Properties

Label 637.2.k.h.569.2
Level $637$
Weight $2$
Character 637.569
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(459,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.459");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.58891012706304.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 569.2
Root \(0.759479 - 1.19298i\) of defining polynomial
Character \(\chi\) \(=\) 637.569
Dual form 637.2.k.h.459.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.38595i q^{2} +(1.41289 - 2.44719i) q^{3} +0.0791355 q^{4} +(0.449430 + 0.259479i) q^{5} +(-3.39169 - 1.95819i) q^{6} -2.88158i q^{8} +(-2.49250 - 4.31714i) q^{9} +(0.359625 - 0.622889i) q^{10} +(-1.40656 - 0.812080i) q^{11} +(0.111810 - 0.193660i) q^{12} +(1.42641 + 3.31140i) q^{13} +(1.26999 - 0.733228i) q^{15} -3.83547 q^{16} -1.94825 q^{17} +(-5.98335 + 3.45449i) q^{18} +(-2.15740 + 1.24558i) q^{19} +(0.0355659 + 0.0205340i) q^{20} +(-1.12550 + 1.94943i) q^{22} +9.14058 q^{23} +(-7.05179 - 4.07135i) q^{24} +(-2.36534 - 4.09689i) q^{25} +(4.58944 - 1.97694i) q^{26} -5.60916 q^{27} +(2.61498 + 4.52928i) q^{29} +(-1.01622 - 1.76014i) q^{30} +(-5.01767 + 2.89695i) q^{31} -0.447392i q^{32} +(-3.97463 + 2.29475i) q^{33} +2.70019i q^{34} +(-0.197245 - 0.341639i) q^{36} -10.2293i q^{37} +(1.72631 + 2.99006i) q^{38} +(10.1190 + 1.18792i) q^{39} +(0.747709 - 1.29507i) q^{40} +(3.64513 - 2.10452i) q^{41} +(-0.498655 + 0.863697i) q^{43} +(-0.111309 - 0.0642644i) q^{44} -2.58700i q^{45} -12.6684i q^{46} +(3.91206 + 2.25863i) q^{47} +(-5.41908 + 9.38612i) q^{48} +(-5.67810 + 3.27825i) q^{50} +(-2.75266 + 4.76775i) q^{51} +(0.112880 + 0.262049i) q^{52} +(4.44825 + 7.70460i) q^{53} +7.77403i q^{54} +(-0.421434 - 0.729946i) q^{55} +7.03944i q^{57} +(6.27736 - 3.62424i) q^{58} +6.20526i q^{59} +(0.100501 - 0.0580244i) q^{60} +(6.73536 + 11.6660i) q^{61} +(4.01504 + 6.95426i) q^{62} -8.29100 q^{64} +(-0.218163 + 1.85836i) q^{65} +(3.18042 + 5.50865i) q^{66} +(7.25094 + 4.18633i) q^{67} -0.154176 q^{68} +(12.9146 - 22.3688i) q^{69} +(-4.50168 - 2.59905i) q^{71} +(-12.4402 + 7.18234i) q^{72} +(-10.2533 + 5.91976i) q^{73} -14.1773 q^{74} -13.3678 q^{75} +(-0.170727 + 0.0985694i) q^{76} +(1.64640 - 14.0244i) q^{78} +(-0.491155 + 0.850705i) q^{79} +(-1.72377 - 0.995221i) q^{80} +(-0.447609 + 0.775281i) q^{81} +(-2.91676 - 5.05197i) q^{82} +8.91851i q^{83} +(-0.875603 - 0.505530i) q^{85} +(1.19704 + 0.691113i) q^{86} +14.7787 q^{87} +(-2.34008 + 4.05313i) q^{88} -12.0190i q^{89} -3.58546 q^{90} +0.723345 q^{92} +16.3723i q^{93} +(3.13035 - 5.42193i) q^{94} -1.29280 q^{95} +(-1.09485 - 0.632114i) q^{96} +(3.82981 + 2.21114i) q^{97} +8.09643i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{4} + 6 q^{5} - 18 q^{6} - 4 q^{9} + 12 q^{10} - 6 q^{11} + 2 q^{12} + 4 q^{13} + 6 q^{15} + 16 q^{16} + 8 q^{17} + 12 q^{18} - 12 q^{20} + 6 q^{22} + 24 q^{23} - 12 q^{24} + 10 q^{25} + 18 q^{26}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38595i 0.980016i −0.871718 0.490008i \(-0.836994\pi\)
0.871718 0.490008i \(-0.163006\pi\)
\(3\) 1.41289 2.44719i 0.815731 1.41289i −0.0930713 0.995659i \(-0.529668\pi\)
0.908802 0.417228i \(-0.136998\pi\)
\(4\) 0.0791355 0.0395678
\(5\) 0.449430 + 0.259479i 0.200991 + 0.116042i 0.597118 0.802154i \(-0.296313\pi\)
−0.396127 + 0.918196i \(0.629646\pi\)
\(6\) −3.39169 1.95819i −1.38465 0.799429i
\(7\) 0 0
\(8\) 2.88158i 1.01879i
\(9\) −2.49250 4.31714i −0.830833 1.43905i
\(10\) 0.359625 0.622889i 0.113723 0.196975i
\(11\) −1.40656 0.812080i −0.424095 0.244851i 0.272733 0.962090i \(-0.412072\pi\)
−0.696828 + 0.717239i \(0.745406\pi\)
\(12\) 0.111810 0.193660i 0.0322766 0.0559048i
\(13\) 1.42641 + 3.31140i 0.395616 + 0.918416i
\(14\) 0 0
\(15\) 1.26999 0.733228i 0.327909 0.189319i
\(16\) −3.83547 −0.958867
\(17\) −1.94825 −0.472521 −0.236260 0.971690i \(-0.575922\pi\)
−0.236260 + 0.971690i \(0.575922\pi\)
\(18\) −5.98335 + 3.45449i −1.41029 + 0.814230i
\(19\) −2.15740 + 1.24558i −0.494942 + 0.285755i −0.726622 0.687037i \(-0.758911\pi\)
0.231680 + 0.972792i \(0.425578\pi\)
\(20\) 0.0355659 + 0.0205340i 0.00795277 + 0.00459154i
\(21\) 0 0
\(22\) −1.12550 + 1.94943i −0.239958 + 0.415620i
\(23\) 9.14058 1.90594 0.952971 0.303060i \(-0.0980083\pi\)
0.952971 + 0.303060i \(0.0980083\pi\)
\(24\) −7.05179 4.07135i −1.43944 0.831061i
\(25\) −2.36534 4.09689i −0.473068 0.819378i
\(26\) 4.58944 1.97694i 0.900063 0.387710i
\(27\) −5.60916 −1.07948
\(28\) 0 0
\(29\) 2.61498 + 4.52928i 0.485589 + 0.841065i 0.999863 0.0165608i \(-0.00527172\pi\)
−0.514274 + 0.857626i \(0.671938\pi\)
\(30\) −1.01622 1.76014i −0.185535 0.321357i
\(31\) −5.01767 + 2.89695i −0.901201 + 0.520308i −0.877590 0.479413i \(-0.840850\pi\)
−0.0236111 + 0.999721i \(0.507516\pi\)
\(32\) 0.447392i 0.0790885i
\(33\) −3.97463 + 2.29475i −0.691894 + 0.399465i
\(34\) 2.70019i 0.463078i
\(35\) 0 0
\(36\) −0.197245 0.341639i −0.0328742 0.0569398i
\(37\) 10.2293i 1.68168i −0.541284 0.840840i \(-0.682062\pi\)
0.541284 0.840840i \(-0.317938\pi\)
\(38\) 1.72631 + 2.99006i 0.280045 + 0.485052i
\(39\) 10.1190 + 1.18792i 1.62033 + 0.190219i
\(40\) 0.747709 1.29507i 0.118223 0.204769i
\(41\) 3.64513 2.10452i 0.569273 0.328670i −0.187586 0.982248i \(-0.560066\pi\)
0.756859 + 0.653578i \(0.226733\pi\)
\(42\) 0 0
\(43\) −0.498655 + 0.863697i −0.0760442 + 0.131712i −0.901540 0.432696i \(-0.857562\pi\)
0.825496 + 0.564408i \(0.190896\pi\)
\(44\) −0.111309 0.0642644i −0.0167805 0.00968822i
\(45\) 2.58700i 0.385647i
\(46\) 12.6684i 1.86786i
\(47\) 3.91206 + 2.25863i 0.570632 + 0.329455i 0.757402 0.652949i \(-0.226468\pi\)
−0.186770 + 0.982404i \(0.559802\pi\)
\(48\) −5.41908 + 9.38612i −0.782177 + 1.35477i
\(49\) 0 0
\(50\) −5.67810 + 3.27825i −0.803004 + 0.463615i
\(51\) −2.75266 + 4.76775i −0.385450 + 0.667618i
\(52\) 0.112880 + 0.262049i 0.0156536 + 0.0363397i
\(53\) 4.44825 + 7.70460i 0.611015 + 1.05831i 0.991070 + 0.133344i \(0.0425717\pi\)
−0.380055 + 0.924964i \(0.624095\pi\)
\(54\) 7.77403i 1.05791i
\(55\) −0.421434 0.729946i −0.0568262 0.0984259i
\(56\) 0 0
\(57\) 7.03944i 0.932397i
\(58\) 6.27736 3.62424i 0.824258 0.475886i
\(59\) 6.20526i 0.807856i 0.914791 + 0.403928i \(0.132355\pi\)
−0.914791 + 0.403928i \(0.867645\pi\)
\(60\) 0.100501 0.0580244i 0.0129746 0.00749091i
\(61\) 6.73536 + 11.6660i 0.862375 + 1.49368i 0.869630 + 0.493703i \(0.164357\pi\)
−0.00725571 + 0.999974i \(0.502310\pi\)
\(62\) 4.01504 + 6.95426i 0.509911 + 0.883191i
\(63\) 0 0
\(64\) −8.29100 −1.03637
\(65\) −0.218163 + 1.85836i −0.0270598 + 0.230502i
\(66\) 3.18042 + 5.50865i 0.391483 + 0.678068i
\(67\) 7.25094 + 4.18633i 0.885843 + 0.511442i 0.872580 0.488470i \(-0.162445\pi\)
0.0132624 + 0.999912i \(0.495778\pi\)
\(68\) −0.154176 −0.0186966
\(69\) 12.9146 22.3688i 1.55474 2.69288i
\(70\) 0 0
