Properties

Label 2-637-1.1-c5-0-144
Degree $2$
Conductor $637$
Sign $-1$
Analytic cond. $102.164$
Root an. cond. $10.1076$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.9·2-s + 26.7·3-s + 87.0·4-s − 91.1·5-s − 291.·6-s − 601.·8-s + 472.·9-s + 994.·10-s + 261.·11-s + 2.32e3·12-s + 169·13-s − 2.43e3·15-s + 3.77e3·16-s − 1.12e3·17-s − 5.15e3·18-s − 33.7·19-s − 7.93e3·20-s − 2.85e3·22-s − 2.25e3·23-s − 1.60e4·24-s + 5.18e3·25-s − 1.84e3·26-s + 6.14e3·27-s + 2.71e3·29-s + 2.66e4·30-s + 6.02e3·31-s − 2.19e4·32-s + ⋯
L(s)  = 1  − 1.92·2-s + 1.71·3-s + 2.72·4-s − 1.63·5-s − 3.31·6-s − 3.32·8-s + 1.94·9-s + 3.14·10-s + 0.652·11-s + 4.67·12-s + 0.277·13-s − 2.79·15-s + 3.68·16-s − 0.946·17-s − 3.75·18-s − 0.0214·19-s − 4.43·20-s − 1.25·22-s − 0.889·23-s − 5.69·24-s + 1.65·25-s − 0.535·26-s + 1.62·27-s + 0.598·29-s + 5.39·30-s + 1.12·31-s − 3.78·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(102.164\)
Root analytic conductor: \(10.1076\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 637,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 - 169T \)
good2 \( 1 + 10.9T + 32T^{2} \)
3 \( 1 - 26.7T + 243T^{2} \)
5 \( 1 + 91.1T + 3.12e3T^{2} \)
11 \( 1 - 261.T + 1.61e5T^{2} \)
17 \( 1 + 1.12e3T + 1.41e6T^{2} \)
19 \( 1 + 33.7T + 2.47e6T^{2} \)
23 \( 1 + 2.25e3T + 6.43e6T^{2} \)
29 \( 1 - 2.71e3T + 2.05e7T^{2} \)
31 \( 1 - 6.02e3T + 2.86e7T^{2} \)
37 \( 1 + 7.63e3T + 6.93e7T^{2} \)
41 \( 1 + 1.31e4T + 1.15e8T^{2} \)
43 \( 1 - 6.07e3T + 1.47e8T^{2} \)
47 \( 1 + 4.06e3T + 2.29e8T^{2} \)
53 \( 1 - 2.66e4T + 4.18e8T^{2} \)
59 \( 1 + 3.27e4T + 7.14e8T^{2} \)
61 \( 1 - 4.30e4T + 8.44e8T^{2} \)
67 \( 1 + 2.94e4T + 1.35e9T^{2} \)
71 \( 1 - 3.10e4T + 1.80e9T^{2} \)
73 \( 1 + 2.16e4T + 2.07e9T^{2} \)
79 \( 1 + 9.80e3T + 3.07e9T^{2} \)
83 \( 1 - 2.35e4T + 3.93e9T^{2} \)
89 \( 1 - 2.51e4T + 5.58e9T^{2} \)
97 \( 1 + 1.47e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.030700635570960590860379099635, −8.410608633951118782471272457642, −8.123459410113428906910928457499, −7.21597850551007372283374373541, −6.62058920509043310297538008242, −4.16346699279894952424533779517, −3.30980146733851177331499082905, −2.34305591953969115343745471817, −1.22871156048873169821877961469, 0, 1.22871156048873169821877961469, 2.34305591953969115343745471817, 3.30980146733851177331499082905, 4.16346699279894952424533779517, 6.62058920509043310297538008242, 7.21597850551007372283374373541, 8.123459410113428906910928457499, 8.410608633951118782471272457642, 9.030700635570960590860379099635

Graph of the $Z$-function along the critical line