25475i 0.0739366 + 0.0426873i
\(865\) 0.135438 + 0.0781951i 0.00460503 + 0.00265871i
\(866\) 8.06472i 0.274050i
\(867\) 18.6562 32.3135i 0.633598 1.09742i
\(868\) 0 0
\(869\) 1.38168 0.797714i 0.0468703 0.0270606i
\(870\) −10.6296 −0.360376
\(871\) 24.2054 + 18.0393i 0.820170 + 0.611238i
\(872\) −34.2800 −1.16087
\(873\) 19.0916 11.0225i 0.646153 0.373057i
\(874\) −15.7795 27.3309i −0.533749 0.924481i
\(875\) 0 0
\(876\) 2.64755i 0.0894523i
\(877\) −24.4996 14.1448i −0.827291 0.477637i 0.0256330 0.999671i \(-0.491840\pi\)
−0.852924 + 0.522035i \(0.825173\pi\)
\(878\) 45.8145 + 26.4510i 1.54617 + 0.892679i
\(879\) 23.5933i 0.795781i
\(880\) −1.61640 + 2.79968i −0.0544888 + 0.0943773i
\(881\) 19.7860 + 34.2704i 0.666609 + 1.15460i 0.978846 + 0.204596i \(0.0655882\pi\)
−0.312238 + 0.950004i \(0.601079\pi\)
\(882\) 0 0
\(883\) −28.3609 −0.954419 −0.477209 0.878790i \(-0.658352\pi\)
−0.477209 + 0.878790i \(0.658352\pi\)
\(884\) −0.332179 + 0.445724i −0.0111724 + 0.0149913i
\(885\) 9.09974 0.305884
\(886\) 38.0174 21.9494i 1.27722 0.737403i
\(887\) −21.8593 37.8614i −0.733963 1.27126i −0.955177 0.296036i \(-0.904335\pi\)
0.221214 0.975225i \(-0.428998\pi\)
\(888\) 41.6469 72.1345i 1.39758 2.42068i
\(889\) 0 0
\(890\) −7.48649 4.32233i −0.250948 0.144885i
\(891\) −1.25918 0.726988i −0.0421841 0.0243550i
\(892\) 1.01989i 0.0341483i
\(893\) 5.62659 9.74554i 0.188287 0.326122i
\(894\) 6.58913 + 11.4127i 0.220374 + 0.381698i
\(895\) 4.41152 2.54699i 0.147461 0.0851366i
\(896\) 0 0
\(897\) 92.4934 + 10.8583i 3.08826 + 0.362547i
\(898\) −43.5257 −1.45247
\(899\) −26.2422 + 15.1509i −0.875227 + 0.505312i
\(900\) −0.933105 1.61619i −0.0311035 0.0538728i
\(901\) 8.66632 15.0105i 0.288717 0.500073i
\(902\) 9.47456i 0.315468i
\(903\) 0 0
\(904\) 8.87439 + 5.12363i 0.295158 + 0.170409i
\(905\) 6.45167i 0.214461i
\(906\) −24.7841 + 42.9274i −0.823397 + 1.42617i
\(907\) −18.3493 31.7818i −0.609277 1.05530i −0.991360 0.131171i \(-0.958126\pi\)
0.382083 0.924128i \(-0.375207\pi\)
\(908\) −0.0479154 + 0.0276640i −0.00159013 + 0.000918062i
\(909\) 91.2387 3.02620
\(910\) 0 0
\(911\) −35.5211 −1.17686 −0.588432 0.808546i \(-0.700255\pi\)
−0.588432 + 0.808546i \(0.700255\pi\)
\(912\) −23.3823 + 13.4998i −0.774265 + 0.447022i
\(913\) −7.24254 12.5444i −0.239693 0.415161i
\(914\) −22.0562 + 38.2024i −0.729553 + 1.26362i
\(915\) 19.7542i 0.653054i
\(916\) 1.25326 + 0.723569i 0.0414088 + 0.0239074i
\(917\) 0 0
\(918\) 15.1458i 0.499885i
\(919\) −10.9667 + 18.9949i −0.361758 + 0.626583i −0.988250 0.152844i \(-0.951157\pi\)
0.626492 + 0.779428i \(0.284490\pi\)
\(920\) −6.83449 11.8377i −0.225327 0.390277i