\(71\) −4.50168 2.59905i −0.534251 0.308450i 0.208495 0.978023i \(-0.433144\pi\)
−0.742746 + 0.669573i \(0.766477\pi\)
\(72\) −12.4402 + 7.18234i −1.46609 + 0.846447i
\(73\) −10.2533 + 5.91976i −1.20006 + 0.692856i −0.960569 0.278042i \(-0.910315\pi\)
−0.239493 + 0.970898i \(0.576981\pi\)
\(74\) −14.1773 −1.64807
\(75\) −13.3678 −1.54359
\(76\) −0.170727 + 0.0985694i −0.0195838 + 0.0113067i
\(77\) 0 0
\(78\) 1.64640 14.0244i 0.186418 1.58795i
\(79\) −0.491155 + 0.850705i −0.0552592 + 0.0957118i −0.892332 0.451380i \(-0.850932\pi\)
0.837073 + 0.547092i \(0.184265\pi\)
\(80\) −1.72377 0.995221i −0.192724 0.111269i
\(81\) −0.447609 + 0.775281i −0.0497343 + 0.0861423i
\(82\) −2.91676 5.05197i −0.322102 0.557897i
\(83\) 8.91851i 0.978934i 0.872022 + 0.489467i \(0.162809\pi\)
−0.872022 + 0.489467i \(0.837191\pi\)
\(84\) 0 0
\(85\) −0.875603 0.505530i −0.0949725 0.0548324i
\(86\) 1.19704 + 0.691113i 0.129080 + 0.0745246i
\(87\) 14.7787 1.58444
\(88\) −2.34008 + 4.05313i −0.249453 + 0.432065i
\(89\) 12.0190i 1.27401i −0.770860 0.637005i \(-0.780173\pi\)
0.770860 0.637005i \(-0.219827\pi\)
\(90\) −3.58546 −0.377941
\(91\) 0 0
\(92\) 0.723345 0.0754139
\(93\) 16.3723i 1.69773i
\(94\) 3.13035 5.42193i 0.322871 0.559229i
\(95\) −1.29280 −0.132639
\(96\) −1.09485 0.632114i −0.111743 0.0645149i
\(97\) 3.82981 + 2.21114i 0.388858 + 0.224507i 0.681665 0.731664i \(-0.261256\pi\)
−0.292807 + 0.956172i \(0.594589\pi\)
\(98\) 0 0
\(99\) 8.09643i 0.813722i
\(100\) −0.187183 0.324210i −0.0187183 0.0324210i
\(101\) 9.15132 15.8506i 0.910591 1.57719i 0.0973594 0.995249i \(-0.468960\pi\)
0.813231 0.581940i \(-0.197706\pi\)
\(102\) 6.60787 + 3.81506i 0.654277 + 0.377747i
\(103\) 2.51023 4.34784i 0.247340 0.428406i −0.715447 0.698667i \(-0.753777\pi\)
0.962787 + 0.270262i \(0.0871102\pi\)
\(104\) 9.54206 4.11033i 0.935676 0.403051i
\(105\) 0 0
\(106\) 10.6782 6.16507i 1.03716 0.598804i
\(107\) 6.14456 0.594017 0.297008 0.954875i \(-0.404011\pi\)
0.297008 + 0.954875i \(0.404011\pi\)
\(108\) −0.443884 −0.0427127
\(109\) −10.3025 + 5.94812i −0.986796 + 0.569727i −0.904315 0.426866i \(-0.859618\pi\)
−0.0824809 + 0.996593i \(0.526284\pi\)
\(110\) −1.01167 + 0.584088i −0.0964590 + 0.0556906i
\(111\) −25.0330 14.4528i −2.37602 1.37180i
\(112\) 0 0
\(113\) −1.77806 + 3.07969i −0.167266 + 0.289713i −0.937458 0.348099i \(-0.886827\pi\)
0.770192 + 0.637812i \(0.220161\pi\)
\(114\) 9.75633 0.913764
\(115\) 4.10805 + 2.37178i 0.383078 + 0.221170i
\(116\) 0.206938 + 0.358427i 0.0192137 + 0.0332791i
\(117\) 10.7404 14.4117i 0.992951 1.33236i
\(118\) 8.60020 0.791713
\(119\) 0 0
\(120\) −2.11286 3.65957i −0.192877 0.334072i
\(121\) −4.18105 7.24180i −0.380096 0.658345i
\(122\) 16.1685 9.33489i 1.46383 0.845141i
\(123\) 11.8938i 1.07243i
\(124\) −0.397076 + 0.229252i −0.0356585 + 0.0205874i
\(125\) 5.04981i 0.451668i
\(126\) 0 0
\(127\) −0.711749 1.23279i −0.0631575 0.109392i 0.832718 0.553698i \(-0.186784\pi\)
−0.895875 + 0.444306i \(0.853450\pi\)
\(128\) 10.5961i 0.936576i
\(129\) 1.40909 + 2.44061i 0.124063 + 0.214884i
\(130\) 2.57560 + 0.302364i 0.225895 + 0.0265190i
\(131\) −4.33687 + 7.51168i −0.378914 + 0.656298i −0.990905 0.134567i \(-0.957036\pi\)
0.611990 + 0.790865i \(0.290369\pi\)
\(132\) −0.314535 + 0.181597i −0.0273767 + 0.0158060i
\(133\) 0 0
\(134\) 5.80205 10.0495i 0.501221 0.868141i
\(135\) −2.52092 1.45546i −0.216967 0.125266i
\(136\) 5.61405i 0.481401i
\(137\) 8.51784i 0.727728i −0.931452 0.363864i \(-0.881457\pi\)
0.931452 0.363864i \(-0.118543\pi\)
\(138\) −31.0020 17.8990i −2.63907 1.52367i
\(139\) 2.51922 4.36342i 0.213677 0.370100i −0.739185 0.673502i \(-0.764789\pi\)
0.952863 + 0.303402i \(0.0981225\pi\)
\(140\) 0 0
\(141\) 11.0546 6.38237i 0.930964 0.537493i
\(142\) −3.60215 + 6.23912i −0.302286 + 0.523575i
\(143\) 0.682776 5.81605i 0.0570966 0.486363i
\(144\) 9.55990 + 16.5582i 0.796658 + 1.37985i
\(145\) 2.71412i 0.225396i
\(146\) 8.20451 + 14.2106i 0.679010 + 1.17608i
\(147\) 0 0
\(148\) 0.809498i 0.0665403i
\(149\) −2.91409 + 1.68245i −0.238732 + 0.137832i −0.614594 0.788844i \(-0.710680\pi\)
0.375862 + 0.926676i \(0.377347\pi\)
\(150\) 18.5272i 1.51274i
\(151\) 10.9610 6.32831i 0.891990 0.514991i 0.0173971 0.999849i \(-0.494462\pi\)
0.874593 + 0.484858i \(0.161129\pi\)
\(152\) 3.58924 + 6.21674i 0.291125 + 0.504244i
\(153\) 4.85602 + 8.41087i 0.392586 + 0.679979i
\(154\) 0 0
\(155\) −3.00679 −0.241511
\(156\) 0.800771 + 0.0940067i 0.0641130 + 0.00752656i
\(157\) −5.18457 8.97993i −0.413773 0.716677i 0.581525 0.813528i \(-0.302456\pi\)
−0.995299 + 0.0968517i \(0.969123\pi\)
\(158\) 1.17904 + 0.680717i 0.0937992 + 0.0541550i
\(159\) 25.1395 1.99369
\(160\) 0.116089 0.201071i 0.00917761 0.0158961i
\(161\) 0 0
\(162\) 1.07450 + 0.620364i 0.0844209 + 0.0487404i
\(163\) −13.6428 + 7.87669i −1.06859 + 0.616950i −0.927796 0.373089i \(-0.878299\pi\)
−0.140794 + 0.990039i \(0.544965\pi\)
\(164\) 0.288459 0.166542i 0.0225249 0.0130047i
\(165\) −2.38176 −0.185420
\(166\) 12.3606 0.959371
\(167\) −14.2016 + 8.19930i −1.09895 + 0.634481i −0.935946 0.352144i \(-0.885453\pi\)
−0.163007 + 0.986625i \(0.552119\pi\)
\(168\) 0 0
\(169\) −8.93069 + 9.44684i −0.686976 + 0.726680i
\(170\) −0.700640 + 1.21354i −0.0537367 + 0.0930746i
\(171\) 10.7547 + 6.20920i 0.822429 + 0.474830i
\(172\) −0.0394614 + 0.0683491i −0.00300890 + 0.00521157i
\(173\) −0.150677 0.260981i −0.0114558 0.0198420i 0.860241 0.509888i \(-0.170313\pi\)
−0.871696 + 0.490046i \(0.836980\pi\)
\(174\) 20.4825i 1.55278i
\(175\) 0 0
\(176\) 5.39483 + 3.11470i 0.406650 + 0.234780i
\(177\) 15.1855 + 8.76734i 1.14141 + 0.658993i
\(178\) −16.6577 −1.24855
\(179\) −4.90791 + 8.50075i −0.366834 + 0.635376i −0.989069 0.147455i \(-0.952892\pi\)
0.622234 + 0.782831i \(0.286225\pi\)
\(180\) 0.204724i 0.0152592i
\(181\) 12.4320 0.924062 0.462031 0.886864i \(-0.347121\pi\)
0.462031 + 0.886864i \(0.347121\pi\)
\(182\) 0 0
\(183\) 38.0652 2.81386
\(184\) 26.3393i 1.94176i
\(185\) 2.65427 4.59733i 0.195146 0.338003i
\(186\) 22.6912 1.66380
\(187\) 2.74034 + 1.58214i 0.200394 + 0.115697i
\(188\) 0.309583 + 0.178738i 0.0225786 + 0.0130358i
\(189\) 0 0
\(190\) 1.79176i 0.129988i
\(191\) 6.12346 + 10.6061i 0.443078 + 0.767434i 0.997916 0.0645248i \(-0.0205531\pi\)
−0.554838 + 0.831958i \(0.687220\pi\)
\(192\) −11.7142 + 20.2897i −0.845403 + 1.46428i
\(193\) 10.0752 + 5.81692i 0.725229 + 0.418711i 0.816674 0.577099i \(-0.195815\pi\)
−0.0914452 + 0.995810i \(0.529149\pi\)
\(194\) 3.06454 5.30794i 0.220021 0.381088i
\(195\) 4.23953 + 3.15955i 0.303599 + 0.226260i
\(196\) 0 0
\(197\) −1.55984 + 0.900572i −0.111134 + 0.0641631i −0.554537 0.832159i \(-0.687104\pi\)
0.443403 + 0.896322i \(0.353771\pi\)
\(198\) 11.2213 0.797461
\(199\) −6.59313 −0.467375 −0.233687 0.972312i \(-0.575079\pi\)
