Properties

Label 637.2.u.d
Level $637$
Weight $2$
Character orbit 637.u
Analytic conductor $5.086$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(30,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.30");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 1) q^{2} + ( - \beta_{3} - \beta_1) q^{3} + ( - 2 \beta_{3} + \beta_{2} + \beta_1) q^{4} + (\beta_1 - 1) q^{5} + (\beta_{3} + \beta_{2} - 3) q^{6} + (2 \beta_{2} - 1) q^{8} + (\beta_{3} + \beta_1 + 2) q^{9}+ \cdots + ( - 7 \beta_{3} + 18 \beta_{2} + \cdots - 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - 2 q^{3} + q^{4} - 3 q^{5} - 9 q^{6} + 10 q^{9} + 10 q^{10} + 10 q^{12} - 14 q^{13} - 9 q^{15} - q^{16} + 6 q^{17} + 3 q^{18} - 12 q^{20} - q^{22} - 6 q^{23} - 5 q^{25} + 9 q^{26} - 20 q^{27}+ \cdots + 39 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - x^{2} - 2x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + \nu^{2} - \nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + \nu^{2} + \nu + 2 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(\beta_{2}\) \(-1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
30.1
−0.895644 1.09445i
1.39564 + 0.228425i
−0.895644 + 1.09445i
1.39564 0.228425i
−1.89564 + 1.09445i 1.79129 1.39564 2.41733i −1.89564 1.09445i −3.39564 + 1.96048i 0 1.73205i 0.208712 4.79129
30.2 0.395644 0.228425i −2.79129 −0.895644 + 1.55130i 0.395644 + 0.228425i −1.10436 + 0.637600i 0 1.73205i 4.79129 0.208712
361.1 −1.89564 1.09445i 1.79129 1.39564 + 2.41733i −1.89564 + 1.09445i −3.39564 1.96048i 0 1.73205i 0.208712 4.79129
361.2 0.395644 + 0.228425i −2.79129 −0.895644 1.55130i 0.395644 0.228425i −1.10436 0.637600i 0 1.73205i 4.79129 0.208712
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.u even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.u.d 4
7.b odd 2 1 637.2.u.e 4
7.c even 3 1 637.2.k.f 4
7.c even 3 1 637.2.q.f yes 4
7.d odd 6 1 637.2.k.d 4
7.d odd 6 1 637.2.q.e 4
13.e even 6 1 637.2.k.f 4
91.k even 6 1 637.2.q.f yes 4
91.l odd 6 1 637.2.q.e 4
91.p odd 6 1 637.2.u.e 4
91.t odd 6 1 637.2.k.d 4
91.u even 6 1 inner 637.2.u.d 4
91.w even 12 2 8281.2.a.bs 4
91.bd odd 12 2 8281.2.a.bq 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
637.2.k.d 4 7.d odd 6 1
637.2.k.d 4 91.t odd 6 1
637.2.k.f 4 7.c even 3 1
637.2.k.f 4 13.e even 6 1
637.2.q.e 4 7.d odd 6 1
637.2.q.e 4 91.l odd 6 1
637.2.q.f yes 4 7.c even 3 1
637.2.q.f yes 4 91.k even 6 1
637.2.u.d 4 1.a even 1 1 trivial
637.2.u.d 4 91.u even 6 1 inner
637.2.u.e 4 7.b odd 2 1
637.2.u.e 4 91.p odd 6 1
8281.2.a.bq 4 91.bd odd 12 2
8281.2.a.bs 4 91.w even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(637, [\chi])\):

\( T_{2}^{4} + 3T_{2}^{3} + 2T_{2}^{2} - 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{2} + T_{3} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + T - 5)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 17T^{2} + 25 \) Copy content Toggle raw display
$13$ \( (T^{2} + 7 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 45T^{2} + 81 \) Copy content Toggle raw display
$23$ \( T^{4} + 6 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$29$ \( T^{4} - 9 T^{3} + \cdots + 225 \) Copy content Toggle raw display
$31$ \( (T^{2} + 15 T + 75)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 12 T + 48)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 18 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$43$ \( T^{4} + 5 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$47$ \( T^{4} + 24 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$53$ \( T^{4} - 6 T^{3} + \cdots + 5625 \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 11881 \) Copy content Toggle raw display
$61$ \( (T^{2} - 2 T - 188)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 150T^{2} + 2601 \) Copy content Toggle raw display
$71$ \( T^{4} - 6 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$73$ \( (T^{2} - 6 T + 12)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 6 T + 36)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 62T^{2} + 625 \) Copy content Toggle raw display
$89$ \( T^{4} + 33 T^{3} + \cdots + 2209 \) Copy content Toggle raw display
$97$ \( T^{4} - 39 T^{3} + \cdots + 12321 \) Copy content Toggle raw display
show more
show less