L(s) = 1 | + (1.73 − i)2-s + (−1 + 1.73i)3-s + (0.999 − 1.73i)4-s + (−0.866 + 0.5i)5-s + 3.99i·6-s + (−0.499 − 0.866i)9-s + (−0.999 + 1.73i)10-s + (−1.73 − i)11-s + (2 + 3.46i)12-s + (2 + 3i)13-s − 1.99i·15-s + (1.99 + 3.46i)16-s + (−3 + 5.19i)17-s + (−1.73 − 0.999i)18-s + (2.59 − 1.5i)19-s + 1.99i·20-s + ⋯ |
L(s) = 1 | + (1.22 − 0.707i)2-s + (−0.577 + 0.999i)3-s + (0.499 − 0.866i)4-s + (−0.387 + 0.223i)5-s + 1.63i·6-s + (−0.166 − 0.288i)9-s + (−0.316 + 0.547i)10-s + (−0.522 − 0.301i)11-s + (0.577 + 0.999i)12-s + (0.554 + 0.832i)13-s − 0.516i·15-s + (0.499 + 0.866i)16-s + (−0.727 + 1.26i)17-s + (−0.408 − 0.235i)18-s + (0.596 − 0.344i)19-s + 0.447i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.326 - 0.945i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.326 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.57986 + 1.12591i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.57986 + 1.12591i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-2 - 3i)T \) |
good | 2 | \( 1 + (-1.73 + i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (1 - 1.73i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.866 - 0.5i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.73 + i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.59 + 1.5i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 - 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3T + 29T^{2} \) |
| 31 | \( 1 + (2.59 + 1.5i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.19 - 3i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 10iT - 41T^{2} \) |
| 43 | \( 1 - T + 43T^{2} \) |
| 47 | \( 1 + (-9.52 + 5.5i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.5 + 7.79i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.92 - 4i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.3 - 6i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14iT - 71T^{2} \) |
| 73 | \( 1 + (-7.79 - 4.5i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.5 - 7.79i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 11iT - 83T^{2} \) |
| 89 | \( 1 + (4.33 - 2.5i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89144454155606032275775545458, −10.45581351208537378794666676615, −9.239479080165778583562246023206, −8.239686173040367941486580570214, −6.90224394134706125888517357654, −5.69026750013145459272667410582, −5.10515318332415301773350018049, −3.99696899306865472544469393537, −3.61123128126634015875098628370, −2.06293278919537627617618987071,
0.78087273595900525212195996870, 2.77490640378173399498801212924, 4.09479204437946895320422608780, 5.10326906207694039456278244770, 5.83981311277659599794892289170, 6.74279055325829995014729498979, 7.37098900893072621059659357283, 8.180912808651004638748588649052, 9.514053715330464077699280559313, 10.68483941730772315508579619049