Properties

Label 1183.2.a.m.1.6
Level $1183$
Weight $2$
Character 1183.1
Self dual yes
Analytic conductor $9.446$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,2,Mod(1,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.44630255912\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7674048.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.38595\) of defining polynomial
Character \(\chi\) \(=\) 1183.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.38595 q^{2} -2.82577 q^{3} -0.0791355 q^{4} +0.518957 q^{5} -3.91639 q^{6} +1.00000 q^{7} -2.88158 q^{8} +4.98500 q^{9} +0.719250 q^{10} +1.62416 q^{11} +0.223619 q^{12} +1.38595 q^{14} -1.46646 q^{15} -3.83547 q^{16} +1.94825 q^{17} +6.90897 q^{18} +2.49115 q^{19} -0.0410679 q^{20} -2.82577 q^{21} +2.25101 q^{22} -9.14058 q^{23} +8.14270 q^{24} -4.73068 q^{25} -5.60916 q^{27} -0.0791355 q^{28} -5.22996 q^{29} -2.03244 q^{30} +5.79391 q^{31} +0.447392 q^{32} -4.58951 q^{33} +2.70019 q^{34} +0.518957 q^{35} -0.394491 q^{36} -10.2293 q^{37} +3.45262 q^{38} -1.49542 q^{40} -4.20903 q^{41} -3.91639 q^{42} -0.997311 q^{43} -0.128529 q^{44} +2.58700 q^{45} -12.6684 q^{46} -4.51725 q^{47} +10.8382 q^{48} +1.00000 q^{49} -6.55650 q^{50} -5.50532 q^{51} -8.89651 q^{53} -7.77403 q^{54} +0.842869 q^{55} -2.88158 q^{56} -7.03944 q^{57} -7.24847 q^{58} +6.20526 q^{59} +0.116049 q^{60} -13.4707 q^{61} +8.03008 q^{62} +4.98500 q^{63} +8.29100 q^{64} -6.36084 q^{66} +8.37266 q^{67} -0.154176 q^{68} +25.8292 q^{69} +0.719250 q^{70} -5.19809 q^{71} -14.3647 q^{72} -11.8395 q^{73} -14.1773 q^{74} +13.3678 q^{75} -0.197139 q^{76} +1.62416 q^{77} +0.982310 q^{79} -1.99044 q^{80} +0.895217 q^{81} -5.83352 q^{82} -8.91851 q^{83} +0.223619 q^{84} +1.01106 q^{85} -1.38223 q^{86} +14.7787 q^{87} -4.68015 q^{88} -12.0190 q^{89} +3.58546 q^{90} +0.723345 q^{92} -16.3723 q^{93} -6.26070 q^{94} +1.29280 q^{95} -1.26423 q^{96} +4.42228 q^{97} +1.38595 q^{98} +8.09643 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{2} + 4 q^{4} - 6 q^{5} - 4 q^{6} + 6 q^{7} - 12 q^{8} + 4 q^{9} + 12 q^{10} - 4 q^{11} + 2 q^{12} - 4 q^{14} - 20 q^{15} + 8 q^{16} - 4 q^{17} + 16 q^{18} - 2 q^{19} - 26 q^{20} - 6 q^{22} - 12 q^{23}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38595 0.980016 0.490008 0.871718i \(-0.336994\pi\)
0.490008 + 0.871718i \(0.336994\pi\)
\(3\) −2.82577 −1.63146 −0.815731 0.578432i \(-0.803665\pi\)
−0.815731 + 0.578432i \(0.803665\pi\)
\(4\) −0.0791355 −0.0395678
\(5\) 0.518957 0.232085 0.116042 0.993244i \(-0.462979\pi\)
0.116042 + 0.993244i \(0.462979\pi\)
\(6\) −3.91639 −1.59886
\(7\) 1.00000 0.377964
\(8\) −2.88158 −1.01879
\(9\) 4.98500 1.66167
\(10\) 0.719250 0.227447
\(11\) 1.62416 0.489702 0.244851 0.969561i \(-0.421261\pi\)
0.244851 + 0.969561i \(0.421261\pi\)
\(12\) 0.223619 0.0645533
\(13\) 0 0
\(14\) 1.38595 0.370411
\(15\) −1.46646 −0.378637
\(16\) −3.83547 −0.958867
\(17\) 1.94825 0.472521 0.236260 0.971690i \(-0.424078\pi\)
0.236260 + 0.971690i \(0.424078\pi\)
\(18\) 6.90897 1.62846
\(19\) 2.49115 0.571510 0.285755 0.958303i \(-0.407756\pi\)
0.285755 + 0.958303i \(0.407756\pi\)
\(20\) −0.0410679 −0.00918307
\(21\) −2.82577 −0.616634
\(22\) 2.25101 0.479916
\(23\) −9.14058 −1.90594 −0.952971 0.303060i \(-0.901992\pi\)
−0.952971 + 0.303060i \(0.901992\pi\)
\(24\) 8.14270 1.66212
\(25\) −4.73068 −0.946137
\(26\) 0 0
\(27\) −5.60916 −1.07948
\(28\) −0.0791355 −0.0149552
\(29\) −5.22996 −0.971179 −0.485589 0.874187i \(-0.661395\pi\)
−0.485589 + 0.874187i \(0.661395\pi\)
\(30\) −2.03244 −0.371071
\(31\) 5.79391 1.04062 0.520308 0.853978i \(-0.325817\pi\)
0.520308 + 0.853978i \(0.325817\pi\)
\(32\) 0.447392 0.0790885
\(33\) −4.58951 −0.798931
\(34\) 2.70019 0.463078
\(35\) 0.518957 0.0877197
\(36\) −0.394491 −0.0657484
\(37\) −10.2293 −1.68168 −0.840840 0.541284i \(-0.817938\pi\)
−0.840840 + 0.541284i \(0.817938\pi\)
\(38\) 3.45262 0.560089
\(39\) 0 0
\(40\) −1.49542 −0.236446
\(41\) −4.20903 −0.657340 −0.328670 0.944445i \(-0.606600\pi\)
−0.328670 + 0.944445i \(0.606600\pi\)
\(42\) −3.91639 −0.604312
\(43\) −0.997311 −0.152088 −0.0760442 0.997104i \(-0.524229\pi\)
−0.0760442 + 0.997104i \(0.524229\pi\)
\(44\) −0.128529 −0.0193764
\(45\) 2.58700 0.385647
\(46\) −12.6684 −1.86786
\(47\) −4.51725 −0.658909 −0.329455 0.944171i \(-0.606865\pi\)
−0.329455 + 0.944171i \(0.606865\pi\)
\(48\) 10.8382 1.56435
\(49\) 1.00000 0.142857
\(50\) −6.55650 −0.927230
\(51\) −5.50532 −0.770899
\(52\) 0 0
\(53\) −8.89651 −1.22203 −0.611015 0.791619i \(-0.709238\pi\)
−0.611015 + 0.791619i \(0.709238\pi\)
\(54\) −7.77403 −1.05791
\(55\) 0.842869 0.113652
\(56\) −2.88158 −0.385068
\(57\) −7.03944 −0.932397
\(58\) −7.24847 −0.951771
\(59\) 6.20526 0.807856 0.403928 0.914791i \(-0.367645\pi\)
0.403928 + 0.914791i \(0.367645\pi\)
\(60\) 0.116049 0.0149818
\(61\) −13.4707 −1.72475 −0.862375 0.506270i \(-0.831024\pi\)
−0.862375 + 0.506270i \(0.831024\pi\)
\(62\) 8.03008 1.01982
\(63\) 4.98500 0.628051
\(64\) 8.29100 1.03637
\(65\) 0 0
\(66\) −6.36084 −0.782965
\(67\) 8.37266 1.02288 0.511442 0.859318i \(-0.329112\pi\)
0.511442 + 0.859318i \(0.329112\pi\)
\(68\) −0.154176 −0.0186966
\(69\) 25.8292 3.10947