−0.233687 + 0.972312i \(0.575079\pi\)
\(200\) −11.8055 + 6.81593i −0.834777 + 0.481959i
\(201\) 20.4895 11.8296i 1.44522 0.834397i
\(202\) −21.9681 12.6833i −1.54567 0.892394i
\(203\) 0 0
\(204\) −0.217833 + 0.377298i −0.0152514 + 0.0264162i
\(205\) 2.18431 0.152559
\(206\) −6.02590 3.47906i −0.419845 0.242397i
\(207\) −22.7829 39.4611i −1.58352 2.74274i
\(208\) −5.47096 12.7007i −0.379343 0.880638i
\(209\) 4.04603 0.279870
\(210\) 0 0
\(211\) −5.35996 9.28373i −0.368995 0.639118i 0.620414 0.784275i \(-0.286965\pi\)
−0.989409 + 0.145157i \(0.953631\pi\)
\(212\) 0.352015 + 0.609708i 0.0241765 + 0.0418749i
\(213\) −12.7207 + 7.34432i −0.871610 + 0.503224i
\(214\) 8.51607i 0.582146i
\(215\) −0.448221 + 0.258781i −0.0305684 + 0.0176487i
\(216\) 16.1633i 1.09977i
\(217\) 0 0
\(218\) 8.24382 + 14.2787i 0.558342 + 0.967076i
\(219\) 33.4558i 2.26074i
\(220\) −0.0333504 0.0577647i −0.00224849 0.00389449i
\(221\) −2.77901 6.45144i −0.186937 0.433971i
\(222\) −20.0309 + 34.6945i −1.34438 + 2.32854i
\(223\) −11.1612 + 6.44392i −0.747409 + 0.431517i −0.824757 0.565487i \(-0.808688\pi\)
0.0773480 + 0.997004i \(0.475355\pi\)
\(224\) 0 0
\(225\) −11.7912 + 20.4230i −0.786082 + 1.36153i
\(226\) 4.26831 + 2.46431i 0.283924 + 0.163923i
\(227\) 0.699155i 0.0464045i 0.999731 + 0.0232023i \(0.00738617\pi\)
−0.999731 + 0.0232023i \(0.992614\pi\)
\(228\) 0.557070i 0.0368929i
\(229\) −15.8369 9.14342i −1.04653 0.604214i −0.124854 0.992175i \(-0.539846\pi\)
−0.921676 + 0.387961i \(0.873180\pi\)
\(230\) 3.28718 5.69356i 0.216750 0.375422i
\(231\) 0 0
\(232\) 13.0515 7.53528i 0.856872 0.494715i
\(233\) 13.3898 23.1918i 0.877194 1.51934i 0.0227864 0.999740i \(-0.492746\pi\)
0.854407 0.519604i \(-0.173920\pi\)
\(234\) −19.9739 14.8857i −1.30573 0.973109i
\(235\) 1.17213 + 2.03019i 0.0764614 + 0.132435i
\(236\) 0.491057i 0.0319651i
\(237\) 1.38789 + 2.40390i 0.0901533 + 0.156150i
\(238\) 0 0
\(239\) 16.6177i 1.07491i 0.843293 + 0.537454i \(0.180614\pi\)
−0.843293 + 0.537454i \(0.819386\pi\)
\(240\) −4.87099 + 2.81227i −0.314421 + 0.181531i
\(241\) 17.4129i 1.12166i −0.827931 0.560830i \(-0.810482\pi\)
0.827931 0.560830i \(-0.189518\pi\)
\(242\) −10.0368 + 5.79474i −0.645189 + 0.372500i
\(243\) −7.14890 12.3823i −0.458602 0.794322i
\(244\) 0.533007 + 0.923194i 0.0341222 + 0.0591015i
\(245\) 0 0
\(246\) −16.4842 −1.05099
\(247\) −7.20195 5.36731i −0.458249 0.341514i
\(248\) 8.34782 + 14.4588i 0.530087 + 0.918137i
\(249\) 21.8253 + 12.6008i 1.38312 + 0.798546i
\(250\) −6.99879 −0.442642
\(251\) −3.22491 + 5.58571i −0.203554 + 0.352567i −0.949671 0.313249i \(-0.898583\pi\)
0.746117 + 0.665815i \(0.231916\pi\)
\(252\) 0 0
\(253\) −12.8568 7.42288i −0.808300 0.466672i
\(254\) −1.70858 + 0.986451i −0.107206 + 0.0618954i
\(255\) −2.47426 + 1.42851i −0.154944 + 0.0894570i
\(256\) −1.89624 −0.118515
\(257\) 3.67156 0.229025 0.114513 0.993422i \(-0.463469\pi\)
0.114513 + 0.993422i \(0.463469\pi\)
\(258\) 3.38257 1.95293i 0.210590 0.121584i
\(259\) 0 0
\(260\) −0.0172645 + 0.147063i −0.00107070 + 0.00912044i
\(261\) 13.0357 22.5784i 0.806887 1.39757i
\(262\) 10.4108 + 6.01070i 0.643183 + 0.371342i
\(263\) −9.15964 + 15.8650i −0.564807 + 0.978275i 0.432260 + 0.901749i \(0.357716\pi\)
−0.997068 + 0.0765263i \(0.975617\pi\)
\(264\) 6.61252 + 11.4532i 0.406973 + 0.704897i
\(265\) 4.61690i 0.283614i
\(266\) 0 0
\(267\) −29.4128 16.9815i −1.80003 1.03925i
\(268\) 0.573807 + 0.331287i 0.0350508 + 0.0202366i
\(269\) 27.5429 1.67932 0.839661 0.543111i \(-0.182754\pi\)
0.839661 + 0.543111i \(0.182754\pi\)
\(270\) −2.01719 + 3.49388i −0.122762 + 0.212631i
\(271\) 6.51923i 0.396015i 0.980201 + 0.198007i \(0.0634470\pi\)
−0.980201 + 0.198007i \(0.936553\pi\)
\(272\) 7.47246 0.453084
\(273\) 0 0
\(274\) −11.8053 −0.713186
\(275\) 7.68338i 0.463325i
\(276\) 1.02200 1.77016i 0.0615174 0.106551i
\(277\) −5.44186 −0.326970 −0.163485 0.986546i \(-0.552273\pi\)
−0.163485 + 0.986546i \(0.552273\pi\)
\(278\) −6.04749 3.49152i −0.362704 0.209407i
\(279\) 25.0131 + 14.4413i 1.49749 + 0.864579i
\(280\) 0 0
\(281\) 3.54237i 0.211320i 0.994402 + 0.105660i \(0.0336955\pi\)
−0.994402 + 0.105660i \(0.966304\pi\)
\(282\) −8.84566 15.3211i −0.526752 0.912360i
\(283\) −7.06956 + 12.2448i −0.420242 + 0.727880i −0.995963 0.0897658i \(-0.971388\pi\)
0.575721 + 0.817646i \(0.304721\pi\)
\(284\) −0.356243 0.205677i −0.0211391 0.0122047i
\(285\) −1.82658 + 3.16374i −0.108197 + 0.187404i
\(286\) −8.06077 0.946296i −0.476643 0.0559556i
\(287\) 0 0
\(288\) −1.93145 + 1.11512i −0.113812 + 0.0657093i
\(289\) −13.2043 −0.776724
\(290\) 3.76165 0.220891
\(291\) 10.8222 6.24819i 0.634407 0.366275i
\(292\) −0.811403 + 0.468464i −0.0474838 + 0.0274148i
\(293\) −7.23071 4.17465i −0.422423 0.243886i 0.273691 0.961818i \(-0.411756\pi\)
−0.696113 + 0.717932i \(0.745089\pi\)
\(294\) 0 0
\(295\) −1.61013 + 2.78883i −0.0937455 + 0.162372i
\(296\) −29.4765 −1.71328
\(297\) 7.88964 + 4.55508i 0.457803 + 0.264313i
\(298\) 2.33180 + 4.03879i 0.135077 + 0.233961i
\(299\) 13.0382 + 30.2681i 0.754021 + 1.75045i
\(300\) −1.05787 −0.0610762
\(301\) 0 0
\(302\) −8.77074 15.1914i −0.504699 0.874165i
\(303\) −25.8596 44.7901i −1.48559 2.57312i
\(304\) 8.27465 4.77737i 0.474584 0.274001i
\(305\) 6.99073i 0.400288i
\(306\) 11.6571 6.73021i 0.666390 0.384741i
\(307\) 8.33362i 0.475625i −0.971311 0.237813i \(-0.923570\pi\)
0.971311 0.237813i \(-0.0764304\pi\)
\(308\) 0 0
\(309\) −7.09334 12.2860i −0.403526 0.698927i
\(310\) 4.16727i 0.236685i
\(311\) −7.31134 12.6636i −0.414588 0.718088i 0.580797 0.814048i \(-0.302741\pi\)
−0.995385 + 0.0959606i \(0.969408\pi\)
\(312\) 3.42309 29.1587i 0.193794 1.65079i
\(313\) −8.56641 + 14.8375i −0.484202 + 0.838663i −0.999835 0.0181467i \(-0.994223\pi\)
0.515633 + 0.856809i \(0.327557\pi\)
\(314\) −12.4458 + 7.18556i −0.702355 + 0.405505i
\(315\) 0 0
\(316\) −0.0388678 + 0.0673210i −0.00218649 + 0.00378710i
\(317\) −12.1244 7.00002i −0.680973 0.393160i 0.119248 0.992864i \(-0.461952\pi\)
−0.800222 + 0.599704i \(0.795285\pi\)
\(318\) 34.8422i 1.95385i
\(319\) 8.49428i 0.475589i
\(320\) −3.72622 2.15134i −0.208302 0.120263i
\(321\) 8.68157 15.0369i 0.484558 0.839279i
\(322\) 0 0
\(323\) 4.20317 2.42670i 0.233871 0.135025i
\(324\) −0.0354217 + 0.0613523i −0.00196787 + 0.00340846i
\(325\) 10.1925 13.6764i 0.565377 0.758633i
\(326\) 10.9167 + 18.9083i 0.604621 + 1.04724i
\(327\) 33.6161i 1.85897i
\(328\) −6.06434 10.5037i −0.334847 0.579972i
\(329\) 0 0
\(330\) 3.30100i 0.181714i
\(331\) −5.99286 + 3.45998i −0.329397 + 0.190178i −0.655574 0.755131i \(-0.727573\pi\)
0.326176 + 0.945309i \(0.394240\pi\)
\(332\) 0.705771i 0.0387342i
\(333\) −44.1611 + 25.4964i −2.42001 + 1.39719i
\(334\) 11.3638 + 19.6827i 0.621801 + 1.07699i
\(335\) 2.17253 + 3.76292i 0.118698 + 0.205591i
\(336\) 0 0
