Properties

Label 637.2.u.d
Level 637637
Weight 22
Character orbit 637.u
Analytic conductor 5.0865.086
Analytic rank 11
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(30,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.30");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 637=7213 637 = 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 637.u (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.086470608765.08647060876
Analytic rank: 11
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(3,7)\Q(\sqrt{-3}, \sqrt{-7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3x22x+4 x^{4} - x^{3} - x^{2} - 2x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β31)q2+(β3β1)q3+(2β3+β2+β1)q4+(β11)q5+(β3+β23)q6+(2β21)q8+(β3+β1+2)q9++(7β3+18β2+9)q99+O(q100) q + (\beta_{3} - 1) q^{2} + ( - \beta_{3} - \beta_1) q^{3} + ( - 2 \beta_{3} + \beta_{2} + \beta_1) q^{4} + (\beta_1 - 1) q^{5} + (\beta_{3} + \beta_{2} - 3) q^{6} + (2 \beta_{2} - 1) q^{8} + (\beta_{3} + \beta_1 + 2) q^{9}+ \cdots + ( - 7 \beta_{3} + 18 \beta_{2} + \cdots - 9) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q3q22q3+q43q59q6+10q9+10q10+10q1214q139q15q16+6q17+3q1812q20q226q235q25+9q2620q27++39q97+O(q100) 4 q - 3 q^{2} - 2 q^{3} + q^{4} - 3 q^{5} - 9 q^{6} + 10 q^{9} + 10 q^{10} + 10 q^{12} - 14 q^{13} - 9 q^{15} - q^{16} + 6 q^{17} + 3 q^{18} - 12 q^{20} - q^{22} - 6 q^{23} - 5 q^{25} + 9 q^{26} - 20 q^{27}+ \cdots + 39 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3x22x+4 x^{4} - x^{3} - x^{2} - 2x + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+ν2ν2)/2 ( \nu^{3} + \nu^{2} - \nu - 2 ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3+ν2+ν+2)/2 ( -\nu^{3} + \nu^{2} + \nu + 2 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β2 \beta_{3} + \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β3+β2+β1+2 -\beta_{3} + \beta_{2} + \beta _1 + 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/637Z)×\left(\mathbb{Z}/637\mathbb{Z}\right)^\times.

nn 197197 248248
χ(n)\chi(n) β2\beta_{2} 1+β2-1 + \beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
30.1
−0.895644 1.09445i
1.39564 + 0.228425i
−0.895644 + 1.09445i
1.39564 0.228425i
−1.89564 + 1.09445i 1.79129 1.39564 2.41733i −1.89564 1.09445i −3.39564 + 1.96048i 0 1.73205i 0.208712 4.79129
30.2 0.395644 0.228425i −2.79129 −0.895644 + 1.55130i 0.395644 + 0.228425i −1.10436 + 0.637600i 0 1.73205i 4.79129 0.208712
361.1 −1.89564 1.09445i 1.79129 1.39564 + 2.41733i −1.89564 + 1.09445i −3.39564 1.96048i 0 1.73205i 0.208712 4.79129
361.2 0.395644 + 0.228425i −2.79129 −0.895644 1.55130i 0.395644 0.228425i −1.10436 0.637600i 0 1.73205i 4.79129 0.208712
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.u even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.u.d 4
7.b odd 2 1 637.2.u.e 4
7.c even 3 1 637.2.k.f 4
7.c even 3 1 637.2.q.f yes 4
7.d odd 6 1 637.2.k.d 4
7.d odd 6 1 637.2.q.e 4
13.e even 6 1 637.2.k.f 4
91.k even 6 1 637.2.q.f yes 4
91.l odd 6 1 637.2.q.e 4
91.p odd 6 1 637.2.u.e 4
91.t odd 6 1 637.2.k.d 4
91.u even 6 1 inner 637.2.u.d 4
91.w even 12 2 8281.2.a.bs 4
91.bd odd 12 2 8281.2.a.bq 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
637.2.k.d 4 7.d odd 6 1
637.2.k.d 4 91.t odd 6 1
637.2.k.f 4 7.c even 3 1
637.2.k.f 4 13.e even 6 1
637.2.q.e 4 7.d odd 6 1
637.2.q.e 4 91.l odd 6 1
637.2.q.f yes 4 7.c even 3 1
637.2.q.f yes 4 91.k even 6 1
637.2.u.d 4 1.a even 1 1 trivial
637.2.u.d 4 91.u even 6 1 inner
637.2.u.e 4 7.b odd 2 1
637.2.u.e 4 91.p odd 6 1
8281.2.a.bq 4 91.bd odd 12 2
8281.2.a.bs 4 91.w even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(637,[χ])S_{2}^{\mathrm{new}}(637, [\chi]):

T24+3T23+2T223T2+1 T_{2}^{4} + 3T_{2}^{3} + 2T_{2}^{2} - 3T_{2} + 1 Copy content Toggle raw display
T32+T35 T_{3}^{2} + T_{3} - 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+3T3++1 T^{4} + 3 T^{3} + \cdots + 1 Copy content Toggle raw display
33 (T2+T5)2 (T^{2} + T - 5)^{2} Copy content Toggle raw display
55 T4+3T3++1 T^{4} + 3 T^{3} + \cdots + 1 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+17T2+25 T^{4} + 17T^{2} + 25 Copy content Toggle raw display
1313 (T2+7T+13)2 (T^{2} + 7 T + 13)^{2} Copy content Toggle raw display
1717 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
1919 T4+45T2+81 T^{4} + 45T^{2} + 81 Copy content Toggle raw display
2323 T4+6T3++144 T^{4} + 6 T^{3} + \cdots + 144 Copy content Toggle raw display
2929 T49T3++225 T^{4} - 9 T^{3} + \cdots + 225 Copy content Toggle raw display
3131 (T2+15T+75)2 (T^{2} + 15 T + 75)^{2} Copy content Toggle raw display
3737 (T2+12T+48)2 (T^{2} + 12 T + 48)^{2} Copy content Toggle raw display
4141 T4+18T3++400 T^{4} + 18 T^{3} + \cdots + 400 Copy content Toggle raw display
4343 T4+5T3++1681 T^{4} + 5 T^{3} + \cdots + 1681 Copy content Toggle raw display
4747 T4+24T3++1681 T^{4} + 24 T^{3} + \cdots + 1681 Copy content Toggle raw display
5353 T46T3++5625 T^{4} - 6 T^{3} + \cdots + 5625 Copy content Toggle raw display
5959 T46T3++11881 T^{4} - 6 T^{3} + \cdots + 11881 Copy content Toggle raw display
6161 (T22T188)2 (T^{2} - 2 T - 188)^{2} Copy content Toggle raw display
6767 T4+150T2+2601 T^{4} + 150T^{2} + 2601 Copy content Toggle raw display
7171 T46T3++16 T^{4} - 6 T^{3} + \cdots + 16 Copy content Toggle raw display
7373 (T26T+12)2 (T^{2} - 6 T + 12)^{2} Copy content Toggle raw display
7979 (T26T+36)2 (T^{2} - 6 T + 36)^{2} Copy content Toggle raw display
8383 T4+62T2+625 T^{4} + 62T^{2} + 625 Copy content Toggle raw display
8989 T4+33T3++2209 T^{4} + 33 T^{3} + \cdots + 2209 Copy content Toggle raw display
9797 T439T3++12321 T^{4} - 39 T^{3} + \cdots + 12321 Copy content Toggle raw display
show more
show less