\(70\) 0.719250 0.0859668
\(71\) −5.19809 −0.616900 −0.308450 0.951241i \(-0.599810\pi\)
−0.308450 + 0.951241i \(0.599810\pi\)
\(72\) −14.3647 −1.69289
\(73\) −11.8395 −1.38571 −0.692856 0.721076i \(-0.743648\pi\)
−0.692856 + 0.721076i \(0.743648\pi\)
\(74\) −14.1773 −1.64807
\(75\) 13.3678 1.54359
\(76\) −0.197139 −0.0226134
\(77\) 1.62416 0.185090
\(78\) 0 0
\(79\) 0.982310 0.110518 0.0552592 0.998472i \(-0.482401\pi\)
0.0552592 + 0.998472i \(0.482401\pi\)
\(80\) −1.99044 −0.222538
\(81\) 0.895217 0.0994686
\(82\) −5.83352 −0.644204
\(83\) −8.91851 −0.978934 −0.489467 0.872022i \(-0.662809\pi\)
−0.489467 + 0.872022i \(0.662809\pi\)
\(84\) 0.223619 0.0243989
\(85\) 1.01106 0.109665
\(86\) −1.38223 −0.149049
\(87\) 14.7787 1.58444
\(88\) −4.68015 −0.498906
\(89\) −12.0190 −1.27401 −0.637005 0.770860i \(-0.719827\pi\)
−0.637005 + 0.770860i \(0.719827\pi\)
\(90\) 3.58546 0.377941
\(91\) 0 0
\(92\) 0.723345 0.0754139
\(93\) −16.3723 −1.69773
\(94\) −6.26070 −0.645742
\(95\) 1.29280 0.132639
\(96\) −1.26423 −0.129030
\(97\) 4.42228 0.449015 0.224507 0.974472i \(-0.427923\pi\)
0.224507 + 0.974472i \(0.427923\pi\)
\(98\) 1.38595 0.140002
\(99\) 8.09643 0.813722
\(100\) 0.374365 0.0374365
\(101\) 18.3026 1.82118 0.910591 0.413309i \(-0.135627\pi\)
0.910591 + 0.413309i \(0.135627\pi\)
\(102\) −7.63012 −0.755494
\(103\) 5.02046 0.494680 0.247340 0.968929i \(-0.420444\pi\)
0.247340 + 0.968929i \(0.420444\pi\)
\(104\) 0 0
\(105\) −1.46646 −0.143111
\(106\) −12.3301 −1.19761
\(107\) 6.14456 0.594017 0.297008 0.954875i \(-0.404011\pi\)
0.297008 + 0.954875i \(0.404011\pi\)
\(108\) 0.443884 0.0427127
\(109\) 11.8962 1.13945 0.569727 0.821834i \(-0.307049\pi\)
0.569727 + 0.821834i \(0.307049\pi\)
\(110\) 1.16818 0.111381
\(111\) 28.9056 2.74359
\(112\) −3.83547 −0.362418
\(113\) 3.55612 0.334532 0.167266 0.985912i \(-0.446506\pi\)
0.167266 + 0.985912i \(0.446506\pi\)
\(114\) −9.75633 −0.913764
\(115\) −4.74357 −0.442340
\(116\) 0.413875 0.0384274
\(117\) 0 0
\(118\) 8.60020 0.791713
\(119\) 1.94825 0.178596
\(120\) 4.22571 0.385753
\(121\) −8.36211 −0.760191
\(122\) −18.6698 −1.69028
\(123\) 11.8938 1.07243
\(124\) −0.458504 −0.0411749
\(125\) −5.04981 −0.451668
\(126\) 6.90897 0.615500
\(127\) −1.42350 −0.126315 −0.0631575 0.998004i \(-0.520117\pi\)
−0.0631575 + 0.998004i \(0.520117\pi\)
\(128\) 10.5961 0.936576
\(129\) 2.81818 0.248127
\(130\) 0 0
\(131\) 8.67374 0.757828 0.378914 0.925432i \(-0.376298\pi\)
0.378914 + 0.925432i \(0.376298\pi\)
\(132\) 0.363193 0.0316119
\(133\) 2.49115 0.216011
\(134\) 11.6041 1.00244
\(135\) −2.91091 −0.250531
\(136\) −5.61405 −0.481401
\(137\) −8.51784 −0.727728 −0.363864 0.931452i \(-0.618543\pi\)
−0.363864 + 0.931452i \(0.618543\pi\)
\(138\) 35.7981 3.04733
\(139\) −5.03844 −0.427355 −0.213677 0.976904i \(-0.568544\pi\)
−0.213677 + 0.976904i \(0.568544\pi\)
\(140\) −0.0410679 −0.00347087
\(141\) 12.7647 1.07499
\(142\) −7.20431 −0.604572
\(143\) 0 0
\(144\) −19.1198 −1.59332
\(145\) −2.71412 −0.225396
\(146\) −16.4090 −1.35802
\(147\) −2.82577 −0.233066
\(148\) 0.809498 0.0665403
\(149\) 3.36490 0.275663 0.137832 0.990456i \(-0.455987\pi\)
0.137832 + 0.990456i \(0.455987\pi\)
\(150\) 18.5272 1.51274
\(151\) 12.6566 1.02998 0.514991 0.857196i \(-0.327795\pi\)
0.514991 + 0.857196i \(0.327795\pi\)
\(152\) −7.17847 −0.582251
\(153\) 9.71204 0.785172
\(154\) 2.25101 0.181391
\(155\) 3.00679 0.241511
\(156\) 0 0
\(157\) 10.3691 0.827547 0.413773 0.910380i \(-0.364211\pi\)
0.413773 + 0.910380i \(0.364211\pi\)
\(158\) 1.36143 0.108310
\(159\) 25.1395 1.99369
\(160\) 0.232177 0.0183552
\(161\) −9.14058 −0.720379
\(162\) 1.24073 0.0974808
\(163\) −15.7534 −1.23390 −0.616950 0.787002i \(-0.711632\pi\)
−0.616950 + 0.787002i \(0.711632\pi\)
\(164\) 0.333084 0.0260095
\(165\) −2.38176 −0.185420
\(166\) −12.3606 −0.959371
\(167\) −16.3986 −1.26896 −0.634481 0.772939i \(-0.718786\pi\)
−0.634481 + 0.772939i \(0.718786\pi\)
\(168\) 8.14270 0.628223
\(169\) 0 0
\(170\) 1.40128 0.107473
\(171\) 12.4184 0.949659
\(172\) 0.0789227 0.00601780
\(173\) −0.301355 −0.0229116 −0.0114558 0.999934i \(-0.503647\pi\)
−0.0114558 + 0.999934i \(0.503647\pi\)
\(174\) 20.4825 1.55278
\(175\) −4.73068 −0.357606
\(176\) −6.22941 −0.469559
\(177\) −17.5347 −1.31799
\(178\) −16.6577 −1.24855
\(179\) −9.81582 −0.733669 −0.366834 0.930286i \(-0.619558\pi\)
−0.366834 + 0.930286i \(0.619558\pi\)
\(180\) −0.204724 −0.0152592
\(181\) −12.4320 −0.924062 −0.462031 0.886864i \(-0.652879\pi\)
−0.462031 + 0.886864i \(0.652879\pi\)
\(182\) 0 0
\(183\) 38.0652 2.81386
\(184\) 26.3393 1.94176
\(185\) −5.30854 −0.390292
\(186\) −22.6912 −1.66380
\(187\) 3.16427 0.231395
\(188\) 0.357475 0.0260716
\(189\) −5.60916 −0.408006
\(190\) 1.79176 0.129988
\(191\) −12.2469 −0.886156 −0.443078 0.896483i \(-0.646114\pi\)
−0.443078 + 0.896483i \(0.646114\pi\)
\(192\) −23.4285 −1.69081
\(193\) −11.6338 −0.837422 −0.418711 0.908119i \(-0.637518\pi\)
−0.418711 + 0.908119i \(0.637518\pi\)
\(194\) 6.12908 0.440042
\(195\) 0 0
\(196\) −0.0791355 −0.00565254
\(197\) 1.80114 0.128326 0.0641631 0.997939i \(-0.479562\pi\)
0.0641631 + 0.997939i \(0.479562\pi\)
\(198\) 11.2213 0.797461
