Properties

Label 637.6.a.e.1.8
Level $637$
Weight $6$
Character 637.1
Self dual yes
Analytic conductor $102.164$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,6,Mod(1,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 637.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(102.164493221\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 250x^{6} + 210x^{5} + 20076x^{4} - 12252x^{3} - 544784x^{2} + 65648x + 2393792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-10.5454\) of defining polynomial
Character \(\chi\) \(=\) 637.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.5454 q^{2} -20.9360 q^{3} +79.2064 q^{4} +47.3313 q^{5} -220.779 q^{6} +497.812 q^{8} +195.317 q^{9} +499.129 q^{10} -565.192 q^{11} -1658.27 q^{12} +169.000 q^{13} -990.929 q^{15} +2715.04 q^{16} -1584.92 q^{17} +2059.70 q^{18} +122.512 q^{19} +3748.94 q^{20} -5960.20 q^{22} -3589.38 q^{23} -10422.2 q^{24} -884.748 q^{25} +1782.18 q^{26} +998.301 q^{27} +281.224 q^{29} -10449.8 q^{30} -1091.47 q^{31} +12701.3 q^{32} +11832.9 q^{33} -16713.7 q^{34} +15470.3 q^{36} +12227.0 q^{37} +1291.94 q^{38} -3538.19 q^{39} +23562.1 q^{40} -18476.7 q^{41} -18009.0 q^{43} -44766.8 q^{44} +9244.59 q^{45} -37851.6 q^{46} +1825.98 q^{47} -56842.2 q^{48} -9330.06 q^{50} +33181.9 q^{51} +13385.9 q^{52} +16450.0 q^{53} +10527.5 q^{54} -26751.3 q^{55} -2564.91 q^{57} +2965.63 q^{58} -17850.9 q^{59} -78487.8 q^{60} +40378.3 q^{61} -11510.0 q^{62} +47060.0 q^{64} +7998.99 q^{65} +124783. q^{66} -25650.2 q^{67} -125536. q^{68} +75147.3 q^{69} +62754.5 q^{71} +97230.9 q^{72} -1546.40 q^{73} +128939. q^{74} +18523.1 q^{75} +9703.73 q^{76} -37311.7 q^{78} -75500.7 q^{79} +128507. q^{80} -68362.4 q^{81} -194845. q^{82} -73741.0 q^{83} -75016.2 q^{85} -189913. q^{86} -5887.71 q^{87} -281359. q^{88} +77074.6 q^{89} +97488.3 q^{90} -284302. q^{92} +22850.9 q^{93} +19255.8 q^{94} +5798.66 q^{95} -265916. q^{96} -47473.9 q^{97} -110391. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 28 q^{3} + 245 q^{4} - 219 q^{5} - 435 q^{6} - 57 q^{8} + 930 q^{9} + 948 q^{10} + 184 q^{11} - 463 q^{12} + 1352 q^{13} - 256 q^{15} + 4953 q^{16} - 2278 q^{17} - 5308 q^{18} - 4959 q^{19}+ \cdots + 90754 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 10.5454 1.86419 0.932094 0.362216i \(-0.117980\pi\)
0.932094 + 0.362216i \(0.117980\pi\)
\(3\) −20.9360 −1.34305 −0.671523 0.740984i \(-0.734360\pi\)
−0.671523 + 0.740984i \(0.734360\pi\)
\(4\) 79.2064 2.47520
\(5\) 47.3313 0.846688 0.423344 0.905969i \(-0.360856\pi\)
0.423344 + 0.905969i \(0.360856\pi\)