\(921\) 20.3940 11.7745i 0.672005 0.387982i
\(922\) 1.61644 0.0532348
\(923\) −2.18521 + 18.6142i −0.0719272 + 0.612693i
\(924\) 0 0
\(925\) −41.9082 + 24.1957i −1.37793 + 0.795549i
\(926\) −14.0980 24.4184i −0.463287 0.802437i
\(927\) −12.5135 + 21.6740i −0.410997 + 0.711867i
\(928\) 2.33984i 0.0768090i
\(929\) 13.4383 + 7.75858i 0.440895 + 0.254551i 0.703977 0.710223i \(-0.251406\pi\)
−0.263082 + 0.964773i \(0.584739\pi\)
\(930\) −10.1981 5.88788i −0.334409 0.193071i
\(931\) 0 0
\(932\) 1.05961 1.83529i 0.0347086 0.0601171i
\(933\) 20.6602 + 35.7845i 0.676385 + 1.17153i
\(934\) 1.88370 1.08755i 0.0616364 0.0355858i
\(935\) −1.64212 −0.0537031
\(936\) 6.03874 51.4394i 0.197382 1.68135i
\(937\) −40.8110 −1.33324 −0.666618 0.745399i \(-0.732259\pi\)
−0.666618 + 0.745399i \(0.732259\pi\)
\(938\) 0 0
\(939\) 24.2067 + 41.9273i 0.789957 + 1.36825i
\(940\) 0.0927572 0.160660i 0.00302541 0.00524016i
\(941\) 51.5936i 1.68190i −0.541109 0.840952i \(-0.681996\pi\)
0.541109 0.840952i \(-0.318004\pi\)
\(942\) −35.1689 20.3048i −1.14586 0.661565i
\(943\) 33.3186 + 19.2365i 1.08500 + 0.626427i
\(944\) 23.8001i 0.774627i
\(945\) 0 0
\(946\) −1.12248 1.94419i −0.0364949 0.0632110i
\(947\) −4.31462 + 2.49105i −0.140206 + 0.0809482i −0.568462 0.822709i \(-0.692461\pi\)
0.428256 + 0.903657i \(0.359128\pi\)
\(948\) 0.219663 0.00713433
\(949\) 39.2054 16.8881i 1.27266 0.548210i
\(950\) 16.3333 0.529921
\(951\) 34.2608 19.7805i 1.11098 0.641426i
\(952\) 0 0
\(953\) 15.1163 26.1822i 0.489664 0.848123i −0.510265 0.860017i \(-0.670453\pi\)
0.999929 + 0.0118941i \(0.00378608\pi\)
\(954\) 61.4657i 1.99003i
\(955\) 5.50413 + 3.17781i 0.178110 + 0.102832i
\(956\) −1.13887 0.657525i −0.0368336 0.0212659i
\(957\) 24.0029i 0.775904i
\(958\) 5.34921 9.26511i 0.172825 0.299342i
\(959\) 0 0
\(960\) −10.5295 + 6.07919i −0.339837 + 0.196205i
\(961\) −2.56939 −0.0828835
\(962\) −50.7682 5.95995i −1.63683 0.192156i
\(963\) 30.6306 0.987058
\(964\) 1.19336 0.688988i 0.0384356 0.0221908i
\(965\) −3.01873 5.22860i −0.0971764 0.168315i
\(966\) 0 0
\(967\) 29.9990i 0.964703i 0.875978 + 0.482352i \(0.160217\pi\)
−0.875978 + 0.482352i \(0.839783\pi\)
\(968\) 20.8678 + 12.0481i 0.670718 + 0.387239i
\(969\) −11.8772 6.85731i −0.381551 0.220288i
\(970\) 3.18073i 0.102127i
\(971\) 22.0620 38.2125i 0.708003 1.22630i −0.257594 0.966253i \(-0.582930\pi\)
0.965597 0.260044i \(-0.0837371\pi\)
\(972\) 0.565732 + 0.979876i 0.0181459 + 0.0314295i
\(973\) 0 0
\(974\) 0.105582 0.00338306
\(975\) −28.8016 + 38.6465i −0.922391 + 1.23768i
\(976\) −51.6665 −1.65380
\(977\) −12.9925 + 7.50121i −0.415666 + 0.239985i −0.693221 0.720725i \(-0.743809\pi\)