\(199\) 6.59313 0.467375 0.233687 0.972312i \(-0.424921\pi\)
0.233687 + 0.972312i \(0.424921\pi\)
\(200\) 13.6319 0.963918
\(201\) −23.6592 −1.66879
\(202\) 25.3666 1.78479
\(203\) −5.22996 −0.367071
\(204\) 0.435667 0.0305028
\(205\) −2.18431 −0.152559
\(206\) 6.95811 0.484795
\(207\) −45.5658 −3.16704
\(208\) 0 0
\(209\) 4.04603 0.279870
\(210\) −2.03244 −0.140252
\(211\) 10.7199 0.737990 0.368995 0.929431i \(-0.379702\pi\)
0.368995 + 0.929431i \(0.379702\pi\)
\(212\) 0.704030 0.0483530
\(213\) 14.6886 1.00645
\(214\) 8.51607 0.582146
\(215\) −0.517562 −0.0352974
\(216\) 16.1633 1.09977
\(217\) 5.79391 0.393316
\(218\) 16.4876 1.11668
\(219\) 33.4558 2.26074
\(220\) −0.0667009 −0.00449697
\(221\) 0 0
\(222\) 40.0617 2.68877
\(223\) 12.8878 0.863034 0.431517 0.902105i \(-0.357979\pi\)
0.431517 + 0.902105i \(0.357979\pi\)
\(224\) 0.447392 0.0298926
\(225\) −23.5825 −1.57216
\(226\) 4.92862 0.327847
\(227\) −0.699155 −0.0464045 −0.0232023 0.999731i \(-0.507386\pi\)
−0.0232023 + 0.999731i \(0.507386\pi\)
\(228\) 0.557070 0.0368929
\(229\) 18.2868 1.20843 0.604214 0.796822i \(-0.293487\pi\)
0.604214 + 0.796822i \(0.293487\pi\)
\(230\) −6.57436 −0.433501
\(231\) −4.58951 −0.301967
\(232\) 15.0706 0.989431
\(233\) 26.7796 1.75439 0.877194 0.480137i \(-0.159413\pi\)
0.877194 + 0.480137i \(0.159413\pi\)
\(234\) 0 0
\(235\) −2.34426 −0.152923
\(236\) −0.491057 −0.0319651
\(237\) −2.77579 −0.180307
\(238\) 2.70019 0.175027
\(239\) −16.6177 −1.07491 −0.537454 0.843293i \(-0.680614\pi\)
−0.537454 + 0.843293i \(0.680614\pi\)
\(240\) 5.62454 0.363063
\(241\) −17.4129 −1.12166 −0.560830 0.827931i \(-0.689518\pi\)
−0.560830 + 0.827931i \(0.689518\pi\)
\(242\) −11.5895 −0.745000
\(243\) 14.2978 0.917204
\(244\) 1.06601 0.0682445
\(245\) 0.518957 0.0331549
\(246\) 16.4842 1.05099
\(247\) 0 0
\(248\) −16.6956 −1.06017
\(249\) 25.2017 1.59709
\(250\) −6.99879 −0.442642
\(251\) −6.44982 −0.407109 −0.203554 0.979064i \(-0.565249\pi\)
−0.203554 + 0.979064i \(0.565249\pi\)
\(252\) −0.394491 −0.0248506
\(253\) −14.8458 −0.933345
\(254\) −1.97290 −0.123791
\(255\) −2.85703 −0.178914
\(256\) −1.89624 −0.118515
\(257\) −3.67156 −0.229025 −0.114513 0.993422i \(-0.536531\pi\)
−0.114513 + 0.993422i \(0.536531\pi\)
\(258\) 3.90586 0.243168
\(259\) −10.2293 −0.635615
\(260\) 0 0
\(261\) −26.0713 −1.61377
\(262\) 12.0214 0.742684
\(263\) 18.3193 1.12961 0.564807 0.825223i \(-0.308950\pi\)
0.564807 + 0.825223i \(0.308950\pi\)
\(264\) 13.2250 0.813945
\(265\) −4.61690 −0.283614
\(266\) 3.45262 0.211694
\(267\) 33.9629 2.07850
\(268\) −0.662575 −0.0404732
\(269\) 27.5429 1.67932 0.839661 0.543111i \(-0.182754\pi\)
0.839661 + 0.543111i \(0.182754\pi\)
\(270\) −4.03439 −0.245525
\(271\) 6.51923 0.396015 0.198007 0.980201i \(-0.436553\pi\)
0.198007 + 0.980201i \(0.436553\pi\)
\(272\) −7.47246 −0.453084
\(273\) 0 0
\(274\) −11.8053 −0.713186
\(275\) −7.68338 −0.463325
\(276\) −2.04401 −0.123035
\(277\) 5.44186 0.326970 0.163485 0.986546i \(-0.447727\pi\)
0.163485 + 0.986546i \(0.447727\pi\)
\(278\) −6.98304 −0.418815
\(279\) 28.8826 1.72916
\(280\) −1.49542 −0.0893683
\(281\) 3.54237 0.211320 0.105660 0.994402i \(-0.466304\pi\)
0.105660 + 0.994402i \(0.466304\pi\)
\(282\) 17.6913 1.05350
\(283\) −14.1391 −0.840484 −0.420242 0.907412i \(-0.638055\pi\)
−0.420242 + 0.907412i \(0.638055\pi\)
\(284\) 0.411354 0.0244094
\(285\) −3.65317 −0.216395
\(286\) 0 0
\(287\) −4.20903 −0.248451
\(288\) 2.23025 0.131419
\(289\) −13.2043 −0.776724
\(290\) −3.76165 −0.220891
\(291\) −12.4964 −0.732551
\(292\) 0.936928 0.0548295
\(293\) 8.34931 0.487772 0.243886 0.969804i \(-0.421578\pi\)
0.243886 + 0.969804i \(0.421578\pi\)
\(294\) −3.91639 −0.228408
\(295\) 3.22027 0.187491
\(296\) 29.4765 1.71328
\(297\) −9.11017 −0.528626
\(298\) 4.66359 0.270155
\(299\) 0 0
\(300\) −1.05787 −0.0610762
\(301\) −0.997311 −0.0574840
\(302\) 17.5415 1.00940
\(303\) −51.7192 −2.97119
\(304\) −9.55474 −0.548002
\(305\) −6.99073 −0.400288
\(306\) 13.4604 0.769481
\(307\) −8.33362 −0.475625 −0.237813 0.971311i \(-0.576430\pi\)
−0.237813 + 0.971311i \(0.576430\pi\)
\(308\) −0.128529 −0.00732360
\(309\) −14.1867 −0.807052
\(310\) 4.16727 0.236685
\(311\) −14.6227 −0.829176 −0.414588 0.910009i \(-0.636074\pi\)
−0.414588 + 0.910009i \(0.636074\pi\)
\(312\) 0 0
\(313\) 17.1328 0.968404 0.484202 0.874956i \(-0.339110\pi\)
0.484202 + 0.874956i \(0.339110\pi\)
\(314\) 14.3711 0.811009
\(315\) 2.58700 0.145761
\(316\) −0.0777356 −0.00437297
\(317\) −14.0000 −0.786320 −0.393160 0.919470i \(-0.628618\pi\)
−0.393160 + 0.919470i \(0.628618\pi\)
\(318\) 34.8422 1.95385
\(319\) −8.49428 −0.475589
\(320\) 4.30267 0.240527
\(321\) −17.3631 −0.969116
\(322\) −12.6684 −0.705983
\(323\) 4.85340 0.270050
\(324\) −0.0708435 −0.00393575
\(325\) 0 0
\(326\) −21.8334 −1.20924
\(327\) −33.6161 −1.85897
\(328\) 12.1287 0.669694
\(329\) −4.51725 −0.249044
\(330\) −3.30100 −0.181714
\(331\) 6.91996 0.380355 0.190178 0.981750i \(-0.439094\pi\)
0.190178 + 0.981750i \(0.439094\pi\)
\(332\) 0.705771 0.0387342
\(333\) −50.9928 −2.79439
\(334\) −22.7277 −1.24360
\(335\) 4.34505 0.237395
\(336\) 10.8382 0.591270
\(337\) −11.1559 −0.607703 −0.303852 0.952719i \(-0.598273\pi\)
