Properties

Label 637.6.a.e
Level $637$
Weight $6$
Character orbit 637.a
Self dual yes
Analytic conductor $102.164$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,6,Mod(1,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 637.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(102.164493221\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 250x^{6} + 210x^{5} + 20076x^{4} - 12252x^{3} - 544784x^{2} + 65648x + 2393792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{4} + \beta_1 - 4) q^{3} + (\beta_{2} + 31) q^{4} + ( - \beta_{3} - 2 \beta_1 - 27) q^{5} + (2 \beta_{7} - \beta_{6} - 2 \beta_{5} + \cdots - 53) q^{6} + (3 \beta_{7} - 4 \beta_{6} - 5 \beta_{4} + \cdots - 1) q^{8}+ \cdots + ( - 25 \beta_{7} + 570 \beta_{6} + \cdots + 10210) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 28 q^{3} + 245 q^{4} - 219 q^{5} - 435 q^{6} - 57 q^{8} + 930 q^{9} + 948 q^{10} + 184 q^{11} - 463 q^{12} + 1352 q^{13} - 256 q^{15} + 4953 q^{16} - 2278 q^{17} - 5308 q^{18} - 4959 q^{19}+ \cdots + 90754 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} - 250x^{6} + 210x^{5} + 20076x^{4} - 12252x^{3} - 544784x^{2} + 65648x + 2393792 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 63 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 2501 \nu^{7} + 35467 \nu^{6} + 1254008 \nu^{5} - 8124970 \nu^{4} - 138426240 \nu^{3} + \cdots - 2702698464 ) / 99699232 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 29683 \nu^{7} - 461047 \nu^{6} + 5659660 \nu^{5} + 89483730 \nu^{4} - 226396840 \nu^{3} + \cdots + 27309929696 ) / 598195392 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 109811 \nu^{7} - 52255 \nu^{6} + 21329812 \nu^{5} + 32657314 \nu^{4} - 1151406808 \nu^{3} + \cdots + 15868421856 ) / 598195392 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 91705 \nu^{7} + 702673 \nu^{6} - 17428720 \nu^{5} - 131929806 \nu^{4} + 849745264 \nu^{3} + \cdots - 30023872448 ) / 299097696 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 190073 \nu^{7} + 1176317 \nu^{6} - 34535804 \nu^{5} - 218923206 \nu^{4} + 1412408360 \nu^{3} + \cdots - 14628902368 ) / 598195392 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 63 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{7} + 4\beta_{6} + 5\beta_{4} + \beta_{3} - 2\beta_{2} + 88\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{7} + 8\beta_{6} + 18\beta_{5} + 43\beta_{4} - 5\beta_{3} + 114\beta_{2} - 2\beta _1 + 5629 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -389\beta_{7} + 578\beta_{6} + 18\beta_{5} + 885\beta_{4} + 255\beta_{3} - 234\beta_{2} + 8650\beta _1 - 203 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 1147 \beta_{7} + 2066 \beta_{6} + 3606 \beta_{5} + 7161 \beta_{4} - 773 \beta_{3} + 12090 \beta_{2} + \cdots + 553569 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 41973 \beta_{7} + 71726 \beta_{6} + 1686 \beta_{5} + 128857 \beta_{4} + 37927 \beta_{3} + \cdots + 17009 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
10.9127
8.37806
7.87682
2.33047
−2.31470
−6.17463
−9.46332
−10.5454
−10.9127 26.7530 87.0880 −91.1424 −291.949 0 −601.161 472.725 994.614
1.2 −8.37806 5.43213 38.1920 5.58680 −45.5107 0 −51.8766 −213.492 −46.8066
1.3 −7.87682 −28.4534 30.0443 −12.9458 224.122 0 15.4049 566.593 101.971
1.4 −2.33047 −3.45560 −26.5689 −94.0769 8.05316 0 136.493 −231.059 219.243
1.5 2.31470 16.6968 −26.6421 48.4304 38.6483 0 −135.739 35.7848 112.102
1.6 6.17463 −24.2913 6.12609 −68.1144 −149.990 0 −159.762 347.066 −420.581
1.7 9.46332 0.254216 57.5544 −54.0690 2.40573 0 241.829 −242.935 −511.672
1.8 10.5454 −20.9360 79.2064 47.3313 −220.779 0 497.812 195.317 499.129
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.6.a.e 8
7.b odd 2 1 91.6.a.c 8
21.c even 2 1 819.6.a.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.6.a.c 8 7.b odd 2 1
637.6.a.e 8 1.a even 1 1 trivial
819.6.a.j 8 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(637))\):

\( T_{2}^{8} + T_{2}^{7} - 250T_{2}^{6} - 210T_{2}^{5} + 20076T_{2}^{4} + 12252T_{2}^{3} - 544784T_{2}^{2} - 65648T_{2} + 2393792 \) Copy content Toggle raw display
\( T_{3}^{8} + 28 T_{3}^{7} - 1045 T_{3}^{6} - 29036 T_{3}^{5} + 259264 T_{3}^{4} + 6632208 T_{3}^{3} + \cdots + 30844800 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + T^{7} + \cdots + 2393792 \) Copy content Toggle raw display
$3$ \( T^{8} + 28 T^{7} + \cdots + 30844800 \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots - 5235380906112 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 96\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T - 169)^{8} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots - 98\!\cdots\!72 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots - 75\!\cdots\!80 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 65\!\cdots\!40 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 77\!\cdots\!52 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots - 75\!\cdots\!60 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots - 59\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots - 33\!\cdots\!80 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots - 13\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 17\!\cdots\!80 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots - 31\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 10\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 34\!\cdots\!20 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots - 20\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 42\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 29\!\cdots\!22 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 25\!\cdots\!36 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 19\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 77\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots - 28\!\cdots\!50 \) Copy content Toggle raw display
show more
show less