\(6\) −220.779 −2.50369
\(7\) 0 0
\(8\) 497.812 2.75005
\(9\) 195.317 0.803772
\(10\) 499.129 1.57839
\(11\) −565.192 −1.40836 −0.704181 0.710021i \(-0.748686\pi\)
−0.704181 + 0.710021i \(0.748686\pi\)
\(12\) −1658.27 −3.32430
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) −990.929 −1.13714
\(16\) 2715.04 2.65141
\(17\) −1584.92 −1.33010 −0.665050 0.746799i \(-0.731590\pi\)
−0.665050 + 0.746799i \(0.731590\pi\)
\(18\) 2059.70 1.49838
\(19\) 122.512 0.0778565 0.0389282 0.999242i \(-0.487606\pi\)
0.0389282 + 0.999242i \(0.487606\pi\)
\(20\) 3748.94 2.09572
\(21\) 0 0
\(22\) −5960.20 −2.62545
\(23\) −3589.38 −1.41481 −0.707407 0.706806i \(-0.750135\pi\)
−0.707407 + 0.706806i \(0.750135\pi\)
\(24\) −10422.2 −3.69344
\(25\) −884.748 −0.283119
\(26\) 1782.18 0.517033
\(27\) 998.301 0.263543
\(28\) 0 0
\(29\) 281.224 0.0620951 0.0310475 0.999518i \(-0.490116\pi\)
0.0310475 + 0.999518i \(0.490116\pi\)
\(30\) −10449.8 −2.11984
\(31\) −1091.47 −0.203988 −0.101994 0.994785i \(-0.532522\pi\)
−0.101994 + 0.994785i \(0.532522\pi\)
\(32\) 12701.3 2.19268
\(33\) 11832.9 1.89149
\(34\) −16713.7 −2.47956
\(35\) 0 0
\(36\) 15470.3 1.98949
\(37\) 12227.0 1.46830 0.734149 0.678988i \(-0.237581\pi\)
0.734149 + 0.678988i \(0.237581\pi\)
\(38\) 1291.94 0.145139
\(39\) −3538.19 −0.372494
\(40\) 23562.1 2.32843
\(41\) −18476.7 −1.71658 −0.858292 0.513161i \(-0.828474\pi\)
−0.858292 + 0.513161i \(0.828474\pi\)
\(42\) 0 0
\(43\) −18009.0 −1.48531 −0.742656 0.669673i \(-0.766434\pi\)
−0.742656 + 0.669673i \(0.766434\pi\)
\(44\) −44766.8 −3.48597
\(45\) 9244.59 0.680544
\(46\) −37851.6 −2.63748
\(47\) 1825.98 0.120573 0.0602867 0.998181i \(-0.480799\pi\)
0.0602867 + 0.998181i \(0.480799\pi\)
\(48\) −56842.2 −3.56096
\(49\) 0 0
\(50\) −9330.06 −0.527788
\(51\) 33181.9 1.78639
\(52\) 13385.9 0.686497
\(53\) 16450.0 0.804410 0.402205 0.915550i \(-0.368244\pi\)
0.402205 + 0.915550i \(0.368244\pi\)
\(54\) 10527.5 0.491294
\(55\) −26751.3 −1.19244
\(56\) 0 0
\(57\) −2564.91 −0.104565
\(58\) 2965.63 0.115757
\(59\) −17850.9 −0.667621 −0.333810 0.942640i \(-0.608334\pi\)
−0.333810 + 0.942640i \(0.608334\pi\)
\(60\) −78487.8 −2.81465
\(61\) 40378.3 1.38939 0.694693 0.719306i \(-0.255540\pi\)
0.694693 + 0.719306i \(0.255540\pi\)
\(62\) −11510.0 −0.380273
\(63\) 0 0
\(64\) 47060.0 1.43616
\(65\) 7998.99 0.234829
\(66\) 124783. 3.52610
\(67\) −25650.2 −0.698078 −0.349039 0.937108i \(-0.613492\pi\)
−0.349039 + 0.937108i \(0.613492\pi\)
\(68\) −125536. −3.29226
\(69\) 75147.3 1.90016
\(70\) 0 0
\(71\) 62754.5 1.47740 0.738701 0.674033i \(-0.235439\pi\)