−0.303852 + 0.952719i \(0.598273\pi\)
\(338\) 0 0
\(339\) −10.0488 −0.545776
\(340\) −0.0800108 −0.00433919
\(341\) 9.41023 0.509593
\(342\) 17.2113 0.930682
\(343\) 1.00000 0.0539949
\(344\) 2.87383 0.154947
\(345\) 13.4043 0.721661
\(346\) −0.417663 −0.0224537
\(347\) −4.92511 −0.264393 −0.132197 0.991223i \(-0.542203\pi\)
−0.132197 + 0.991223i \(0.542203\pi\)
\(348\) −1.16952 −0.0626928
\(349\) 1.52335 0.0815430 0.0407715 0.999168i \(-0.487018\pi\)
0.0407715 + 0.999168i \(0.487018\pi\)
\(350\) −6.55650 −0.350460
\(351\) 0 0
\(352\) 0.726636 0.0387298
\(353\) −17.9280 −0.954212 −0.477106 0.878846i \(-0.658314\pi\)
−0.477106 + 0.878846i \(0.658314\pi\)
\(354\) −24.3022 −1.29165
\(355\) −2.69759 −0.143173
\(356\) 0.951129 0.0504097
\(357\) −5.50532 −0.291373
\(358\) −13.6043 −0.719007
\(359\) −20.0014 −1.05563 −0.527816 0.849359i \(-0.676989\pi\)
−0.527816 + 0.849359i \(0.676989\pi\)
\(360\) −7.45466 −0.392895
\(361\) −12.7941 −0.673376
\(362\) −17.2301 −0.905596
\(363\) 23.6294 1.24022
\(364\) 0 0
\(365\) −6.14421 −0.321602
\(366\) 52.7566 2.75763
\(367\) 27.4157 1.43109 0.715544 0.698568i \(-0.246179\pi\)
0.715544 + 0.698568i \(0.246179\pi\)
\(368\) 35.0584 1.82754
\(369\) −20.9820 −1.09228
\(370\) −7.35739 −0.382492
\(371\) −8.89651 −0.461884
\(372\) 1.29563 0.0671752
\(373\) −15.8929 −0.822901 −0.411451 0.911432i \(-0.634978\pi\)
−0.411451 + 0.911432i \(0.634978\pi\)
\(374\) 4.38553 0.226771
\(375\) 14.2696 0.736880
\(376\) 13.0168 0.671292
\(377\) 0 0
\(378\) −7.77403 −0.399853
\(379\) −8.77900 −0.450947 −0.225474 0.974249i \(-0.572393\pi\)
−0.225474 + 0.974249i \(0.572393\pi\)
\(380\) −0.102307 −0.00524822
\(381\) 4.02249 0.206078
\(382\) −16.9736 −0.868447
\(383\) 7.96237 0.406858 0.203429 0.979090i \(-0.434791\pi\)
0.203429 + 0.979090i \(0.434791\pi\)
\(384\) −29.9423 −1.52799
\(385\) 0.842869 0.0429566
\(386\) −16.1240 −0.820688
\(387\) −4.97159 −0.252720
\(388\) −0.349960 −0.0177665
\(389\) 32.0434 1.62467 0.812333 0.583194i \(-0.198197\pi\)
0.812333 + 0.583194i \(0.198197\pi\)
\(390\) 0 0
\(391\) −17.8082 −0.900598
\(392\) −2.88158 −0.145542
\(393\) −24.5100 −1.23637
\(394\) 2.49630 0.125762
\(395\) 0.509777 0.0256496
\(396\) −0.640716 −0.0321972
\(397\) −6.43457 −0.322942 −0.161471 0.986877i \(-0.551624\pi\)
−0.161471 + 0.986877i \(0.551624\pi\)
\(398\) 9.13777 0.458035
\(399\) −7.03944 −0.352413
\(400\) 18.1444 0.907219
\(401\) −0.533577 −0.0266456 −0.0133228 0.999911i \(-0.504241\pi\)
−0.0133228 + 0.999911i \(0.504241\pi\)
\(402\) −32.7906 −1.63545
\(403\) 0 0
\(404\) −1.44839 −0.0720601
\(405\) 0.464579 0.0230851
\(406\) −7.24847 −0.359736
\(407\) −16.6139 −0.823522
\(408\) 15.8640 0.785387
\(409\) −39.7528 −1.96565 −0.982824 0.184547i \(-0.940918\pi\)
−0.982824 + 0.184547i \(0.940918\pi\)
\(410\) −3.02735 −0.149510
\(411\) 24.0695 1.18726
\(412\) −0.397296 −0.0195734
\(413\) 6.20526 0.305341
\(414\) −63.1520 −3.10375
\(415\) −4.62832 −0.227195
\(416\) 0 0
\(417\) 14.2375 0.697213
\(418\) 5.60761 0.274277
\(419\) 23.8176 1.16357 0.581783 0.813344i \(-0.302355\pi\)
0.581783 + 0.813344i \(0.302355\pi\)
\(420\) 0.116049 0.00566260
\(421\) 23.2419 1.13274 0.566370 0.824151i \(-0.308347\pi\)
0.566370 + 0.824151i \(0.308347\pi\)
\(422\) 14.8573 0.723243
\(423\) −22.5185 −1.09489
\(424\) 25.6360 1.24500
\(425\) −9.21657 −0.447069
\(426\) 20.3578 0.986336
\(427\) −13.4707 −0.651894
\(428\) −0.486253 −0.0235039
\(429\) 0 0
\(430\) −0.717316 −0.0345920
\(431\) 2.70689 0.130386 0.0651932 0.997873i \(-0.479234\pi\)
0.0651932 + 0.997873i \(0.479234\pi\)
\(432\) 21.5137 1.03508
\(433\) −5.81890 −0.279638 −0.139819 0.990177i \(-0.544652\pi\)
−0.139819 + 0.990177i \(0.544652\pi\)
\(434\) 8.03008 0.385456
\(435\) 7.66950 0.367724
\(436\) −0.941416 −0.0450856
\(437\) −22.7706 −1.08927
\(438\) 46.3682 2.21556
\(439\) 38.1702 1.82176 0.910882 0.412668i \(-0.135403\pi\)
0.910882 + 0.412668i \(0.135403\pi\)
\(440\) −2.42880 −0.115788
\(441\) 4.98500 0.237381
\(442\) 0 0
\(443\) −31.6740 −1.50488 −0.752440 0.658661i \(-0.771123\pi\)
−0.752440 + 0.658661i \(0.771123\pi\)
\(444\) −2.28746 −0.108558
\(445\) −6.23734 −0.295678
\(446\) 17.8619 0.845787
\(447\) −9.50845 −0.449734
\(448\) 8.29100 0.391713
\(449\) −31.4049 −1.48209 −0.741045 0.671455i \(-0.765669\pi\)
−0.741045 + 0.671455i \(0.765669\pi\)
\(450\) −32.6842 −1.54075
\(451\) −6.83614 −0.321901
\(452\) −0.281416 −0.0132367
\(453\) −35.7648 −1.68037
\(454\) −0.968995 −0.0454772
\(455\) 0 0
\(456\) 20.2847 0.949920
\(457\) −31.8281 −1.48886 −0.744429 0.667702i \(-0.767278\pi\)
−0.744429 + 0.667702i \(0.767278\pi\)
\(458\) 25.3447 1.18428
\(459\) −10.9281 −0.510078
\(460\) 0.375385 0.0175024
\(461\) 1.16631 0.0543203 0.0271601 0.999631i \(-0.491354\pi\)
0.0271601 + 0.999631i \(0.491354\pi\)
\(462\) −6.36084 −0.295933
\(463\) 20.3441 0.945469 0.472734 0.881205i \(-0.343267\pi\)
0.472734 + 0.881205i \(0.343267\pi\)
\(464\) 20.0593 0.931231
\(465\) −8.49651 −0.394016
\(466\) 37.1152 1.71933
\(467\) −1.56939 −0.0726229 −0.0363114 0.999341i \(-0.511561\pi\)
−0.0363114 + 0.999341i \(0.511561\pi\)
\(468\) 0 0
\(469\) 8.37266 0.386614
\(470\) −3.24903 −0.149867
