Properties

Label 2-637-1.1-c5-0-189
Degree $2$
Conductor $637$
Sign $-1$
Analytic cond. $102.164$
Root an. cond. $10.1076$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.5·2-s − 20.9·3-s + 79.2·4-s + 47.3·5-s − 220.·6-s + 497.·8-s + 195.·9-s + 499.·10-s − 565.·11-s − 1.65e3·12-s + 169·13-s − 990.·15-s + 2.71e3·16-s − 1.58e3·17-s + 2.05e3·18-s + 122.·19-s + 3.74e3·20-s − 5.96e3·22-s − 3.58e3·23-s − 1.04e4·24-s − 884.·25-s + 1.78e3·26-s + 998.·27-s + 281.·29-s − 1.04e4·30-s − 1.09e3·31-s + 1.27e4·32-s + ⋯
L(s)  = 1  + 1.86·2-s − 1.34·3-s + 2.47·4-s + 0.846·5-s − 2.50·6-s + 2.75·8-s + 0.803·9-s + 1.57·10-s − 1.40·11-s − 3.32·12-s + 0.277·13-s − 1.13·15-s + 2.65·16-s − 1.33·17-s + 1.49·18-s + 0.0778·19-s + 2.09·20-s − 2.62·22-s − 1.41·23-s − 3.69·24-s − 0.283·25-s + 0.517·26-s + 0.263·27-s + 0.0620·29-s − 2.11·30-s − 0.203·31-s + 2.19·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(102.164\)
Root analytic conductor: \(10.1076\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 637,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 - 169T \)
good2 \( 1 - 10.5T + 32T^{2} \)
3 \( 1 + 20.9T + 243T^{2} \)
5 \( 1 - 47.3T + 3.12e3T^{2} \)
11 \( 1 + 565.T + 1.61e5T^{2} \)
17 \( 1 + 1.58e3T + 1.41e6T^{2} \)
19 \( 1 - 122.T + 2.47e6T^{2} \)
23 \( 1 + 3.58e3T + 6.43e6T^{2} \)
29 \( 1 - 281.T + 2.05e7T^{2} \)
31 \( 1 + 1.09e3T + 2.86e7T^{2} \)
37 \( 1 - 1.22e4T + 6.93e7T^{2} \)
41 \( 1 + 1.84e4T + 1.15e8T^{2} \)
43 \( 1 + 1.80e4T + 1.47e8T^{2} \)
47 \( 1 - 1.82e3T + 2.29e8T^{2} \)
53 \( 1 - 1.64e4T + 4.18e8T^{2} \)
59 \( 1 + 1.78e4T + 7.14e8T^{2} \)
61 \( 1 - 4.03e4T + 8.44e8T^{2} \)
67 \( 1 + 2.56e4T + 1.35e9T^{2} \)
71 \( 1 - 6.27e4T + 1.80e9T^{2} \)
73 \( 1 + 1.54e3T + 2.07e9T^{2} \)
79 \( 1 + 7.55e4T + 3.07e9T^{2} \)
83 \( 1 + 7.37e4T + 3.93e9T^{2} \)
89 \( 1 - 7.70e4T + 5.58e9T^{2} \)
97 \( 1 + 4.74e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.974561858615409401355689876112, −8.171834658092508589227505346741, −6.90430848370196576750662429863, −6.23504620276802713004990825801, −5.57707794380427331730329683147, −5.02032475186445727425757367502, −4.09208168916424470071704388349, −2.68212148931437692493896608728, −1.80067057036729556440547782132, 0, 1.80067057036729556440547782132, 2.68212148931437692493896608728, 4.09208168916424470071704388349, 5.02032475186445727425757367502, 5.57707794380427331730329683147, 6.23504620276802713004990825801, 6.90430848370196576750662429863, 8.171834658092508589227505346741, 9.974561858615409401355689876112

Graph of the $Z$-function along the critical line