0.738701 + 0.674033i \(0.235439\pi\)
\(72\) 97230.9 2.21041
\(73\) −1546.40 −0.0339637 −0.0169819 0.999856i \(-0.505406\pi\)
−0.0169819 + 0.999856i \(0.505406\pi\)
\(74\) 128939. 2.73718
\(75\) 18523.1 0.380242
\(76\) 9703.73 0.192710
\(77\) 0 0
\(78\) −37311.7 −0.694399
\(79\) −75500.7 −1.36108 −0.680539 0.732711i \(-0.738254\pi\)
−0.680539 + 0.732711i \(0.738254\pi\)
\(80\) 128507. 2.24492
\(81\) −68362.4 −1.15772
\(82\) −194845. −3.20004
\(83\) −73741.0 −1.17494 −0.587468 0.809248i \(-0.699875\pi\)
−0.587468 + 0.809248i \(0.699875\pi\)
\(84\) 0 0
\(85\) −75016.2 −1.12618
\(86\) −189913. −2.76890
\(87\) −5887.71 −0.0833966
\(88\) −281359. −3.87306
\(89\) 77074.6 1.03142 0.515711 0.856763i \(-0.327528\pi\)
0.515711 + 0.856763i \(0.327528\pi\)
\(90\) 97488.3 1.26866
\(91\) 0 0
\(92\) −284302. −3.50195
\(93\) 22850.9 0.273966
\(94\) 19255.8 0.224771
\(95\) 5798.66 0.0659202
\(96\) −265916. −2.94487
\(97\) −47473.9 −0.512302 −0.256151 0.966637i \(-0.582454\pi\)
−0.256151 + 0.966637i \(0.582454\pi\)
\(98\) 0 0
\(99\) −110391. −1.13200
\(100\) −70077.7 −0.700777
\(101\) −183143. −1.78643 −0.893217 0.449626i \(-0.851557\pi\)
−0.893217 + 0.449626i \(0.851557\pi\)
\(102\) 349917. 3.33016
\(103\) −35947.8 −0.333871 −0.166936 0.985968i \(-0.553387\pi\)
−0.166936 + 0.985968i \(0.553387\pi\)
\(104\) 84130.2 0.762726
\(105\) 0 0
\(106\) 173473. 1.49957
\(107\) −56317.4 −0.475536 −0.237768 0.971322i \(-0.576416\pi\)
−0.237768 + 0.971322i \(0.576416\pi\)
\(108\) 79071.8 0.652322
\(109\) 198764. 1.60240 0.801199 0.598398i \(-0.204196\pi\)
0.801199 + 0.598398i \(0.204196\pi\)
\(110\) −282104. −2.22294
\(111\) −255984. −1.97199
\(112\) 0 0
\(113\) −263390. −1.94045 −0.970227 0.242197i \(-0.922132\pi\)
−0.970227 + 0.242197i \(0.922132\pi\)
\(114\) −27048.2 −0.194929
\(115\) −169890. −1.19791
\(116\) 22274.7 0.153698
\(117\) 33008.5 0.222926
\(118\) −188245. −1.24457
\(119\) 0 0
\(120\) −493296. −3.12719
\(121\) 158391. 0.983482
\(122\) 425807. 2.59008
\(123\) 386829. 2.30545
\(124\) −86451.0 −0.504912
\(125\) −189787. −1.08640
\(126\) 0 0
\(127\) 133322. 0.733486 0.366743 0.930322i \(-0.380473\pi\)
0.366743 + 0.930322i \(0.380473\pi\)
\(128\) 89824.9 0.484587
\(129\) 377036. 1.99484
\(130\) 84352.9 0.437766
\(131\) −355376. −1.80930 −0.904649 0.426158i \(-0.859867\pi\)
−0.904649 + 0.426158i \(0.859867\pi\)
\(132\) 937238. 4.68182
\(133\) 0 0
\(134\) −270493. −1.30135
\(135\) 47250.9 0.223139
\(136\) −788991. −3.65784
\(137\) 13834.2 0.0629730 0.0314865 0.999504i \(-0.489976\pi\)
0.0314865 + 0.999504i \(0.489976\pi\)
\(138\) 792461. 3.54226