\(471\) −29.3008 −1.35011
\(472\) −17.8810 −0.823039
\(473\) −1.61979 −0.0744781
\(474\) −3.84711 −0.176703
\(475\) −11.7849 −0.540727
\(476\) −0.154176 −0.00706665
\(477\) −44.3491 −2.03060
\(478\) −23.0313 −1.05343
\(479\) 7.71918 0.352699 0.176349 0.984328i \(-0.443571\pi\)
0.176349 + 0.984328i \(0.443571\pi\)
\(480\) −0.656080 −0.0299458
\(481\) 0 0
\(482\) −24.1334 −1.09925
\(483\) 25.8292 1.17527
\(484\) 0.661740 0.0300791
\(485\) 2.29498 0.104209
\(486\) 19.8161 0.898875
\(487\) −0.0761801 −0.00345205 −0.00172602 0.999999i \(-0.500549\pi\)
−0.00172602 + 0.999999i \(0.500549\pi\)
\(488\) 38.8170 1.75716
\(489\) 44.5155 2.01306
\(490\) 0.719250 0.0324924
\(491\) 1.78715 0.0806529 0.0403264 0.999187i \(-0.487160\pi\)
0.0403264 + 0.999187i \(0.487160\pi\)
\(492\) −0.941220 −0.0424335
\(493\) −10.1893 −0.458902
\(494\) 0 0
\(495\) 4.20170 0.188852
\(496\) −22.2223 −0.997813
\(497\) −5.19809 −0.233166
\(498\) 34.9284 1.56518
\(499\) 8.33493 0.373123 0.186561 0.982443i \(-0.440266\pi\)
0.186561 + 0.982443i \(0.440266\pi\)
\(500\) 0.399619 0.0178715
\(501\) 46.3387 2.07026
\(502\) −8.93914 −0.398973
\(503\) 1.44048 0.0642277 0.0321138 0.999484i \(-0.489776\pi\)
0.0321138 + 0.999484i \(0.489776\pi\)
\(504\) −14.3647 −0.639854
\(505\) 9.49829 0.422668
\(506\) −20.5755 −0.914693
\(507\) 0 0
\(508\) 0.112649 0.00499801
\(509\) −14.8256 −0.657135 −0.328568 0.944480i \(-0.606566\pi\)
−0.328568 + 0.944480i \(0.606566\pi\)
\(510\) −3.95970 −0.175339
\(511\) −11.8395 −0.523750
\(512\) −23.8204 −1.05272
\(513\) −13.9733 −0.616935
\(514\) −5.08860 −0.224449
\(515\) 2.60540 0.114808
\(516\) −0.223018 −0.00981781
\(517\) −7.33674 −0.322670
\(518\) −14.1773 −0.622913
\(519\) 0.851561 0.0373794
\(520\) 0 0
\(521\) −0.334388 −0.0146498 −0.00732489 0.999973i \(-0.502332\pi\)
−0.00732489 + 0.999973i \(0.502332\pi\)
\(522\) −36.1336 −1.58153
\(523\) −32.5065 −1.42141 −0.710705 0.703490i \(-0.751624\pi\)
−0.710705 + 0.703490i \(0.751624\pi\)
\(524\) −0.686401 −0.0299856
\(525\) 13.3678 0.583420
\(526\) 25.3896 1.10704
\(527\) 11.2880 0.491713
\(528\) 17.6029 0.766068
\(529\) 60.5502 2.63262
\(530\) −6.39881 −0.277947
\(531\) 30.9332 1.34239
\(532\) −0.197139 −0.00854706
\(533\) 0 0
\(534\) 47.0710 2.03696
\(535\) 3.18876 0.137862
\(536\) −24.1265 −1.04211
\(537\) 27.7373 1.19695
\(538\) 38.1732 1.64576
\(539\) 1.62416 0.0699575
\(540\) 0.230357 0.00991297
\(541\) 10.6015 0.455796 0.227898 0.973685i \(-0.426815\pi\)
0.227898 + 0.973685i \(0.426815\pi\)
\(542\) 9.03534 0.388101
\(543\) 35.1300 1.50757
\(544\) 0.871633 0.0373709
\(545\) 6.17364 0.264450
\(546\) 0 0
\(547\) 10.2327 0.437519 0.218760 0.975779i \(-0.429799\pi\)
0.218760 + 0.975779i \(0.429799\pi\)
\(548\) 0.674064 0.0287946
\(549\) −67.1515 −2.86596
\(550\) −10.6488 −0.454067
\(551\) −13.0286 −0.555038
\(552\) −74.4290 −3.16791
\(553\) 0.982310 0.0417721
\(554\) 7.54216 0.320436
\(555\) 15.0007 0.636746
\(556\) 0.398720 0.0169095
\(557\) 31.9930 1.35559 0.677793 0.735253i \(-0.262937\pi\)
0.677793 + 0.735253i \(0.262937\pi\)
\(558\) 40.0300 1.69460
\(559\) 0 0
\(560\) −1.99044 −0.0841115
\(561\) −8.94152 −0.377511
\(562\) 4.90956 0.207097
\(563\) 10.7913 0.454800 0.227400 0.973801i \(-0.426978\pi\)
0.227400 + 0.973801i \(0.426978\pi\)
\(564\) −1.01014 −0.0425348
\(565\) 1.84547 0.0776397
\(566\) −19.5962 −0.823688
\(567\) 0.895217 0.0375956
\(568\) 14.9787 0.628494
\(569\) −24.6014 −1.03134 −0.515672 0.856786i \(-0.672458\pi\)
−0.515672 + 0.856786i \(0.672458\pi\)
\(570\) −5.06312 −0.212071
\(571\) 16.5724 0.693534 0.346767 0.937951i \(-0.387279\pi\)
0.346767 + 0.937951i \(0.387279\pi\)
\(572\) 0 0
\(573\) 34.6070 1.44573
\(574\) −5.83352 −0.243486
\(575\) 43.2412 1.80328
\(576\) 41.3306 1.72211
\(577\) 14.6611 0.610348 0.305174 0.952297i \(-0.401285\pi\)
0.305174 + 0.952297i \(0.401285\pi\)
\(578\) −18.3005 −0.761202
\(579\) 32.8746 1.36622
\(580\) 0.214784 0.00891840
\(581\) −8.91851 −0.370002
\(582\) −17.3194 −0.717912
\(583\) −14.4493 −0.598431
\(584\) 34.1166 1.41175
\(585\) 0 0
\(586\) 11.5717 0.478024
\(587\) −35.3336 −1.45837 −0.729186 0.684315i \(-0.760101\pi\)
−0.729186 + 0.684315i \(0.760101\pi\)
\(588\) 0.223619 0.00922190
\(589\) 14.4335 0.594723
\(590\) 4.46313 0.183744
\(591\) −5.08963 −0.209359
\(592\) 39.2340 1.61251
\(593\) 16.4294 0.674675 0.337338 0.941384i \(-0.390474\pi\)
0.337338 + 0.941384i \(0.390474\pi\)
\(594\) −12.6263 −0.518062
\(595\) 1.01106 0.0414494
\(596\) −0.266283 −0.0109074
\(597\) −18.6307 −0.762504
\(598\) 0 0
\(599\) 12.0819 0.493653 0.246826 0.969060i \(-0.420612\pi\)
0.246826 + 0.969060i \(0.420612\pi\)
\(600\) −38.5206 −1.57259
\(601\) 7.81486 0.318775 0.159387 0.987216i \(-0.449048\pi\)
0.159387 + 0.987216i \(0.449048\pi\)
\(602\) −1.38223 −0.0563353
\(603\) 41.7377 1.69969
\(604\) −1.00159 −0.0407541
\(605\) −4.33957 −0.176429
\(606\) −71.6803 −2.91181
\(607\) 35.5649 1.44354 0.721768 0.692135i \(-0.243330\pi\)
0.721768 + 0.692135i \(0.243330\pi\)
\(608\) 1.11452 0.0451999
\(609\) 14.7787 0.598862
\(610\) −9.68882 −0.392289
\(611\) 0 0
\(612\) −0.768568 −0.0310675
\(613\) 11.9368 0.482122 0.241061 0.970510i \(-0.422505\pi\)
0.241061 + 0.970510i \(0.422505\pi\)