\(337\) 11.1559 0.607703 0.303852 0.952719i \(-0.401727\pi\)
0.303852 + 0.952719i \(0.401727\pi\)
\(338\) 13.0929 + 12.3775i 0.712158 + 0.673248i
\(339\) 5.02440 + 8.70251i 0.272888 + 0.472656i
\(340\) −0.0692913 0.0400054i −0.00375785 0.00216960i
\(341\) 9.41023 0.509593
\(342\) 8.60566 14.9054i 0.465341 0.805994i
\(343\) 0 0
\(344\) 2.48881 + 1.43692i 0.134188 + 0.0774734i
\(345\) 11.6084 6.70213i 0.624977 0.360830i
\(346\) −0.361707 + 0.208832i −0.0194455 + 0.0112269i
\(347\) −4.92511 −0.264393 −0.132197 0.991223i \(-0.542203\pi\)
−0.132197 + 0.991223i \(0.542203\pi\)
\(348\) 1.16952 0.0626928
\(349\) 1.31926 0.761675i 0.0706183 0.0407715i −0.464275 0.885691i \(-0.653685\pi\)
0.534893 + 0.844920i \(0.320352\pi\)
\(350\) 0 0
\(351\) −8.00098 18.5741i −0.427061 0.991415i
\(352\) −0.363318 + 0.629285i −0.0193649 + 0.0335410i
\(353\) −15.5261 8.96401i −0.826372 0.477106i 0.0262367 0.999656i \(-0.491648\pi\)
−0.852609 + 0.522550i \(0.824981\pi\)
\(354\) 12.1511 21.0463i 0.645824 1.11860i
\(355\) −1.34879 2.33618i −0.0715865 0.123991i
\(356\) 0.951129i 0.0504097i
\(357\) 0 0
\(358\) 11.7816 + 6.80213i 0.622679 + 0.359504i
\(359\) 17.3217 + 10.0007i 0.914204 + 0.527816i 0.881781 0.471658i \(-0.156344\pi\)
0.0324227 + 0.999474i \(0.489678\pi\)
\(360\) −7.45466 −0.392895
\(361\) −6.39707 + 11.0801i −0.336688 + 0.583161i
\(362\) 17.2301i 0.905596i
\(363\) −23.6294 −1.24022
\(364\) 0 0
\(365\) −6.14421 −0.321602
\(366\) 52.7566i 2.75763i
\(367\) −13.7078 + 23.7427i −0.715544 + 1.23936i 0.247206 + 0.968963i \(0.420488\pi\)
−0.962749 + 0.270395i \(0.912846\pi\)
\(368\) −35.0584 −1.82754
\(369\) −18.1710 10.4910i −0.945942 0.546140i
\(370\) −6.37169 3.67870i −0.331248 0.191246i
\(371\) 0 0
\(372\) 1.29563i 0.0671752i
\(373\) 7.94643 + 13.7636i 0.411451 + 0.712653i 0.995049 0.0993893i \(-0.0316889\pi\)
−0.583598 + 0.812043i \(0.698356\pi\)
\(374\) 2.19277 3.79798i 0.113385 0.196389i
\(375\) −12.3578 7.13481i −0.638156 0.368440i
\(376\) 6.50842 11.2729i 0.335646 0.581356i
\(377\) −11.2682 + 15.1199i −0.580341 + 0.778712i
\(378\) 0 0
\(379\) 7.60284 4.38950i 0.390532 0.225474i −0.291859 0.956461i \(-0.594274\pi\)
0.682390 + 0.730988i \(0.260940\pi\)
\(380\) −0.102307 −0.00524822
\(381\) −4.02249 −0.206078
\(382\) 14.6996 8.48682i 0.752098 0.434224i
\(383\) −6.89562 + 3.98119i −0.352349 + 0.203429i −0.665720 0.746202i \(-0.731875\pi\)
0.313370 + 0.949631i \(0.398542\pi\)
\(384\) 25.9308 + 14.9712i 1.32328 + 0.763994i
\(385\) 0 0
\(386\) 8.06198 13.9638i 0.410344 0.710736i
\(387\) 4.97159 0.252720
\(388\) 0.303074 + 0.174980i 0.0153863 + 0.00888326i
\(389\) 16.0217 + 27.7504i 0.812333 + 1.40700i 0.911227 + 0.411904i \(0.135136\pi\)
−0.0988938 + 0.995098i \(0.531530\pi\)
\(390\) 4.37898 5.87579i 0.221738 0.297532i
\(391\) −17.8082 −0.900598
\(392\) 0 0
\(393\) 12.2550 + 21.2263i 0.618184 + 1.07073i
\(394\) 1.24815 + 2.16186i 0.0628809 + 0.108913i
\(395\) −0.441479 + 0.254888i −0.0222132 + 0.0128248i
\(396\) 0.640716i 0.0321972i
\(397\) −5.57251 + 3.21729i −0.279676 + 0.161471i −0.633277 0.773925i \(-0.718290\pi\)
0.353601 + 0.935396i \(0.384957\pi\)
\(398\) 9.13777i 0.458035i
\(399\) 0 0
\(400\) 9.07219 + 15.7135i 0.453609 + 0.785675i
\(401\) 0.533577i 0.0266456i −0.999911 0.0133228i \(-0.995759\pi\)
0.999911 0.0133228i \(-0.00424090\pi\)
\(402\) −16.3953 28.3975i −0.817723 1.41634i
\(403\) −16.7502 12.4832i −0.834389 0.621835i
\(404\) 0.724195 1.25434i 0.0360301 0.0624059i
\(405\) −0.402337 + 0.232290i −0.0199923 + 0.0115426i
\(406\) 0 0
\(407\) −8.30697 + 14.3881i −0.411761 + 0.713191i
\(408\) 13.7387 + 7.93202i 0.680165 + 0.392694i
\(409\) 39.7528i 1.96565i 0.184547 + 0.982824i \(0.440918\pi\)
−0.184547 + 0.982824i \(0.559082\pi\)
\(410\) 3.02735i 0.149510i
\(411\) −20.8448 12.0347i −1.02820 0.593630i
\(412\) 0.198648 0.344069i 0.00978670 0.0169511i
\(413\) 0 0
\(414\) −54.6913 + 31.5760i −2.68793 + 1.55188i
\(415\) −2.31416 + 4.00825i −0.113598 + 0.196757i
\(416\) 1.48149 0.638166i 0.0726361 0.0312887i
\(417\) −7.11875 12.3300i −0.348607 0.603804i
\(418\) 5.60761i 0.274277i
\(419\) −11.9088 20.6266i −0.581783 1.00768i −0.995268 0.0971665i \(-0.969022\pi\)
0.413485 0.910511i \(-0.364311\pi\)
\(420\) 0 0
\(421\) 23.2419i 1.13274i −0.824151 0.566370i \(-0.808347\pi\)
0.824151 0.566370i \(-0.191653\pi\)
\(422\) −12.8668 + 7.42865i −0.626346 + 0.361621i
\(423\) 22.5185i 1.09489i
\(424\) 22.2014 12.8180i 1.07820 0.622498i
\(425\) 4.60828 + 7.98178i 0.223535 + 0.387173i
\(426\) 10.1789 + 17.6303i 0.493168 + 0.854192i
\(427\) 0 0
\(428\) 0.486253 0.0235039
\(429\) −13.2683 9.88831i −0.640600 0.477412i
\(430\) 0.358658 + 0.621214i 0.0172960 + 0.0299576i
\(431\) 2.34424 + 1.35345i 0.112918 + 0.0651932i 0.555395 0.831586i \(-0.312567\pi\)
−0.442477 + 0.896780i \(0.645900\pi\)
\(432\) 21.5137 1.03508
\(433\) −2.90945 + 5.03932i −0.139819 + 0.242174i −0.927428 0.374002i \(-0.877985\pi\)
0.787609 + 0.616176i \(0.211319\pi\)
\(434\) 0 0
\(435\) 6.64198 + 3.83475i 0.318459 + 0.183862i
\(436\) −0.815290 + 0.470708i −0.0390453 + 0.0225428i
\(437\) −19.7199 + 11.3853i −0.943332 + 0.544633i
\(438\) 46.3682 2.21556
\(439\) −38.1702 −1.82176 −0.910882 0.412668i \(-0.864597\pi\)
−0.910882 + 0.412668i \(0.864597\pi\)
\(440\) −2.10340 + 1.21440i −0.100276 + 0.0578942i
\(441\) 0 0
\(442\) −8.94139 + 3.85158i −0.425298 + 0.183201i
\(443\) 15.8370 27.4305i 0.752440 1.30326i −0.194198 0.980962i \(-0.562210\pi\)
0.946637 0.322301i \(-0.104456\pi\)
\(444\) −1.98100 1.14373i −0.0940139 0.0542790i
\(445\) 3.11867 5.40169i 0.147839 0.256065i
\(446\) 8.93097 + 15.4689i 0.422894 + 0.732473i
\(447\) 9.50845i 0.449734i
\(448\) 0 0
\(449\) 27.1975 + 15.7025i 1.28353 + 0.741045i 0.977491 0.210975i \(-0.0676638\pi\)
0.306036 + 0.952020i \(0.400997\pi\)
\(450\) 28.3053 + 16.3421i 1.33433 + 0.770373i
\(451\) −6.83614 −0.321901
\(452\) −0.140708 + 0.243713i −0.00661834 + 0.0114633i
\(453\) 35.7648i 1.68037i
\(454\) 0.968995 0.0454772
\(455\) 0 0
\(456\) 20.2847 0.949920
\(457\) 31.8281i 1.48886i 0.667702 + 0.744429i \(0.267278\pi\)
−0.667702 + 0.744429i \(0.732722\pi\)
\(458\) −12.6723 + 21.9491i −0.592140 + 1.02562i
\(459\) 10.9281 0.510078
\(460\) 0.325093 + 0.187692i 0.0151575 + 0.00875121i
\(461\) 1.01005 + 0.583153i 0.0470427 + 0.0271601i 0.523337 0.852126i \(-0.324687\pi\)
−0.476294 + 0.879286i \(0.658020\pi\)
\(462\) 0 0
\(463\) 20.3441i 0.945469i 0.881205 + 0.472734i \(0.156733\pi\)
−0.881205 + 0.472734i \(0.843267\pi\)
\(464\) −10.0297 17.3719i −0.465615 0.806470i
\(465\) −4.24825 + 7.35819i −0.197008 + 0.341228i
\(466\) −32.1427 18.5576i −1.48898 0.859664i
\(467\) −0.784697 + 1.35913i −0.0363114 + 0.0628932i −0.883610 0.468224i \(-0.844894\pi\)
0.847299 + 0.531117i \(0.178227\pi\)
\(468\) 0.849948 1.14048i 0.0392889 0.0527185i
\(469\) 0 0