\(139\) 304201. 1.33544 0.667718 0.744414i \(-0.267271\pi\)
0.667718 + 0.744414i \(0.267271\pi\)
\(140\) 0 0
\(141\) −38228.7 −0.161935
\(142\) 661774. 2.75416
\(143\) −95517.4 −0.390609
\(144\) 530293. 2.13113
\(145\) 13310.7 0.0525752
\(146\) −16307.5 −0.0633148
\(147\) 0 0
\(148\) 968453. 3.63433
\(149\) 61346.6 0.226373 0.113186 0.993574i \(-0.463894\pi\)
0.113186 + 0.993574i \(0.463894\pi\)
\(150\) 195334. 0.708843
\(151\) −251294. −0.896892 −0.448446 0.893810i \(-0.648022\pi\)
−0.448446 + 0.893810i \(0.648022\pi\)
\(152\) 60988.0 0.214109
\(153\) −309561. −1.06910
\(154\) 0 0
\(155\) −51660.5 −0.172715
\(156\) −280247. −0.921996
\(157\) −141718. −0.458856 −0.229428 0.973326i \(-0.573685\pi\)
−0.229428 + 0.973326i \(0.573685\pi\)
\(158\) −796188. −2.53731
\(159\) −344398. −1.08036
\(160\) 601171. 1.85651
\(161\) 0 0
\(162\) −720911. −2.15821
\(163\) 388256. 1.14459 0.572293 0.820049i \(-0.306054\pi\)
0.572293 + 0.820049i \(0.306054\pi\)
\(164\) −1.46347e6 −4.24889
\(165\) 560065. 1.60151
\(166\) −777632. −2.19030
\(167\) 188989. 0.524378 0.262189 0.965017i \(-0.415556\pi\)
0.262189 + 0.965017i \(0.415556\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) −791079. −2.09941
\(171\) 23928.6 0.0625789
\(172\) −1.42643e6 −3.67644
\(173\) 77256.1 0.196253 0.0981267 0.995174i \(-0.468715\pi\)
0.0981267 + 0.995174i \(0.468715\pi\)
\(174\) −62088.5 −0.155467
\(175\) 0 0
\(176\) −1.53452e6 −3.73414
\(177\) 373726. 0.896645
\(178\) 812785. 1.92276
\(179\) 455688. 1.06300 0.531502 0.847057i \(-0.321628\pi\)
0.531502 + 0.847057i \(0.321628\pi\)
\(180\) 732230. 1.68448
\(181\) −234722. −0.532547 −0.266273 0.963898i \(-0.585792\pi\)
−0.266273 + 0.963898i \(0.585792\pi\)
\(182\) 0 0
\(183\) −845360. −1.86601
\(184\) −1.78683e6 −3.89081
\(185\) 578718. 1.24319
\(186\) 240973. 0.510724
\(187\) 895783. 1.87326
\(188\) 144629. 0.298443
\(189\) 0 0
\(190\) 61149.4 0.122888
\(191\) −205385. −0.407366 −0.203683 0.979037i \(-0.565291\pi\)
−0.203683 + 0.979037i \(0.565291\pi\)
\(192\) −985248. −1.92882
\(193\) 18128.1 0.0350315 0.0175158 0.999847i \(-0.494424\pi\)
0.0175158 + 0.999847i \(0.494424\pi\)
\(194\) −500634. −0.955027
\(195\) −167467. −0.315386
\(196\) 0 0
\(197\) 331912. 0.609337 0.304668 0.952459i \(-0.401454\pi\)
0.304668 + 0.952459i \(0.401454\pi\)
\(198\) −1.16413e6 −2.11026
\(199\) −363902. −0.651407 −0.325703 0.945472i \(-0.605601\pi\)
−0.325703 + 0.945472i \(0.605601\pi\)
\(200\) −440438. −0.778592
\(201\) 537013. 0.937551
\(202\) −1.93132e6 −3.33025
\(203\) 0 0
\(204\) 2.62821e6 4.42166
\(205\) −874527. −1.45341