\(614\) −11.5500 −0.466120
\(615\) 6.17236 0.248893
\(616\) −4.68015 −0.188569
\(617\) −23.5702 −0.948901 −0.474450 0.880282i \(-0.657353\pi\)
−0.474450 + 0.880282i \(0.657353\pi\)
\(618\) −19.6621 −0.790924
\(619\) 28.5571 1.14781 0.573904 0.818923i \(-0.305428\pi\)
0.573904 + 0.818923i \(0.305428\pi\)
\(620\) −0.237944 −0.00955606
\(621\) 51.2710 2.05743
\(622\) −20.2663 −0.812607
\(623\) −12.0190 −0.481530
\(624\) 0 0
\(625\) 21.0328 0.841311
\(626\) 23.7453 0.949052
\(627\) −11.4332 −0.456597
\(628\) −0.820567 −0.0327442
\(629\) −19.9292 −0.794628
\(630\) 3.58546 0.142848
\(631\) 44.9925 1.79112 0.895561 0.444938i \(-0.146774\pi\)
0.895561 + 0.444938i \(0.146774\pi\)
\(632\) −2.83061 −0.112596
\(633\) −30.2921 −1.20400
\(634\) −19.4034 −0.770607
\(635\) −0.738735 −0.0293158
\(636\) −1.98943 −0.0788860
\(637\) 0 0
\(638\) −11.7727 −0.466085
\(639\) −25.9125 −1.02508
\(640\) 5.49894 0.217365
\(641\) −2.53300 −0.100048 −0.0500238 0.998748i \(-0.515930\pi\)
−0.0500238 + 0.998748i \(0.515930\pi\)
\(642\) −24.0645 −0.949749
\(643\) 18.3771 0.724721 0.362360 0.932038i \(-0.381971\pi\)
0.362360 + 0.932038i \(0.381971\pi\)
\(644\) 0.723345 0.0285038
\(645\) 1.46251 0.0575863
\(646\) 6.72658 0.264654
\(647\) 20.9287 0.822791 0.411396 0.911457i \(-0.365041\pi\)
0.411396 + 0.911457i \(0.365041\pi\)
\(648\) −2.57964 −0.101338
\(649\) 10.0783 0.395609
\(650\) 0 0
\(651\) −16.3723 −0.641680
\(652\) 1.24665 0.0488227
\(653\) −48.1160 −1.88292 −0.941461 0.337121i \(-0.890547\pi\)
−0.941461 + 0.337121i \(0.890547\pi\)
\(654\) −46.5903 −1.82183
\(655\) 4.50130 0.175880
\(656\) 16.1436 0.630302
\(657\) −59.0200 −2.30259
\(658\) −6.26070 −0.244068
\(659\) −2.21638 −0.0863379 −0.0431690 0.999068i \(-0.513745\pi\)
−0.0431690 + 0.999068i \(0.513745\pi\)
\(660\) 0.188482 0.00733664
\(661\) −0.637434 −0.0247933 −0.0123966 0.999923i \(-0.503946\pi\)
−0.0123966 + 0.999923i \(0.503946\pi\)
\(662\) 9.59073 0.372754
\(663\) 0 0
\(664\) 25.6994 0.997331
\(665\) 1.29280 0.0501327
\(666\) −70.6736 −2.73855
\(667\) 47.8048 1.85101
\(668\) 1.29771 0.0502100
\(669\) −36.4181 −1.40801
\(670\) 6.02203 0.232651
\(671\) −21.8786 −0.844614
\(672\) −1.26423 −0.0487687
\(673\) 15.4069 0.593891 0.296945 0.954895i \(-0.404032\pi\)
0.296945 + 0.954895i \(0.404032\pi\)
\(674\) −15.4616 −0.595559
\(675\) 26.5352 1.02134
\(676\) 0 0
\(677\) −11.6812 −0.448945 −0.224473 0.974480i \(-0.572066\pi\)
−0.224473 + 0.974480i \(0.572066\pi\)
\(678\) −13.9272 −0.534869
\(679\) 4.42228 0.169712
\(680\) −2.91345 −0.111726
\(681\) 1.97565 0.0757072
\(682\) 13.0421 0.499409
\(683\) −22.9114 −0.876680 −0.438340 0.898809i \(-0.644433\pi\)
−0.438340 + 0.898809i \(0.644433\pi\)
\(684\) −0.982737 −0.0375759
\(685\) −4.42039 −0.168895
\(686\) 1.38595 0.0529159
\(687\) −51.6745 −1.97150
\(688\) 3.82515 0.145833
\(689\) 0 0
\(690\) 18.5777 0.707239
\(691\) 47.2325 1.79681 0.898405 0.439167i \(-0.144726\pi\)
0.898405 + 0.439167i \(0.144726\pi\)
\(692\) 0.0238479 0.000906560 0
\(693\) 8.09643 0.307558
\(694\) −6.82596 −0.259110
\(695\) −2.61473 −0.0991825
\(696\) −42.5860 −1.61422
\(697\) −8.20026 −0.310607
\(698\) 2.11129 0.0799135
\(699\) −75.6730 −2.86222
\(700\) 0.374365 0.0141497
\(701\) −12.2098 −0.461158 −0.230579 0.973054i \(-0.574062\pi\)
−0.230579 + 0.973054i \(0.574062\pi\)
\(702\) 0 0
\(703\) −25.4827 −0.961097
\(704\) 13.4659 0.507515
\(705\) 6.62435 0.249488
\(706\) −24.8474 −0.935144
\(707\) 18.3026 0.688342
\(708\) 1.38762 0.0521498
\(709\) 17.8875 0.671778 0.335889 0.941902i \(-0.390963\pi\)
0.335889 + 0.941902i \(0.390963\pi\)
\(710\) −3.73873 −0.140312
\(711\) 4.89681 0.183645
\(712\) 34.6337 1.29795
\(713\) −52.9597 −1.98336
\(714\) −7.63012 −0.285550
\(715\) 0 0
\(716\) 0.776780 0.0290296
\(717\) 46.9578 1.75367
\(718\) −27.7210 −1.03454
\(719\) 9.12634 0.340355 0.170178 0.985413i \(-0.445566\pi\)
0.170178 + 0.985413i \(0.445566\pi\)
\(720\) −9.92235 −0.369784
\(721\) 5.02046 0.186972
\(722\) −17.7321 −0.659920
\(723\) 49.2048 1.82995
\(724\) 0.983812 0.0365631
\(725\) 24.7413 0.918868
\(726\) 32.7493 1.21544
\(727\) −33.6859 −1.24934 −0.624670 0.780889i \(-0.714767\pi\)
−0.624670 + 0.780889i \(0.714767\pi\)
\(728\) 0 0
\(729\) −43.0880 −1.59585
\(730\) −8.51558 −0.315176
\(731\) −1.94301 −0.0718650
\(732\) −3.01231 −0.111338
\(733\) 46.4344 1.71509 0.857547 0.514406i \(-0.171987\pi\)
0.857547 + 0.514406i \(0.171987\pi\)
\(734\) 37.9968 1.40249
\(735\) −1.46646 −0.0540910
\(736\) −4.08942 −0.150738
\(737\) 13.5985 0.500908
\(738\) −29.0801 −1.07045
\(739\) −1.85025 −0.0680627 −0.0340314 0.999421i \(-0.510835\pi\)
−0.0340314 + 0.999421i \(0.510835\pi\)
\(740\) 0.420095 0.0154430
\(741\) 0 0
\(742\) −12.3301 −0.452654
\(743\) −33.1509 −1.21619 −0.608094 0.793865i \(-0.708066\pi\)
−0.608094 + 0.793865i \(0.708066\pi\)
\(744\) 47.1781 1.72963
\(745\) 1.74624 0.0639773
\(746\) −22.0268 −0.806457
\(747\) −44.4588 −1.62666
\(748\) −0.250407 −0.00915577
\(749\) 6.14456 0.224517
\(750\) 19.7770 0.722154
\(751\) −20.7743 −0.758064 −0.379032 0.925384i \(-0.623743\pi\)
−0.379032 + 0.925384i \(0.623743\pi\)
\(752\) 17.3258 0.631806
\(753\) 18.2257 0.664182
\(754\) 0 0
\(755\) 6.56824 0.239043
