L(s) = 1 | + (−1.89 − 1.09i)2-s + 1.79·3-s + (1.39 + 2.41i)4-s + (−1.89 + 1.09i)5-s + (−3.39 − 1.96i)6-s − 1.73i·8-s + 0.208·9-s + 4.79·10-s − 1.27i·11-s + (2.5 + 4.33i)12-s + (−3.5 − 0.866i)13-s + (−3.39 + 1.96i)15-s + (0.895 − 1.55i)16-s + (1.5 + 2.59i)17-s + (−0.395 − 0.228i)18-s − 6.56i·19-s + ⋯ |
L(s) = 1 | + (−1.34 − 0.773i)2-s + 1.03·3-s + (0.697 + 1.20i)4-s + (−0.847 + 0.489i)5-s + (−1.38 − 0.800i)6-s − 0.612i·8-s + 0.0695·9-s + 1.51·10-s − 0.384i·11-s + (0.721 + 1.24i)12-s + (−0.970 − 0.240i)13-s + (−0.876 + 0.506i)15-s + (0.223 − 0.387i)16-s + (0.363 + 0.630i)17-s + (−0.0932 − 0.0538i)18-s − 1.50i·19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.794−0.606i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.794−0.606i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.794−0.606i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 637, ( :1/2), −0.794−0.606i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(3.5+0.866i)T |
good | 2 | 1+(1.89+1.09i)T+(1+1.73i)T2 |
| 3 | 1−1.79T+3T2 |
| 5 | 1+(1.89−1.09i)T+(2.5−4.33i)T2 |
| 11 | 1+1.27iT−11T2 |
| 17 | 1+(−1.5−2.59i)T+(−8.5+14.7i)T2 |
| 19 | 1+6.56iT−19T2 |
| 23 | 1+(3.79−6.56i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.10−1.91i)T+(−14.5+25.1i)T2 |
| 31 | 1+(7.5+4.33i)T+(15.5+26.8i)T2 |
| 37 | 1+(6+3.46i)T+(18.5+32.0i)T2 |
| 41 | 1+(2.20−1.27i)T+(20.5−35.5i)T2 |
| 43 | 1+(−2.18+3.78i)T+(−21.5−37.2i)T2 |
| 47 | 1+(3.70−2.14i)T+(23.5−40.7i)T2 |
| 53 | 1+(−6.08+10.5i)T+(−26.5−45.8i)T2 |
| 59 | 1+(7.66−4.42i)T+(29.5−51.0i)T2 |
| 61 | 1+12.7T+61T2 |
| 67 | 1−11.4iT−67T2 |
| 71 | 1+(0.791+0.456i)T+(35.5+61.4i)T2 |
| 73 | 1+(−3−1.73i)T+(36.5+63.2i)T2 |
| 79 | 1+(−3−5.19i)T+(−39.5+68.4i)T2 |
| 83 | 1−3.55iT−83T2 |
| 89 | 1+(2.52+1.45i)T+(44.5+77.0i)T2 |
| 97 | 1+(−13.1−7.61i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.874856597244581503091418665687, −9.188918583482049933505662723934, −8.487364802641742903168912823373, −7.64677250007074815033225172550, −7.25024355995263600117105028241, −5.45459392373462712278001370540, −3.72838439381942006519464339291, −3.00238638961305347992632021906, −1.96800491764636992644598015215, 0,
1.90064063071080855486757651577, 3.43820993912466889096361815679, 4.62374025012526072344057157228, 6.04682563206607060888512777965, 7.25343191510540273514513274793, 7.82587392553078210127500271384, 8.385808931351345474648786529357, 9.123845962071346004289905342567, 9.849549336082513644982882104581