0.277555 + 0.960710i \(0.410476\pi\)
\(978\) 30.8482 + 53.4306i 0.986417 + 1.70852i
\(979\) 9.76037 16.9055i 0.311943 0.540301i
\(980\) 0 0
\(981\) 51.3577 + 29.6514i 1.63973 + 0.946696i
\(982\) −2.14506 1.23845i −0.0684516 0.0395206i
\(983\) 6.01856i 0.191962i 0.995383 + 0.0959812i \(0.0305989\pi\)
−0.995383 + 0.0959812i \(0.969401\pi\)
\(984\) 17.1364 29.6812i 0.546290 0.946202i
\(985\) −0.467358 0.809488i −0.0148913 0.0257924i
\(986\) 12.2299 7.06093i 0.389479 0.224866i
\(987\) 0 0
\(988\) −0.569930 0.424745i −0.0181319 0.0135129i
\(989\) 9.11600 0.289872
\(990\) 5.04318 2.91168i 0.160283 0.0925392i
\(991\) −16.9200 29.3063i −0.537482 0.930946i −0.999039 0.0438356i \(-0.986042\pi\)
0.461557 0.887111i \(-0.347291\pi\)
\(992\) −1.29607 + 2.24487i −0.0411504 + 0.0712746i
\(993\) 19.5542i 0.620535i
\(994\) 0 0
\(995\) −2.96315 1.71078i −0.0939382 0.0542353i
\(996\) 1.99435i 0.0631934i
\(997\) 13.1608 22.7951i 0.416805 0.721928i −0.578811 0.815462i \(-0.696483\pi\)
0.995616 + 0.0935340i \(0.0298164\pi\)
\(998\) 5.77591 + 10.0042i 0.182833 + 0.316676i
\(999\) −49.6904 + 28.6888i −1.57213 + 0.907672i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.q.h.491.2 12
7.2 even 3 637.2.u.i.361.5 12
7.3 odd 6 637.2.k.h.569.2 12
7.4 even 3 637.2.k.g.569.2 12
7.5 odd 6 637.2.u.h.361.5 12
7.6 odd 2 91.2.q.a.36.2 12
13.2 odd 12 8281.2.a.ch.1.1 6
13.4 even 6 inner 637.2.q.h.589.2 12
13.11 odd 12 8281.2.a.by.1.6 6
21.20 even 2 819.2.ct.a.127.5 12
28.27 even 2 1456.2.cc.c.673.1 12
91.4 even 6 637.2.u.i.30.5 12
91.17 odd 6 637.2.u.h.30.5 12
91.30 even 6 637.2.k.g.459.5 12
91.41 even 12 1183.2.a.p.1.1 6
91.55 odd 6 1183.2.c.i.337.3 12
91.62 odd 6 1183.2.c.i.337.10 12
91.69 odd 6 91.2.q.a.43.2 yes 12
91.76 even 12 1183.2.a.m.1.6 6
91.82 odd 6 637.2.k.h.459.5 12
273.251 even 6 819.2.ct.a.316.5 12
364.251 even 6 1456.2.cc.c.225.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.q.a.36.2 12 7.6 odd 2
91.2.q.a.43.2 yes 12 91.69 odd 6
637.2.k.g.459.5 12 91.30 even 6
637.2.k.g.569.2 12 7.4 even 3
637.2.k.h.459.5 12 91.82 odd 6
637.2.k.h.569.2 12 7.3 odd 6
637.2.q.h.491.2 12 1.1 even 1 trivial
637.2.q.h.589.2 12 13.4 even 6 inner
637.2.u.h.30.5 12 91.17 odd 6
637.2.u.h.361.5 12 7.5 odd 6
637.2.u.i.30.5 12 91.4 even 6
637.2.u.i.361.5 12 7.2 even 3
819.2.ct.a.127.5 12 21.20 even 2
819.2.ct.a.316.5 12 273.251 even 6
1183.2.a.m.1.6 6 91.76 even 12
1183.2.a.p.1.1 6 91.41 even 12
1183.2.c.i.337.3 12 91.55 odd 6
1183.2.c.i.337.10 12 91.62 odd 6
1456.2.cc.c.225.1 12 364.251 even 6
1456.2.cc.c.673.1 12 28.27 even 2
8281.2.a.by.1.6 6 13.11 odd 12
8281.2.a.ch.1.1 6 13.2 odd 12