\(470\) 2.81375 1.62452i 0.129788 0.0749334i
\(471\) −29.3008 −1.35011
\(472\) 17.8810 0.823039
\(473\) 1.40278 0.809896i 0.0644999 0.0372391i
\(474\) 3.33169 1.92355i 0.153030 0.0883517i
\(475\) 10.2060 + 5.89243i 0.468283 + 0.270363i
\(476\) 0 0
\(477\) 22.1745 38.4074i 1.01530 1.75856i
\(478\) 23.0313 1.05343
\(479\) −6.68501 3.85959i −0.305446 0.176349i 0.339441 0.940627i \(-0.389762\pi\)
−0.644887 + 0.764278i \(0.723095\pi\)
\(480\) −0.328040 0.568182i −0.0149729 0.0259338i
\(481\) 33.8731 14.5911i 1.54448 0.665299i
\(482\) −24.1334 −1.09925
\(483\) 0 0
\(484\) −0.330870 0.573083i −0.0150395 0.0260492i
\(485\) 1.14749 + 1.98751i 0.0521047 + 0.0902481i
\(486\) −17.1612 + 9.90803i −0.778448 + 0.449437i
\(487\) 0.0761801i 0.00345205i 0.999999 + 0.00172602i \(0.000549411\pi\)
−0.999999 + 0.00172602i \(0.999451\pi\)
\(488\) 33.6165 19.4085i 1.52175 0.878582i
\(489\) 44.5155i 2.01306i
\(490\) 0 0
\(491\) 0.893574 + 1.54772i 0.0403264 + 0.0698474i 0.885484 0.464670i \(-0.153827\pi\)
−0.845158 + 0.534517i \(0.820494\pi\)
\(492\) 0.941220i 0.0424335i
\(493\) −5.09464 8.82418i −0.229451 0.397421i
\(494\) −7.43884 + 9.98156i −0.334689 + 0.449092i
\(495\) −2.10085 + 3.63878i −0.0944262 + 0.163551i
\(496\) 19.2451 11.1112i 0.864131 0.498906i
\(497\) 0 0
\(498\) 17.4642 30.2488i 0.782589 1.35548i
\(499\) 7.21826 + 4.16747i 0.323134 + 0.186561i 0.652789 0.757540i \(-0.273599\pi\)
−0.329655 + 0.944102i \(0.606932\pi\)
\(500\) 0.399619i 0.0178715i
\(501\) 46.3387i 2.07026i
\(502\) 7.74152 + 4.46957i 0.345521 + 0.199487i
\(503\) −0.720238 + 1.24749i −0.0321138 + 0.0556228i −0.881636 0.471931i \(-0.843557\pi\)
0.849522 + 0.527554i \(0.176891\pi\)
\(504\) 0 0
\(505\) 8.22576 4.74914i 0.366041 0.211334i
\(506\) −10.2878 + 17.8189i −0.457347 + 0.792148i
\(507\) 10.5002 + 35.2024i 0.466329 + 1.56339i
\(508\) −0.0563247 0.0975572i −0.00249900 0.00432840i
\(509\) 14.8256i 0.657135i 0.944480 + 0.328568i \(0.106566\pi\)
−0.944480 + 0.328568i \(0.893434\pi\)
\(510\) 1.97985 + 3.42920i 0.0876693 + 0.151848i
\(511\) 0 0
\(512\) 23.8204i 1.05272i
\(513\) 12.1012 6.98664i 0.534282 0.308468i
\(514\) 5.08860i 0.224449i
\(515\) 2.25634 1.30270i 0.0994264 0.0574038i
\(516\) 0.111509 + 0.193139i 0.00490891 + 0.00850248i
\(517\) −3.66837 6.35380i −0.161335 0.279440i
\(518\) 0 0
\(519\) −0.851561 −0.0373794
\(520\) 5.35503 + 0.628655i 0.234834 + 0.0275683i
\(521\) 0.167194 + 0.289588i 0.00732489 + 0.0126871i 0.869665 0.493643i \(-0.164335\pi\)
−0.862340 + 0.506330i \(0.831002\pi\)
\(522\) −31.2926 18.0668i −1.36964 0.790763i
\(523\) −32.5065 −1.42141 −0.710705 0.703490i \(-0.751624\pi\)
−0.710705 + 0.703490i \(0.751624\pi\)
\(524\) −0.343201 + 0.594441i −0.0149928 + 0.0259683i
\(525\) 0 0
\(526\) 21.9881 + 12.6948i 0.958726 + 0.553521i
\(527\) 9.77570 5.64400i 0.425836 0.245857i
\(528\) 15.2446 8.80145i 0.663434 0.383034i
\(529\) 60.5502 2.63262
\(530\) 6.39881 0.277947
\(531\) 26.7890 15.4666i 1.16254 0.671194i
\(532\) 0 0
\(533\) 12.1683 + 9.06855i 0.527070 + 0.392803i
\(534\) −23.5355 + 40.7647i −1.01848 + 1.76406i
\(535\) 2.76155 + 1.59438i 0.119392 + 0.0689311i
\(536\) 12.0633 20.8942i 0.521053 0.902491i
\(537\) 13.8686 + 24.0212i 0.598476 + 1.03659i
\(538\) 38.1732i 1.64576i
\(539\) 0 0
\(540\) −0.199495 0.115178i −0.00858488 0.00495649i
\(541\) −9.18120 5.30077i −0.394731 0.227898i 0.289477 0.957185i \(-0.406519\pi\)
−0.684208 + 0.729287i \(0.739852\pi\)
\(542\) 9.03534 0.388101
\(543\) 17.5650 30.4235i 0.753786 1.30560i
\(544\) 0.871633i 0.0373709i
\(545\) −6.17364 −0.264450
\(546\) 0 0
\(547\) 10.2327 0.437519 0.218760 0.975779i \(-0.429799\pi\)
0.218760 + 0.975779i \(0.429799\pi\)
\(548\) 0.674064i 0.0287946i
\(549\) 33.5758 58.1549i 1.43298 2.48199i
\(550\) 10.6488 0.454067
\(551\) −11.2831 6.51432i −0.480677 0.277519i
\(552\) −64.4574 37.2145i −2.74349 1.58396i
\(553\) 0 0
\(554\) 7.54216i 0.320436i
\(555\) −7.50037 12.9910i −0.318373 0.551438i
\(556\) 0.199360 0.345301i 0.00845474 0.0146440i
\(557\) −27.7067 15.9965i −1.17397 0.677793i −0.219359 0.975644i \(-0.570397\pi\)
−0.954612 + 0.297851i \(0.903730\pi\)
\(558\) 20.0150 34.6670i 0.847302 1.46757i
\(559\) −3.57133 0.419257i −0.151051 0.0177327i
\(560\) 0 0
\(561\) 7.74359 4.47076i 0.326934 0.188756i
\(562\) 4.90956 0.207097
\(563\) −10.7913 −0.454800 −0.227400 0.973801i \(-0.573022\pi\)
−0.227400 + 0.973801i \(0.573022\pi\)
\(564\) 0.874811 0.505072i 0.0368362 0.0212674i
\(565\) −1.59823 + 0.922737i −0.0672380 + 0.0388199i
\(566\) 16.9708 + 9.79808i 0.713335 + 0.411844i
\(567\) 0 0
\(568\) −7.48937 + 12.9720i −0.314247 + 0.544292i
\(569\) 24.6014 1.03134 0.515672 0.856786i \(-0.327542\pi\)
0.515672 + 0.856786i \(0.327542\pi\)
\(570\) 4.38479 + 2.53156i 0.183659 + 0.106035i
\(571\) 8.28621 + 14.3521i 0.346767 + 0.600618i 0.985673 0.168667i \(-0.0539461\pi\)
−0.638906 + 0.769285i \(0.720613\pi\)
\(572\) 0.0540319 0.460256i 0.00225919 0.0192443i
\(573\) 34.6070 1.44573
\(574\) 0 0
\(575\) −21.6206 37.4480i −0.901641 1.56169i
\(576\) 20.6653 + 35.7934i 0.861054 + 1.49139i
\(577\) −12.6969 + 7.33053i −0.528577 + 0.305174i −0.740437 0.672126i \(-0.765381\pi\)
0.211860 + 0.977300i \(0.432048\pi\)
\(578\) 18.3005i 0.761202i
\(579\) 28.4702 16.4373i 1.18318 0.683111i
\(580\) 0.214784i 0.00891840i
\(581\) 0 0
\(582\) −8.65969 14.9990i −0.358956 0.621730i
\(583\) 14.4493i 0.598431i
\(584\) 17.0583 + 29.5458i 0.705877 + 1.22262i
\(585\) 8.56658 3.69013i 0.354185 0.152568i
\(586\) −5.78587 + 10.0214i −0.239012 + 0.413981i
\(587\) 30.5998 17.6668i 1.26299 0.729186i 0.289336 0.957227i \(-0.406565\pi\)
0.973652 + 0.228041i \(0.0732320\pi\)
\(588\) 0 0
\(589\) 7.21676 12.4998i 0.297362 0.515045i
\(590\) 3.86519 + 2.23157i 0.159127 + 0.0918722i
\(591\) 5.08963i 0.209359i
\(592\) 39.2340i 1.61251i
\(593\) −14.2283 8.21471i −0.584286 0.337338i 0.178549 0.983931i \(-0.442860\pi\)
−0.762835 + 0.646593i \(0.776193\pi\)
\(594\) 6.31313 10.9347i 0.259031 0.448655i
\(595\) 0 0
\(596\) −0.230608 + 0.133142i −0.00944608 + 0.00545370i
\(597\) −9.31535 + 16.1347i −0.381252 + 0.660348i
\(598\) 41.9501 18.0704i 1.71547 0.738953i
\(599\) −6.04094 10.4632i −0.246826 0.427516i 0.715817 0.698288i \(-0.246054\pi\)
−0.962644 + 0.270772i \(0.912721\pi\)
\(600\) 38.5206i 1.57259i
\(601\) −3.90743 6.76787i −0.159387 0.276067i 0.775261 0.631642i \(-0.217619\pi\)
−0.934648 + 0.355574i \(0.884285\pi\)
\(602\) 0 0
\(603\) 41.7377i 1.69969i
\(604\) 0.867401 0.500794i 0.0352941 0.0203770i
\(605\) 4.33957i 0.176429i
\(606\) −62.0770 + 35.8401i −2.52170 + 1.45591i
\(607\) −17.7825 30.8001i −0.721768 1.25014i −0.960291 0.279002i \(-0.909996\pi\)
0.238523 0.971137i \(-0.423337\pi\)
\(608\) 0.557261 + 0.965205i 0.0225999 + 0.0391442i
\(609\) 0 0
\(610\) 9.68882 0.392289
\(611\) −1.89900 + 16.1761i −0.0768252 + 0.654415i
