L(s) = 1 | + (−1.89 − 1.09i)2-s + 1.79·3-s + (1.39 + 2.41i)4-s + (−1.89 + 1.09i)5-s + (−3.39 − 1.96i)6-s − 1.73i·8-s + 0.208·9-s + 4.79·10-s − 1.27i·11-s + (2.5 + 4.33i)12-s + (−3.5 − 0.866i)13-s + (−3.39 + 1.96i)15-s + (0.895 − 1.55i)16-s + (1.5 + 2.59i)17-s + (−0.395 − 0.228i)18-s − 6.56i·19-s + ⋯ |
L(s) = 1 | + (−1.34 − 0.773i)2-s + 1.03·3-s + (0.697 + 1.20i)4-s + (−0.847 + 0.489i)5-s + (−1.38 − 0.800i)6-s − 0.612i·8-s + 0.0695·9-s + 1.51·10-s − 0.384i·11-s + (0.721 + 1.24i)12-s + (−0.970 − 0.240i)13-s + (−0.876 + 0.506i)15-s + (0.223 − 0.387i)16-s + (0.363 + 0.630i)17-s + (−0.0932 − 0.0538i)18-s − 1.50i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.794 - 0.606i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.794 - 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 2 | \( 1 + (1.89 + 1.09i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 - 1.79T + 3T^{2} \) |
| 5 | \( 1 + (1.89 - 1.09i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + 1.27iT - 11T^{2} \) |
| 17 | \( 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + 6.56iT - 19T^{2} \) |
| 23 | \( 1 + (3.79 - 6.56i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.10 - 1.91i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (7.5 + 4.33i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (6 + 3.46i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.20 - 1.27i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.18 + 3.78i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.70 - 2.14i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.08 + 10.5i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (7.66 - 4.42i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 12.7T + 61T^{2} \) |
| 67 | \( 1 - 11.4iT - 67T^{2} \) |
| 71 | \( 1 + (0.791 + 0.456i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3 - 1.73i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3 - 5.19i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3.55iT - 83T^{2} \) |
| 89 | \( 1 + (2.52 + 1.45i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-13.1 - 7.61i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.874856597244581503091418665687, −9.188918583482049933505662723934, −8.487364802641742903168912823373, −7.64677250007074815033225172550, −7.25024355995263600117105028241, −5.45459392373462712278001370540, −3.72838439381942006519464339291, −3.00238638961305347992632021906, −1.96800491764636992644598015215, 0,
1.90064063071080855486757651577, 3.43820993912466889096361815679, 4.62374025012526072344057157228, 6.04682563206607060888512777965, 7.25343191510540273514513274793, 7.82587392553078210127500271384, 8.385808931351345474648786529357, 9.123845962071346004289905342567, 9.849549336082513644982882104581