\(756\) 0.443884 0.0161439
\(757\) 43.6150 1.58521 0.792607 0.609733i \(-0.208723\pi\)
0.792607 + 0.609733i \(0.208723\pi\)
\(758\) −12.1673 −0.441936
\(759\) 41.9508 1.52272
\(760\) −3.72532 −0.135131
\(761\) −12.3902 −0.449145 −0.224573 0.974457i \(-0.572099\pi\)
−0.224573 + 0.974457i \(0.572099\pi\)
\(762\) 5.57497 0.201960
\(763\) 11.8962 0.430673
\(764\) 0.969167 0.0350632
\(765\) 5.04013 0.182226
\(766\) 11.0355 0.398728
\(767\) 0 0
\(768\) 5.35835 0.193353
\(769\) 5.55359 0.200268 0.100134 0.994974i \(-0.468073\pi\)
0.100134 + 0.994974i \(0.468073\pi\)
\(770\) 1.16818 0.0420982
\(771\) 10.3750 0.373646
\(772\) 0.920651 0.0331349
\(773\) 43.8042 1.57553 0.787764 0.615977i \(-0.211239\pi\)
0.787764 + 0.615977i \(0.211239\pi\)
\(774\) −6.89039 −0.247670
\(775\) −27.4092 −0.984566
\(776\) −12.7432 −0.457454
\(777\) 28.9056 1.03698
\(778\) 44.4107 1.59220
\(779\) −10.4853 −0.375677
\(780\) 0 0
\(781\) −8.44253 −0.302098
\(782\) −24.6813 −0.882600
\(783\) 29.3357 1.04837
\(784\) −3.83547 −0.136981
\(785\) 5.38113 0.192061
\(786\) −33.9697 −1.21166
\(787\) −24.8009 −0.884057 −0.442029 0.897001i \(-0.645741\pi\)
−0.442029 + 0.897001i \(0.645741\pi\)
\(788\) −0.142535 −0.00507758
\(789\) −51.7661 −1.84292
\(790\) 0.706526 0.0251371
\(791\) 3.55612 0.126441
\(792\) −23.3305 −0.829015
\(793\) 0 0
\(794\) −8.91801 −0.316489
\(795\) 13.0463 0.462706
\(796\) −0.521751 −0.0184930
\(797\) −16.4715 −0.583451 −0.291725 0.956502i \(-0.594229\pi\)
−0.291725 + 0.956502i \(0.594229\pi\)
\(798\) −9.75633 −0.345370
\(799\) −8.80076 −0.311348
\(800\) −2.11647 −0.0748285
\(801\) −59.9146 −2.11698
\(802\) −0.739513 −0.0261131
\(803\) −19.2293 −0.678587
\(804\) 1.87229 0.0660305
\(805\) −4.74357 −0.167189
\(806\) 0 0
\(807\) −77.8301 −2.73975
\(808\) −52.7406 −1.85541
\(809\) 1.38194 0.0485863 0.0242932 0.999705i \(-0.492266\pi\)
0.0242932 + 0.999705i \(0.492266\pi\)
\(810\) 0.643885 0.0226238
\(811\) −6.83571 −0.240034 −0.120017 0.992772i \(-0.538295\pi\)
−0.120017 + 0.992772i \(0.538295\pi\)
\(812\) 0.413875 0.0145242
\(813\) −18.4219 −0.646083
\(814\) −23.0261 −0.807066
\(815\) −8.17533 −0.286369
\(816\) 21.1155 0.739190
\(817\) −2.48446 −0.0869201
\(818\) −55.0954 −1.92637
\(819\) 0 0
\(820\) 0.172856 0.00603640
\(821\) 10.5425 0.367936 0.183968 0.982932i \(-0.441106\pi\)
0.183968 + 0.982932i \(0.441106\pi\)
\(822\) 33.3592 1.16353
\(823\) 14.8330 0.517047 0.258524 0.966005i \(-0.416764\pi\)
0.258524 + 0.966005i \(0.416764\pi\)
\(824\) −14.4669 −0.503977
\(825\) 21.7115 0.755898
\(826\) 8.60020 0.299239
\(827\) 55.6758 1.93604 0.968018 0.250879i \(-0.0807197\pi\)
0.968018 + 0.250879i \(0.0807197\pi\)
\(828\) 3.60587 0.125313
\(829\) −0.0464848 −0.00161448 −0.000807242 1.00000i \(-0.500257\pi\)
−0.000807242 1.00000i \(0.500257\pi\)
\(830\) −6.41464 −0.222655
\(831\) −15.3775 −0.533438
\(832\) 0 0
\(833\) 1.94825 0.0675030
\(834\) 19.7325 0.683280
\(835\) −8.51016 −0.294506
\(836\) −0.320185 −0.0110738
\(837\) −32.4990 −1.12333
\(838\) 33.0100 1.14031
\(839\) −25.5475 −0.881999 −0.440999 0.897507i \(-0.645376\pi\)
−0.440999 + 0.897507i \(0.645376\pi\)
\(840\) 4.22571 0.145801
\(841\) −1.64755 −0.0568120
\(842\) 32.2121 1.11010
\(843\) −10.0099 −0.344761
\(844\) −0.848327 −0.0292006
\(845\) 0 0
\(846\) −31.2096 −1.07301
\(847\) −8.36211 −0.287325
\(848\) 34.1223 1.17176
\(849\) 39.9540 1.37122
\(850\) −12.7737 −0.438135
\(851\) 93.5013 3.20518
\(852\) −1.16239 −0.0398229
\(853\) −22.6671 −0.776105 −0.388053 0.921637i \(-0.626852\pi\)
−0.388053 + 0.921637i \(0.626852\pi\)
\(854\) −18.6698 −0.638867
\(855\) 6.44462 0.220401
\(856\) −17.7061 −0.605181
\(857\) −37.0535 −1.26572 −0.632862 0.774264i \(-0.718120\pi\)
−0.632862 + 0.774264i \(0.718120\pi\)
\(858\) 0 0
\(859\) −4.24339 −0.144782 −0.0723912 0.997376i \(-0.523063\pi\)
−0.0723912 + 0.997376i \(0.523063\pi\)
\(860\) 0.0409575 0.00139664
\(861\) 11.8938 0.405339
\(862\) 3.75162 0.127781
\(863\) −7.50051 −0.255320 −0.127660 0.991818i \(-0.540747\pi\)
−0.127660 + 0.991818i \(0.540747\pi\)
\(864\) −2.50949 −0.0853746
\(865\) −0.156390 −0.00531743
\(866\) −8.06472 −0.274050
\(867\) 37.3124 1.26720
\(868\) −0.458504 −0.0155626
\(869\) 1.59543 0.0541212
\(870\) 10.6296 0.360376
\(871\) 0 0
\(872\) −34.2800 −1.16087
\(873\) 22.0451 0.746113
\(874\) −31.5590 −1.06750
\(875\) −5.04981 −0.170715
\(876\) −2.64755 −0.0894523
\(877\) −28.2897 −0.955274 −0.477637 0.878557i \(-0.658507\pi\)
−0.477637 + 0.878557i \(0.658507\pi\)
\(878\) 52.9021 1.78536
\(879\) −23.5933 −0.795781
\(880\) −3.23280 −0.108978
\(881\) −39.5721 −1.33322 −0.666609 0.745408i \(-0.732255\pi\)
−0.666609 + 0.745408i \(0.732255\pi\)
\(882\) 6.90897 0.232637
\(883\) 28.3609 0.954419 0.477209 0.878790i \(-0.341648\pi\)
0.477209 + 0.878790i \(0.341648\pi\)
\(884\) 0 0
\(885\) −9.09974 −0.305884
\(886\) −43.8987 −1.47481
\(887\) −43.7186 −1.46793 −0.733963 0.679189i \(-0.762331\pi\)
−0.733963 + 0.679189i \(0.762331\pi\)
\(888\) −83.2938 −2.79516
\(889\) −1.42350 −0.0477426
\(890\) −8.64465 −0.289769
\(891\) 1.45398 0.0487100
\(892\) −1.01989 −0.0341483
\(893\) −11.2532 −0.376573
\(894\) −13.1783 −0.440747
\(895\) −5.09399 −0.170273