\(612\) 0.384284 + 0.665599i 0.0155338 + 0.0269052i
\(613\) 10.3376 + 5.96839i 0.417530 + 0.241061i 0.694020 0.719956i \(-0.255838\pi\)
−0.276490 + 0.961017i \(0.589171\pi\)
\(614\) −11.5500 −0.466120
\(615\) 3.08618 5.34542i 0.124447 0.215548i
\(616\) 0 0
\(617\) −20.4124 11.7851i −0.821772 0.474450i 0.0292550 0.999572i \(-0.490687\pi\)
−0.851027 + 0.525122i \(0.824020\pi\)
\(618\) −17.0278 + 9.83103i −0.684960 + 0.395462i
\(619\) 24.7312 14.2786i 0.994031 0.573904i 0.0875541 0.996160i \(-0.472095\pi\)
0.906477 + 0.422256i \(0.138762\pi\)
\(620\) −0.237944 −0.00955606
\(621\) −51.2710 −2.05743
\(622\) −17.5512 + 10.1332i −0.703738 + 0.406303i
\(623\) 0 0
\(624\) −38.8110 4.55623i −1.55368 0.182395i
\(625\) −10.5164 + 18.2149i −0.420656 + 0.728597i
\(626\) 20.5640 + 11.8726i 0.821903 + 0.474526i
\(627\) 5.71659 9.90142i 0.228298 0.395425i
\(628\) −0.410283 0.710632i −0.0163721 0.0283573i
\(629\) 19.9292i 0.794628i
\(630\) 0 0
\(631\) −38.9646 22.4962i −1.55116 0.895561i −0.998048 0.0624526i \(-0.980108\pi\)
−0.553109 0.833109i \(-0.686559\pi\)
\(632\) 2.45138 + 1.41530i 0.0975106 + 0.0562978i
\(633\) −30.2921 −1.20400
\(634\) −9.70169 + 16.8038i −0.385303 + 0.667365i
\(635\) 0.738735i 0.0293158i
\(636\) 1.98943 0.0788860
\(637\) 0 0
\(638\) −11.7727 −0.466085
\(639\) 25.9125i 1.02508i
\(640\) −2.74947 + 4.76222i −0.108682 + 0.188243i
\(641\) 2.53300 0.100048 0.0500238 0.998748i \(-0.484070\pi\)
0.0500238 + 0.998748i \(0.484070\pi\)
\(642\) −20.8405 12.0322i −0.822507 0.474875i
\(643\) 15.9150 + 9.18853i 0.627627 + 0.362360i 0.779832 0.625988i \(-0.215304\pi\)
−0.152206 + 0.988349i \(0.548638\pi\)
\(644\) 0 0
\(645\) 1.46251i 0.0575863i
\(646\) −3.36329 5.82539i −0.132327 0.229197i
\(647\) 10.4643 18.1248i 0.411396 0.712558i −0.583647 0.812008i \(-0.698375\pi\)
0.995043 + 0.0994494i \(0.0317081\pi\)
\(648\) 2.23404 + 1.28982i 0.0877612 + 0.0506690i
\(649\) 5.03917 8.72810i 0.197805 0.342608i
\(650\) −18.9549 14.1263i −0.743473 0.554079i
\(651\) 0 0
\(652\) −1.07963 + 0.623326i −0.0422817 + 0.0244113i
\(653\) −48.1160 −1.88292 −0.941461 0.337121i \(-0.890547\pi\)
−0.941461 + 0.337121i \(0.890547\pi\)
\(654\) 46.5903 1.82183
\(655\) −3.89824 + 2.25065i −0.152317 + 0.0879401i
\(656\) −13.9808 + 8.07180i −0.545857 + 0.315151i
\(657\) 51.1129 + 29.5100i 1.99410 + 1.15130i
\(658\) 0 0
\(659\) 1.10819 1.91944i 0.0431690 0.0747708i −0.843634 0.536919i \(-0.819588\pi\)
0.886803 + 0.462148i \(0.152921\pi\)
\(660\) −0.188482 −0.00733664
\(661\) 0.552034 + 0.318717i 0.0214716 + 0.0123966i 0.510697 0.859761i \(-0.329387\pi\)
−0.489226 + 0.872157i \(0.662721\pi\)
\(662\) 4.79537 + 8.30582i 0.186377 + 0.322815i
\(663\) −19.7143 2.31437i −0.765642 0.0898827i
\(664\) 25.6994 0.997331
\(665\) 0 0
\(666\) 35.3368 + 61.2052i 1.36927 + 2.37165i
\(667\) 23.9024 + 41.4002i 0.925506 + 1.60302i
\(668\) −1.12385 + 0.648856i −0.0434831 + 0.0251050i
\(669\) 36.4181i 1.40801i
\(670\) 5.21523 3.01102i 0.201482 0.116326i
\(671\) 21.8786i 0.844614i
\(672\) 0 0
\(673\) 7.70343 + 13.3427i 0.296945 + 0.514324i 0.975436 0.220285i \(-0.0706988\pi\)
−0.678490 + 0.734609i \(0.737365\pi\)
\(674\) 15.4616i 0.595559i
\(675\) 13.2676 + 22.9801i 0.510669 + 0.884505i
\(676\) −0.706735 + 0.747581i −0.0271821 + 0.0287531i
\(677\) 5.84060 10.1162i 0.224473 0.388798i −0.731689 0.681639i \(-0.761267\pi\)
0.956161 + 0.292841i \(0.0946008\pi\)
\(678\) 12.0613 6.96358i 0.463210 0.267435i
\(679\) 0 0
\(680\) −1.45673 + 2.52312i −0.0558629 + 0.0967574i
\(681\) 1.71097 + 0.987826i 0.0655643 + 0.0378536i
\(682\) 13.0421i 0.499409i
\(683\) 22.9114i 0.876680i −0.898809 0.438340i \(-0.855567\pi\)
0.898809 0.438340i \(-0.144433\pi\)
\(684\) 0.851075 + 0.491369i 0.0325417 + 0.0187879i
\(685\) 2.21020 3.82817i 0.0844473 0.146267i
\(686\) 0 0
\(687\) −44.7514 + 25.8372i −1.70737 + 0.985752i
\(688\) 1.91258 3.31268i 0.0729163 0.126295i
\(689\) −19.1679 + 25.7199i −0.730240 + 0.979849i
\(690\) −9.28883 16.0887i −0.353620 0.612487i
\(691\) 47.2325i 1.79681i −0.439167 0.898405i \(-0.644726\pi\)
0.439167 0.898405i \(-0.355274\pi\)
\(692\) −0.0119239 0.0206529i −0.000453280 0.000785104i
\(693\) 0 0
\(694\) 6.82596i 0.259110i
\(695\) 2.26443 1.30737i 0.0858946 0.0495913i
\(696\) 42.5860i 1.61422i
\(697\) −7.10163 + 4.10013i −0.268994 + 0.155303i
\(698\) −1.05565 1.82843i −0.0399568 0.0692071i
\(699\) −37.8365 65.5347i −1.43111 2.47875i
\(700\) 0 0
\(701\) 12.2098 0.461158 0.230579 0.973054i \(-0.425938\pi\)
0.230579 + 0.973054i \(0.425938\pi\)
\(702\) −25.7429 + 11.0890i −0.971603 + 0.418527i
\(703\) 12.7413 + 22.0686i 0.480548 + 0.832334i
\(704\) 11.6618 + 6.73295i 0.439521 + 0.253758i
\(705\) 6.62435 0.249488
\(706\) −12.4237 + 21.5185i −0.467572 + 0.809858i
\(707\) 0 0
\(708\) 1.20171 + 0.693808i 0.0451630 + 0.0260749i
\(709\) 15.4910 8.94374i 0.581777 0.335889i −0.180062 0.983655i \(-0.557630\pi\)
0.761839 + 0.647766i \(0.224297\pi\)
\(710\) −3.23783 + 1.86936i −0.121514 + 0.0701560i
\(711\) 4.89681 0.183645
\(712\) −34.6337 −1.29795
\(713\) −45.8644 + 26.4798i −1.71764 + 0.991678i
\(714\) 0 0
\(715\) 1.81600 2.43674i 0.0679146 0.0911290i
\(716\) −0.388390 + 0.672711i −0.0145148 + 0.0251404i
\(717\) 40.6667 + 23.4789i 1.51872 + 0.876836i
\(718\) 13.8605 24.0070i 0.517268 0.895935i
\(719\) 4.56317 + 7.90364i 0.170178 + 0.294756i 0.938482 0.345329i \(-0.112233\pi\)
−0.768304 + 0.640085i \(0.778899\pi\)
\(720\) 9.92235i 0.369784i
\(721\) 0 0
\(722\) 15.3564 + 8.86604i 0.571507 + 0.329960i
\(723\) −42.6126 24.6024i −1.58478 0.914973i
\(724\) 0.983812 0.0365631
\(725\) 12.3706 21.4266i 0.459434 0.795763i
\(726\) 32.7493i 1.21544i
\(727\) 33.6859 1.24934 0.624670 0.780889i \(-0.285233\pi\)
0.624670 + 0.780889i \(0.285233\pi\)
\(728\) 0 0
\(729\) −43.0880 −1.59585
\(730\) 8.51558i 0.315176i
\(731\) 0.971507 1.68270i 0.0359325 0.0622369i
\(732\) 3.01231 0.111338
\(733\) 40.2134 + 23.2172i 1.48532 + 0.857547i 0.999860 0.0167147i \(-0.00532072\pi\)
0.485455 + 0.874262i \(0.338654\pi\)
\(734\) 32.9062 + 18.9984i 1.21459 + 0.701245i
\(735\) 0 0
\(736\) 4.08942i 0.150738i
\(737\) −6.79927 11.7767i −0.250454 0.433799i
\(738\) −14.5400 + 25.1841i −0.535226 + 0.927039i
\(739\) 1.60237 + 0.925127i 0.0589440 + 0.0340314i 0.529182 0.848508i \(-0.322499\pi\)
−0.470238 + 0.882539i \(0.655832\pi\)
\(740\) 0.210047 0.363813i 0.00772149 0.0133740i
\(741\) −23.3104 + 10.0412i −0.856328 + 0.368871i
\(742\) 0 0
\(743\) 28.7095 16.5755i 1.05325 0.608094i 0.129693 0.991554i \(-0.458601\pi\)
0.923558 + 0.383460i \(0.125268\pi\)
\(744\) 47.1781 1.72963
\(745\) −1.74624 −0.0639773
\(746\) 19.0757 11.0134i 0.698412 0.403228i
\(747\) 38.5024 22.2294i 1.40873 0.813331i
\(748\) 0.216858 + 0.125203i 0.00792913 + 0.00457788i
\(749\) 0 0
\(750\) −9.88850 + 17.1274i −0.361077 + 0.625404i
