Properties

Label 637.2.r.a
Level $637$
Weight $2$
Character orbit 637.r
Analytic conductor $5.086$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(116,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.116");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{12} q^{2} - 2 \zeta_{12}^{2} q^{3} + 2 \zeta_{12}^{2} q^{4} - \zeta_{12} q^{5} - 4 \zeta_{12}^{3} q^{6} + (\zeta_{12}^{2} - 1) q^{9} - 2 \zeta_{12}^{2} q^{10} + (2 \zeta_{12}^{3} - 2 \zeta_{12}) q^{11} + \cdots - 2 \zeta_{12}^{3} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{4} - 2 q^{9} - 4 q^{10} + 8 q^{12} + 8 q^{13} + 8 q^{16} - 12 q^{17} - 16 q^{22} + 6 q^{23} - 8 q^{25} + 12 q^{26} - 16 q^{27} + 12 q^{29} - 8 q^{30} - 8 q^{36} + 12 q^{38} - 8 q^{39}+ \cdots - 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(-1\) \(-1 + \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
116.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−1.73205 + 1.00000i −1.00000 + 1.73205i 1.00000 1.73205i 0.866025 0.500000i 4.00000i 0 0 −0.500000 0.866025i −1.00000 + 1.73205i
116.2 1.73205 1.00000i −1.00000 + 1.73205i 1.00000 1.73205i −0.866025 + 0.500000i 4.00000i 0 0 −0.500000 0.866025i −1.00000 + 1.73205i
324.1 −1.73205 1.00000i −1.00000 1.73205i 1.00000 + 1.73205i 0.866025 + 0.500000i 4.00000i 0 0 −0.500000 + 0.866025i −1.00000 1.73205i
324.2 1.73205 + 1.00000i −1.00000 1.73205i 1.00000 + 1.73205i −0.866025 0.500000i 4.00000i 0 0 −0.500000 + 0.866025i −1.00000 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
13.b even 2 1 inner
91.r even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.r.a 4
7.b odd 2 1 637.2.r.c 4
7.c even 3 1 637.2.c.c yes 2
7.c even 3 1 inner 637.2.r.a 4
7.d odd 6 1 637.2.c.a 2
7.d odd 6 1 637.2.r.c 4
13.b even 2 1 inner 637.2.r.a 4
91.b odd 2 1 637.2.r.c 4
91.r even 6 1 637.2.c.c yes 2
91.r even 6 1 inner 637.2.r.a 4
91.s odd 6 1 637.2.c.a 2
91.s odd 6 1 637.2.r.c 4
91.z odd 12 1 8281.2.a.b 1
91.z odd 12 1 8281.2.a.m 1
91.bb even 12 1 8281.2.a.a 1
91.bb even 12 1 8281.2.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
637.2.c.a 2 7.d odd 6 1
637.2.c.a 2 91.s odd 6 1
637.2.c.c yes 2 7.c even 3 1
637.2.c.c yes 2 91.r even 6 1
637.2.r.a 4 1.a even 1 1 trivial
637.2.r.a 4 7.c even 3 1 inner
637.2.r.a 4 13.b even 2 1 inner
637.2.r.a 4 91.r even 6 1 inner
637.2.r.c 4 7.b odd 2 1
637.2.r.c 4 7.d odd 6 1
637.2.r.c 4 91.b odd 2 1
637.2.r.c 4 91.s odd 6 1
8281.2.a.a 1 91.bb even 12 1
8281.2.a.b 1 91.z odd 12 1
8281.2.a.k 1 91.bb even 12 1
8281.2.a.m 1 91.z odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(637, [\chi])\):

\( T_{2}^{4} - 4T_{2}^{2} + 16 \) Copy content Toggle raw display
\( T_{3}^{2} + 2T_{3} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$3$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$13$ \( (T^{2} - 4 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$23$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$29$ \( (T - 3)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$37$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$41$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$43$ \( (T - 1)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - 121 T^{2} + 14641 \) Copy content Toggle raw display
$53$ \( (T^{2} - 9 T + 81)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 64T^{2} + 4096 \) Copy content Toggle raw display
$61$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 144 T^{2} + 20736 \) Copy content Toggle raw display
$71$ \( (T^{2} + 196)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 81T^{2} + 6561 \) Copy content Toggle raw display
$79$ \( (T^{2} - 9 T + 81)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 121)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$97$ \( (T^{2} + 81)^{2} \) Copy content Toggle raw display
show more
show less