\(896\) 10.5961 0.353992
\(897\) 0 0
\(898\) −43.5257 −1.45247
\(899\) −30.3019 −1.01062
\(900\) 1.86621 0.0622070
\(901\) −17.3326 −0.577434
\(902\) −9.47456 −0.315468
\(903\) 2.81818 0.0937830
\(904\) −10.2473 −0.340819
\(905\) −6.45167 −0.214461
\(906\) −49.5683 −1.64679
\(907\) −36.6985 −1.21855 −0.609277 0.792957i \(-0.708540\pi\)
−0.609277 + 0.792957i \(0.708540\pi\)
\(908\) 0.0553280 0.00183612
\(909\) 91.2387 3.02620
\(910\) 0 0
\(911\) −35.5211 −1.17686 −0.588432 0.808546i \(-0.700255\pi\)
−0.588432 + 0.808546i \(0.700255\pi\)
\(912\) 26.9995 0.894044
\(913\) −14.4851 −0.479386
\(914\) −44.1123 −1.45911
\(915\) 19.7542 0.653054
\(916\) −1.44714 −0.0478148
\(917\) 8.67374 0.286432
\(918\) −15.1458 −0.499885
\(919\) 21.9334 0.723516 0.361758 0.932272i \(-0.382177\pi\)
0.361758 + 0.932272i \(0.382177\pi\)
\(920\) 13.6690 0.450653
\(921\) 23.5489 0.775964
\(922\) 1.61644 0.0532348
\(923\) 0 0
\(924\) 0.363193 0.0119482
\(925\) 48.3914 1.59110
\(926\) 28.1959 0.926575
\(927\) 25.0270 0.821993
\(928\) −2.33984 −0.0768090
\(929\) −15.5172 −0.509102 −0.254551 0.967059i \(-0.581928\pi\)
−0.254551 + 0.967059i \(0.581928\pi\)
\(930\) −11.7758 −0.386142
\(931\) 2.49115 0.0816443
\(932\) −2.11922 −0.0694172
\(933\) 41.3204 1.35277
\(934\) −2.17510 −0.0711716
\(935\) 1.64212 0.0537031
\(936\) 0 0
\(937\) 40.8110 1.33324 0.666618 0.745399i \(-0.267741\pi\)
0.666618 + 0.745399i \(0.267741\pi\)
\(938\) 11.6041 0.378888
\(939\) −48.4135 −1.57991
\(940\) 0.185514 0.00605081
\(941\) −51.5936 −1.68190 −0.840952 0.541109i \(-0.818004\pi\)
−0.840952 + 0.541109i \(0.818004\pi\)
\(942\) −40.6096 −1.32313
\(943\) 38.4730 1.25285
\(944\) −23.8001 −0.774627
\(945\) −2.91091 −0.0946920
\(946\) −2.24495 −0.0729898
\(947\) −4.98209 −0.161896 −0.0809482 0.996718i \(-0.525795\pi\)
−0.0809482 + 0.996718i \(0.525795\pi\)
\(948\) 0.219663 0.00713433
\(949\) 0 0
\(950\) −16.3333 −0.529921
\(951\) 39.5609 1.28285
\(952\) −5.61405 −0.181953
\(953\) 30.2325 0.979328 0.489664 0.871911i \(-0.337119\pi\)
0.489664 + 0.871911i \(0.337119\pi\)
\(954\) −61.4657 −1.99003
\(955\) −6.35562 −0.205663
\(956\) 1.31505 0.0425317
\(957\) 24.0029 0.775904
\(958\) 10.6984 0.345650
\(959\) −8.51784 −0.275055
\(960\) −12.1584 −0.392410
\(961\) 2.56939 0.0828835
\(962\) 0 0
\(963\) 30.6306 0.987058
\(964\) 1.37798 0.0443816
\(965\) −6.03746 −0.194353
\(966\) 35.7981 1.15178
\(967\) −29.9990 −0.964703 −0.482352 0.875978i \(-0.660217\pi\)
−0.482352 + 0.875978i \(0.660217\pi\)
\(968\) 24.0961 0.774478
\(969\) −13.7146 −0.440577
\(970\) 3.18073 0.102127
\(971\) 44.1240 1.41601 0.708003 0.706209i \(-0.249596\pi\)
0.708003 + 0.706209i \(0.249596\pi\)
\(972\) −1.13146 −0.0362917
\(973\) −5.03844 −0.161525
\(974\) −0.105582 −0.00338306
\(975\) 0 0
\(976\) 51.6665 1.65380
\(977\) 15.0024 0.479970 0.239985 0.970777i \(-0.422858\pi\)
0.239985 + 0.970777i \(0.422858\pi\)
\(978\) 61.6964 1.97283
\(979\) −19.5207 −0.623886
\(980\) −0.0410679 −0.00131187
\(981\) 59.3028 1.89339
\(982\) 2.47690 0.0790411
\(983\) −6.01856 −0.191962 −0.0959812 0.995383i \(-0.530599\pi\)
−0.0959812 + 0.995383i \(0.530599\pi\)
\(984\) −34.2729 −1.09258
\(985\) 0.934717 0.0297825
\(986\) −14.1219 −0.449732
\(987\) 12.7647 0.406306
\(988\) 0 0
\(989\) 9.11600 0.289872
\(990\) 5.82336 0.185078
\(991\) 33.8400 1.07496 0.537482 0.843275i \(-0.319376\pi\)
0.537482 + 0.843275i \(0.319376\pi\)
\(992\) 2.59215 0.0823008
\(993\) −19.5542 −0.620535
\(994\) −7.20431 −0.228507
\(995\) 3.42155 0.108471
\(996\) −1.99435 −0.0631934
\(997\) 26.3215 0.833610 0.416805 0.908996i \(-0.363150\pi\)
0.416805 + 0.908996i \(0.363150\pi\)
\(998\) 11.5518 0.365666
\(999\) 57.3775 1.81534
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1183.2.a.m.1.6 6
7.6 odd 2 8281.2.a.by.1.6 6
13.5 odd 4 1183.2.c.i.337.3 12
13.6 odd 12 91.2.q.a.36.2 12
13.8 odd 4 1183.2.c.i.337.10 12
13.11 odd 12 91.2.q.a.43.2 yes 12
13.12 even 2 1183.2.a.p.1.1 6
39.11 even 12 819.2.ct.a.316.5 12
39.32 even 12 819.2.ct.a.127.5 12
52.11 even 12 1456.2.cc.c.225.1 12
52.19 even 12 1456.2.cc.c.673.1 12
91.6 even 12 637.2.q.h.491.2 12
91.11 odd 12 637.2.u.h.30.5 12
91.19 even 12 637.2.u.i.361.5 12
91.24 even 12 637.2.u.i.30.5 12
91.32 odd 12 637.2.k.h.569.2 12
91.37 odd 12 637.2.k.h.459.5 12
91.45 even 12 637.2.k.g.569.2 12
91.58 odd 12 637.2.u.h.361.5 12
91.76 even 12 637.2.q.h.589.2 12
91.89 even 12 637.2.k.g.459.5 12
91.90 odd 2 8281.2.a.ch.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.q.a.36.2 12 13.6 odd 12
91.2.q.a.43.2 yes 12 13.11 odd 12
637.2.k.g.459.5 12 91.89 even 12
637.2.k.g.569.2 12 91.45 even 12
637.2.k.h.459.5 12 91.37 odd 12
637.2.k.h.569.2 12 91.32 odd 12
637.2.q.h.491.2 12 91.6 even 12
637.2.q.h.589.2 12 91.76 even 12
637.2.u.h.30.5 12 91.11 odd 12
637.2.u.h.361.5 12 91.58 odd 12
637.2.u.i.30.5 12 91.24 even 12
637.2.u.i.361.5 12 91.19 even 12
819.2.ct.a.127.5 12 39.32 even 12
819.2.ct.a.316.5 12 39.11 even 12
1183.2.a.m.1.6 6 1.1 even 1 trivial
1183.2.a.p.1.1 6 13.12 even 2
1183.2.c.i.337.3 12 13.5 odd 4
1183.2.c.i.337.10 12 13.8 odd 4
1456.2.cc.c.225.1 12 52.11 even 12
1456.2.cc.c.673.1 12 52.19 even 12
8281.2.a.by.1.6 6 7.6 odd 2
8281.2.a.ch.1.1 6 91.90 odd 2