\(751\) 20.7743 0.758064 0.379032 0.925384i \(-0.376257\pi\)
0.379032 + 0.925384i \(0.376257\pi\)
\(752\) −15.0046 8.66289i −0.547160 0.315903i
\(753\) 9.11286 + 15.7839i 0.332091 + 0.575199i
\(754\) 20.9554 + 15.6172i 0.763150 + 0.568744i
\(755\) 6.56824 0.239043
\(756\) 0 0
\(757\) −21.8075 37.7717i −0.792607 1.37283i −0.924348 0.381551i \(-0.875390\pi\)
0.131741 0.991284i \(-0.457943\pi\)
\(758\) −6.08364 10.5372i −0.220968 0.382727i
\(759\) −36.3304 + 20.9754i −1.31871 + 0.761358i
\(760\) 3.72532i 0.135131i
\(761\) −10.7302 + 6.19511i −0.388971 + 0.224573i −0.681714 0.731619i \(-0.738765\pi\)
0.292743 + 0.956191i \(0.405432\pi\)
\(762\) 5.57497i 0.201960i
\(763\) 0 0
\(764\) 0.484583 + 0.839323i 0.0175316 + 0.0303656i
\(765\) 5.04013i 0.182226i
\(766\) 5.51773 + 9.55700i 0.199364 + 0.345308i
\(767\) −20.5481 + 8.85127i −0.741948 + 0.319601i
\(768\) −2.67917 + 4.64046i −0.0966763 + 0.167448i
\(769\) −4.80955 + 2.77680i −0.173437 + 0.100134i −0.584205 0.811606i \(-0.698594\pi\)
0.410769 + 0.911740i \(0.365260\pi\)
\(770\) 0 0
\(771\) 5.18750 8.98501i 0.186823 0.323587i
\(772\) 0.797307 + 0.460325i 0.0286957 + 0.0165675i
\(773\) 43.8042i 1.57553i −0.615977 0.787764i \(-0.711239\pi\)
0.615977 0.787764i \(-0.288761\pi\)
\(774\) 6.89039i 0.247670i
\(775\) 23.7370 + 13.7046i 0.852659 + 0.492283i
\(776\) 6.37159 11.0359i 0.228727 0.396166i
\(777\) 0 0
\(778\) 38.4608 22.2053i 1.37889 0.796100i
\(779\) −5.24267 + 9.08058i −0.187838 + 0.325346i
\(780\) 0.335498 + 0.250032i 0.0120128 + 0.00895260i
\(781\) 4.22127 + 7.31145i 0.151049 + 0.261624i
\(782\) 24.6813i 0.882600i
\(783\) −14.6678 25.4054i −0.524185 0.907916i
\(784\) 0 0
\(785\) 5.38113i 0.192061i
\(786\) 29.4187 16.9849i 1.04933 0.605830i
\(787\) 24.8009i 0.884057i −0.897001 0.442029i \(-0.854259\pi\)
0.897001 0.442029i \(-0.145741\pi\)
\(788\) −0.123439 + 0.0712673i −0.00439732 + 0.00253879i
\(789\) 25.8831 + 44.8308i 0.921462 + 1.59602i
\(790\) 0.353263 + 0.611870i 0.0125685 + 0.0217693i
\(791\) 0 0
\(792\) 23.3305 0.829015
\(793\) −29.0233 + 38.9440i −1.03065 + 1.38294i
\(794\) 4.45901 + 7.72323i 0.158244 + 0.274087i
\(795\) 11.2985 + 6.52316i 0.400715 + 0.231353i
\(796\) −0.521751 −0.0184930
\(797\) −8.23575 + 14.2647i −0.291725 + 0.505283i −0.974218 0.225610i \(-0.927563\pi\)
0.682492 + 0.730893i \(0.260896\pi\)
\(798\) 0 0
\(799\) −7.62168 4.40038i −0.269636 0.155674i
\(800\) −1.83292 + 1.05823i −0.0648034 + 0.0374142i
\(801\) −51.8876 + 29.9573i −1.83336 + 1.05849i
\(802\) −0.739513 −0.0261131
\(803\) 19.2293 0.678587
\(804\) 1.62145 0.936144i 0.0571841 0.0330152i
\(805\) 0 0
\(806\) −17.3012 + 23.2150i −0.609408 + 0.817715i
\(807\) 38.9151 67.4028i 1.36987 2.37269i
\(808\) −45.6747 26.3703i −1.60683 0.927704i
\(809\) −0.690968 + 1.19679i −0.0242932 + 0.0420770i −0.877916 0.478814i \(-0.841067\pi\)
0.853623 + 0.520891i \(0.174400\pi\)
\(810\) 0.321942 + 0.557621i 0.0113119 + 0.0195928i
\(811\) 6.83571i 0.240034i 0.992772 + 0.120017i \(0.0382950\pi\)
−0.992772 + 0.120017i \(0.961705\pi\)
\(812\) 0 0
\(813\) 15.9538 + 9.21093i 0.559524 + 0.323041i
\(814\) 19.9412 + 11.5131i 0.698939 + 0.403533i
\(815\) −8.17533 −0.286369
\(816\) 10.5577 18.2865i 0.369595 0.640157i
\(817\) 2.48446i 0.0869201i
\(818\) 55.0954 1.92637
\(819\) 0 0
\(820\) 0.172856 0.00603640
\(821\) 10.5425i 0.367936i −0.982932 0.183968i \(-0.941106\pi\)
0.982932 0.183968i \(-0.0588943\pi\)
\(822\) −16.6796 + 28.8899i −0.581767 + 1.00765i
\(823\) −14.8330 −0.517047 −0.258524 0.966005i \(-0.583236\pi\)
−0.258524 + 0.966005i \(0.583236\pi\)
\(824\) −12.5287 7.23343i −0.436457 0.251988i
\(825\) 18.8027 + 10.8558i 0.654627 + 0.377949i
\(826\) 0 0
\(827\) 55.6758i 1.93604i 0.250879 + 0.968018i \(0.419280\pi\)
−0.250879 + 0.968018i \(0.580720\pi\)
\(828\) −1.80294 3.12278i −0.0626564 0.108524i
\(829\) −0.0232424 + 0.0402570i −0.000807242 + 0.00139818i −0.866429 0.499301i \(-0.833590\pi\)
0.865622 + 0.500699i \(0.166924\pi\)
\(830\) 5.55524 + 3.20732i 0.192825 + 0.111328i
\(831\) −7.68873 + 13.3173i −0.266719 + 0.461971i
\(832\) −11.8264 27.4548i −0.410006 0.951823i
\(833\) 0 0
\(834\) −17.0888 + 9.86624i −0.591738 + 0.341640i
\(835\) −8.51016 −0.294506
\(836\) 0.320185 0.0110738
\(837\) 28.1449 16.2495i 0.972831 0.561664i
\(838\) −28.5875 + 16.5050i −0.987540 + 0.570157i
\(839\) 22.1248 + 12.7738i 0.763833 + 0.440999i 0.830670 0.556765i \(-0.187957\pi\)
−0.0668370 + 0.997764i \(0.521291\pi\)
\(840\) 0 0
\(841\) 0.823775 1.42682i 0.0284060 0.0492007i
\(842\) −32.2121 −1.11010
\(843\) 8.66886 + 5.00497i 0.298572 + 0.172380i
\(844\) −0.424164 0.734673i −0.0146003 0.0252885i
\(845\) −6.46497 + 1.92837i −0.222402 + 0.0663380i
\(846\) −31.2096 −1.07301
\(847\) 0 0
\(848\) −17.0611 29.5507i −0.585881 1.01478i
\(849\) 19.9770 + 34.6012i 0.685609 + 1.18751i
\(850\) 11.0624 6.38686i 0.379436 0.219068i
\(851\) 93.5013i 3.20518i
\(852\) −1.00666 + 0.581197i −0.0344877 + 0.0199115i
\(853\) 22.6671i 0.776105i −0.921637 0.388053i \(-0.873148\pi\)
0.921637 0.388053i \(-0.126852\pi\)
\(854\) 0 0
\(855\) 3.22231 + 5.58120i 0.110201 + 0.190873i
\(856\) 17.7061i 0.605181i
\(857\) −18.5268 32.0893i −0.632862 1.09615i −0.986964 0.160943i \(-0.948547\pi\)
0.354101 0.935207i \(-0.384787\pi\)
\(858\) −13.7047 + 18.3892i −0.467872 + 0.627798i
\(859\) 2.12169 3.67488i 0.0723912 0.125385i −0.827558 0.561381i \(-0.810270\pi\)
0.899949 + 0.435996i \(0.143604\pi\)
\(860\) −0.0354702 + 0.0204788i −0.00120953 + 0.000698320i
\(861\) 0 0
\(862\) 1.87581 3.24900i 0.0638904 0.110661i
\(863\) −6.49563 3.75025i −0.221114 0.127660i 0.385352 0.922770i \(-0.374080\pi\)
−0.606466 + 0.795110i \(0.707413\pi\)
\(864\) 2.50949i 0.0853746i
\(865\) 0.156390i 0.00531743i
\(866\) 6.98425 + 4.03236i 0.237335 + 0.137025i
\(867\) −18.6562 + 32.3135i −0.633598 + 1.09742i
\(868\) 0 0
\(869\) 1.38168 0.797714i 0.0468703 0.0270606i
\(870\) 5.31478 9.20547i 0.180188 0.312095i
\(871\) −3.51976 + 29.9822i −0.119263 + 1.01591i
\(872\) 17.1400 + 29.6874i 0.580434 + 1.00534i
\(873\) 22.0451i 0.746113i
\(874\) 15.7795 + 27.3309i 0.533749 + 0.924481i
\(875\) 0 0
\(876\) 2.64755i 0.0894523i
\(877\) 24.4996 14.1448i 0.827291 0.477637i −0.0256330 0.999671i \(-0.508160\pi\)
0.852924 + 0.522035i \(0.174827\pi\)
\(878\) 52.9021i 1.78536i
\(879\) −20.4324 + 11.7966i −0.689166 + 0.397890i
\(880\) 1.61640 + 2.79968i 0.0544888 + 0.0943773i
\(881\) −19.7860 34.2704i −0.666609 1.15460i −0.978846 0.204596i \(-0.934412\pi\)
0.312238 0.950004i \(-0.398921\pi\)
\(882\) 0 0
\(883\) −28.3609 −0.954419 −0.477209 0.878790i \(-0.658352\pi\)
−0.477209 + 0.878790i \(0.658352\pi\)
\(884\) −0.219919 0.510538i −0.00739667 0.0171713i
\(885\) 4.54987 + 7.88061i 0.152942 + 0.264904i
\(886\) −38.0174 21.9494i −1.27722 0.737403i
\(887\) −43.7186 −1.46793 −0.733963 0.679189i \(-0.762331\pi\)
