L(s) = 1 | + (1.73 − i)2-s + (−1 + 1.73i)3-s + (0.999 − 1.73i)4-s + (−0.866 + 0.5i)5-s + 3.99i·6-s + (−0.499 − 0.866i)9-s + (−0.999 + 1.73i)10-s + (−1.73 − i)11-s + (2 + 3.46i)12-s + (2 + 3i)13-s − 1.99i·15-s + (1.99 + 3.46i)16-s + (−3 + 5.19i)17-s + (−1.73 − 0.999i)18-s + (2.59 − 1.5i)19-s + 1.99i·20-s + ⋯ |
L(s) = 1 | + (1.22 − 0.707i)2-s + (−0.577 + 0.999i)3-s + (0.499 − 0.866i)4-s + (−0.387 + 0.223i)5-s + 1.63i·6-s + (−0.166 − 0.288i)9-s + (−0.316 + 0.547i)10-s + (−0.522 − 0.301i)11-s + (0.577 + 0.999i)12-s + (0.554 + 0.832i)13-s − 0.516i·15-s + (0.499 + 0.866i)16-s + (−0.727 + 1.26i)17-s + (−0.408 − 0.235i)18-s + (0.596 − 0.344i)19-s + 0.447i·20-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.326−0.945i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.326−0.945i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.326−0.945i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(116,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.326−0.945i)
|
Particular Values
L(1) |
≈ |
1.57986+1.12591i |
L(21) |
≈ |
1.57986+1.12591i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−2−3i)T |
good | 2 | 1+(−1.73+i)T+(1−1.73i)T2 |
| 3 | 1+(1−1.73i)T+(−1.5−2.59i)T2 |
| 5 | 1+(0.866−0.5i)T+(2.5−4.33i)T2 |
| 11 | 1+(1.73+i)T+(5.5+9.52i)T2 |
| 17 | 1+(3−5.19i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.59+1.5i)T+(9.5−16.4i)T2 |
| 23 | 1+(−1.5−2.59i)T+(−11.5+19.9i)T2 |
| 29 | 1−3T+29T2 |
| 31 | 1+(2.59+1.5i)T+(15.5+26.8i)T2 |
| 37 | 1+(5.19−3i)T+(18.5−32.0i)T2 |
| 41 | 1+10iT−41T2 |
| 43 | 1−T+43T2 |
| 47 | 1+(−9.52+5.5i)T+(23.5−40.7i)T2 |
| 53 | 1+(−4.5+7.79i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−6.92−4i)T+(29.5+51.0i)T2 |
| 61 | 1+(4+6.92i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−10.3−6i)T+(33.5+58.0i)T2 |
| 71 | 1+14iT−71T2 |
| 73 | 1+(−7.79−4.5i)T+(36.5+63.2i)T2 |
| 79 | 1+(−4.5−7.79i)T+(−39.5+68.4i)T2 |
| 83 | 1+11iT−83T2 |
| 89 | 1+(4.33−2.5i)T+(44.5−77.0i)T2 |
| 97 | 1−9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89144454155606032275775545458, −10.45581351208537378794666676615, −9.239479080165778583562246023206, −8.239686173040367941486580570214, −6.90224394134706125888517357654, −5.69026750013145459272667410582, −5.10515318332415301773350018049, −3.99696899306865472544469393537, −3.61123128126634015875098628370, −2.06293278919537627617618987071,
0.78087273595900525212195996870, 2.77490640378173399498801212924, 4.09479204437946895320422608780, 5.10326906207694039456278244770, 5.83981311277659599794892289170, 6.74279055325829995014729498979, 7.37098900893072621059659357283, 8.180912808651004638748588649052, 9.514053715330464077699280559313, 10.68483941730772315508579619049