−0.733963 + 0.679189i \(0.762331\pi\)
\(888\) −41.6469 + 72.1345i −1.39758 + 2.42068i
\(889\) 0 0
\(890\) −7.48649 4.32233i −0.250948 0.144885i
\(891\) 1.25918 0.726988i 0.0421841 0.0243550i
\(892\) −0.883247 + 0.509943i −0.0295733 + 0.0170742i
\(893\) −11.2532 −0.376573
\(894\) 13.1783 0.440747
\(895\) −4.41152 + 2.54699i −0.147461 + 0.0851366i
\(896\) 0 0
\(897\) 92.4934 + 10.8583i 3.08826 + 0.362547i
\(898\) 21.7629 37.6944i 0.726236 1.25788i
\(899\) −26.2422 15.1509i −0.875227 0.505312i
\(900\) −0.933105 + 1.61619i −0.0311035 + 0.0538728i
\(901\) −8.66632 15.0105i −0.288717 0.500073i
\(902\) 9.47456i 0.315468i
\(903\) 0 0
\(904\) 8.87439 + 5.12363i 0.295158 + 0.170409i
\(905\) 5.58731 + 3.22583i 0.185728 + 0.107230i
\(906\) −49.5683 −1.64679
\(907\) −18.3493 + 31.7818i −0.609277 + 1.05530i 0.382083 + 0.924128i \(0.375207\pi\)
−0.991360 + 0.131171i \(0.958126\pi\)
\(908\) 0.0553280i 0.00183612i
\(909\) −91.2387 −3.02620
\(910\) 0 0
\(911\) −35.5211 −1.17686 −0.588432 0.808546i \(-0.700255\pi\)
−0.588432 + 0.808546i \(0.700255\pi\)
\(912\) 26.9995i 0.894044i
\(913\) 7.24254 12.5444i 0.239693 0.415161i
\(914\) 44.1123 1.45911
\(915\) 17.1077 + 9.87711i 0.565562 + 0.326527i
\(916\) −1.25326 0.723569i −0.0414088 0.0239074i
\(917\) 0 0
\(918\) 15.1458i 0.499885i
\(919\) −10.9667 18.9949i −0.361758 0.626583i 0.626492 0.779428i \(-0.284490\pi\)
−0.988250 + 0.152844i \(0.951157\pi\)
\(920\) 6.83449 11.8377i 0.225327 0.390277i
\(921\) −20.3940 11.7745i −0.672005 0.387982i
\(922\) 0.808222 1.39988i 0.0266174 0.0461026i
\(923\) 2.18521 18.6142i 0.0719272 0.612693i
\(924\) 0 0
\(925\) −41.9082 + 24.1957i −1.37793 + 0.795549i
\(926\) 28.1959 0.926575
\(927\) −25.0270 −0.821993
\(928\) 2.02636 1.16992i 0.0665186 0.0384045i
\(929\) 13.4383 7.75858i 0.440895 0.254551i −0.263082 0.964773i \(-0.584739\pi\)
0.703977 + 0.710223i \(0.251406\pi\)
\(930\) 10.1981 + 5.88788i 0.334409 + 0.193071i
\(931\) 0 0
\(932\) 1.05961 1.83529i 0.0347086 0.0601171i
\(933\) −41.3204 −1.35277
\(934\) 1.88370 + 1.08755i 0.0616364 + 0.0355858i
\(935\) 0.821061 + 1.42212i 0.0268516 + 0.0465083i
\(936\) −41.5284 30.9494i −1.35740 1.01161i
\(937\) 40.8110 1.33324 0.666618 0.745399i \(-0.267741\pi\)
0.666618 + 0.745399i \(0.267741\pi\)
\(938\) 0 0
\(939\) 24.2067 + 41.9273i 0.789957 + 1.36825i
\(940\) 0.0927572 + 0.160660i 0.00302541 + 0.00524016i
\(941\) 44.6814 25.7968i 1.45657 0.840952i 0.457731 0.889091i \(-0.348662\pi\)
0.998841 + 0.0481384i \(0.0153288\pi\)
\(942\) 40.6096i 1.32313i
\(943\) 33.3186 19.2365i 1.08500 0.626427i
\(944\) 23.8001i 0.774627i
\(945\) 0 0
\(946\) −1.12248 1.94419i −0.0364949 0.0632110i
\(947\) 4.98209i 0.161896i −0.996718 0.0809482i \(-0.974205\pi\)
0.996718 0.0809482i \(-0.0257948\pi\)
\(948\) 0.109832 + 0.190234i 0.00356717 + 0.00617851i
\(949\) −34.2282 25.5088i −1.11109 0.828051i
\(950\) 8.16663 14.1450i 0.264961 0.458925i
\(951\) −34.2608 + 19.7805i −1.11098 + 0.641426i
\(952\) 0 0
\(953\) 15.1163 26.1822i 0.489664 0.848123i −0.510265 0.860017i \(-0.670453\pi\)
0.999929 + 0.0118941i \(0.00378608\pi\)
\(954\) −53.2309 30.7329i −1.72341 0.995013i
\(955\) 6.35562i 0.205663i
\(956\) 1.31505i 0.0425317i
\(957\) −20.7871 12.0015i −0.671953 0.387952i
\(958\) −5.34921 + 9.26511i −0.172825 + 0.299342i
\(959\) 0 0
\(960\) −10.5295 + 6.07919i −0.339837 + 0.196205i
\(961\) 1.28469 2.22516i 0.0414418 0.0717792i
\(962\) −20.2226 46.9465i −0.652004 1.51362i
\(963\) −15.3153 26.5269i −0.493529 0.854817i
\(964\) 1.37798i 0.0443816i
\(965\) 3.01873 + 5.22860i 0.0971764 + 0.168315i
\(966\) 0 0
\(967\) 29.9990i 0.964703i 0.875978 + 0.482352i \(0.160217\pi\)
−0.875978 + 0.482352i \(0.839783\pi\)
\(968\) −20.8678 + 12.0481i −0.670718 + 0.387239i
\(969\) 13.7146i 0.440577i
\(970\) 2.75459 1.59036i 0.0884446 0.0510635i
\(971\) −22.0620 38.2125i −0.708003 1.22630i −0.965597 0.260044i \(-0.916263\pi\)
0.257594 0.966253i \(-0.417070\pi\)
\(972\) −0.565732 0.979876i −0.0181459 0.0314295i
\(973\) 0 0
\(974\) 0.105582 0.00338306
\(975\) −19.0681 44.2662i −0.610667 1.41765i
\(976\) −25.8333 44.7445i −0.826902 1.43224i
\(977\) 12.9925 + 7.50121i 0.415666 + 0.239985i 0.693221 0.720725i \(-0.256191\pi\)
−0.277555 + 0.960710i \(0.589524\pi\)
\(978\) 61.6964 1.97283
\(979\) −9.76037 + 16.9055i −0.311943 + 0.540301i
\(980\) 0 0
\(981\) 51.3577 + 29.6514i 1.63973 + 0.946696i
\(982\) 2.14506 1.23845i 0.0684516 0.0395206i
\(983\) −5.21223 + 3.00928i −0.166244 + 0.0959812i −0.580814 0.814037i \(-0.697266\pi\)
0.414569 + 0.910018i \(0.363932\pi\)
\(984\) −34.2729 −1.09258
\(985\) −0.934717 −0.0297825
\(986\) −12.2299 + 7.06093i −0.389479 + 0.224866i
\(987\) 0 0
\(988\) −0.569930 0.424745i −0.0181319 0.0135129i
\(989\) −4.55800 + 7.89469i −0.144936 + 0.251036i
\(990\) 5.04318 + 2.91168i 0.160283 + 0.0925392i
\(991\) −16.9200 + 29.3063i −0.537482 + 0.930946i 0.461557 + 0.887111i \(0.347291\pi\)
−0.999039 + 0.0438356i \(0.986042\pi\)
\(992\) 1.29607 + 2.24487i 0.0411504 + 0.0712746i
\(993\) 19.5542i 0.620535i
\(994\) 0 0
\(995\) −2.96315 1.71078i −0.0939382 0.0542353i
\(996\) 1.72716 + 0.997175i 0.0547271 + 0.0315967i
\(997\) 26.3215 0.833610 0.416805 0.908996i \(-0.363150\pi\)
0.416805 + 0.908996i \(0.363150\pi\)
\(998\) 5.77591 10.0042i 0.182833 0.316676i
\(999\) 57.3775i 1.81534i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.k.h.569.2 12
7.2 even 3 91.2.q.a.36.2 12
7.3 odd 6 637.2.u.i.361.5 12
7.4 even 3 637.2.u.h.361.5 12
7.5 odd 6 637.2.q.h.491.2 12
7.6 odd 2 637.2.k.g.569.2 12
13.4 even 6 637.2.u.h.30.5 12
21.2 odd 6 819.2.ct.a.127.5 12
28.23 odd 6 1456.2.cc.c.673.1 12
91.2 odd 12 1183.2.a.p.1.1 6
91.4 even 6 inner 637.2.k.h.459.5 12
91.16 even 3 1183.2.c.i.337.3 12
91.17 odd 6 637.2.k.g.459.5 12
91.23 even 6 1183.2.c.i.337.10 12
91.30 even 6 91.2.q.a.43.2 yes 12
91.37 odd 12 1183.2.a.m.1.6 6
91.54 even 12 8281.2.a.ch.1.1 6
91.69 odd 6 637.2.u.i.30.5 12
91.82 odd 6 637.2.q.h.589.2 12
91.89 even 12 8281.2.a.by.1.6 6
273.212 odd 6 819.2.ct.a.316.5 12
364.303 odd 6 1456.2.cc.c.225.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.q.a.36.2 12 7.2 even 3
91.2.q.a.43.2 yes 12 91.30 even 6
637.2.k.g.459.5 12 91.17 odd 6
637.2.k.g.569.2 12 7.6 odd 2
637.2.k.h.459.5 12 91.4 even 6 inner
637.2.k.h.569.2 12 1.1 even 1 trivial
637.2.q.h.491.2 12 7.5 odd 6
637.2.q.h.589.2 12 91.82 odd 6
637.2.u.h.30.5 12 13.4 even 6
637.2.u.h.361.5 12 7.4 even 3
637.2.u.i.30.5 12 91.69 odd 6
637.2.u.i.361.5 12 7.3 odd 6
819.2.ct.a.127.5 12 21.2 odd 6
819.2.ct.a.316.5 12 273.212 odd 6
1183.2.a.m.1.6 6 91.37 odd 12
1183.2.a.p.1.1 6 91.2 odd 12
1183.2.c.i.337.3 12 91.16 even 3
1183.2.c.i.337.10 12 91.23 even 6
1456.2.cc.c.225.1 12 364.303 odd 6
1456.2.cc.c.673.1 12 28.23 odd 6
8281.2.a.by.1.6 6 91.89 even 12
8281.2.a.ch.1.1 6 91.54 even 12