\(206\) −379085. −0.622399
\(207\) −701065. −1.13719
\(208\) 458842. 0.735369
\(209\) −69242.8 −0.109650
\(210\) 0 0
\(211\) 86433.6 0.133652 0.0668261 0.997765i \(-0.478713\pi\)
0.0668261 + 0.997765i \(0.478713\pi\)
\(212\) 1.30295e6 1.99107
\(213\) −1.31383e6 −1.98422
\(214\) −593892. −0.886488
\(215\) −852388. −1.25760
\(216\) 496966. 0.724757
\(217\) 0 0
\(218\) 2.09605e6 2.98717
\(219\) 32375.5 0.0456149
\(220\) −2.11887e6 −2.95153
\(221\) −267851. −0.368904
\(222\) −2.69946e6 −3.67616
\(223\) 828294. 1.11538 0.557689 0.830050i \(-0.311688\pi\)
0.557689 + 0.830050i \(0.311688\pi\)
\(224\) 0 0
\(225\) −172806. −0.227563
\(226\) −2.77757e6 −3.61737
\(227\) −476437. −0.613678 −0.306839 0.951761i \(-0.599271\pi\)
−0.306839 + 0.951761i \(0.599271\pi\)
\(228\) −203157. −0.258819
\(229\) 634312. 0.799308 0.399654 0.916666i \(-0.369130\pi\)
0.399654 + 0.916666i \(0.369130\pi\)
\(230\) −1.79156e6 −2.23312
\(231\) 0 0
\(232\) 139997. 0.170764
\(233\) −381598. −0.460486 −0.230243 0.973133i \(-0.573952\pi\)
−0.230243 + 0.973133i \(0.573952\pi\)
\(234\) 348089. 0.415576
\(235\) 86426.0 0.102088
\(236\) −1.41390e6 −1.65249
\(237\) 1.58068e6 1.82799
\(238\) 0 0
\(239\) −436062. −0.493803 −0.246901 0.969041i \(-0.579412\pi\)
−0.246901 + 0.969041i \(0.579412\pi\)
\(240\) −2.69041e6 −3.01503
\(241\) 540410. 0.599351 0.299675 0.954041i \(-0.403122\pi\)
0.299675 + 0.954041i \(0.403122\pi\)
\(242\) 1.67030e6 1.83340
\(243\) 1.18865e6 1.29133
\(244\) 3.19822e6 3.43901
\(245\) 0 0
\(246\) 4.07928e6 4.29780
\(247\) 20704.5 0.0215935
\(248\) −543344. −0.560978
\(249\) 1.54384e6 1.57799
\(250\) −2.00138e6 −2.02526
\(251\) 445577. 0.446415 0.223207 0.974771i \(-0.428347\pi\)
0.223207 + 0.974771i \(0.428347\pi\)
\(252\) 0 0
\(253\) 2.02869e6 1.99257
\(254\) 1.40594e6 1.36736
\(255\) 1.57054e6 1.51251
\(256\) −558675. −0.532794
\(257\) −823745. −0.777965 −0.388983 0.921245i \(-0.627173\pi\)
−0.388983 + 0.921245i \(0.627173\pi\)
\(258\) 3.97601e6 3.71876
\(259\) 0 0
\(260\) 633571. 0.581248
\(261\) 54927.7 0.0499103
\(262\) −3.74760e6 −3.37287
\(263\) −1.57117e6 −1.40067 −0.700334 0.713816i \(-0.746965\pi\)
−0.700334 + 0.713816i \(0.746965\pi\)
\(264\) 5.89054e6 5.20170
\(265\) 778602. 0.681084
\(266\) 0 0
\(267\) −1.61363e6 −1.38525
\(268\) −2.03166e6 −1.72788
\(269\) 1.61767e6 1.36304 0.681519 0.731800i \(-0.261319\pi\)
0.681519 + 0.731800i \(0.261319\pi\)
\(270\) 498281. 0.415973
\(271\) 1.62925e6 1.34761 0.673807 0.738907i \(-0.264658\pi\)
0.673807 + 0.738907i \(0.264658\pi\)
\(272\) −4.30312e6 −3.52664
\(273\) 0 0
\(274\) 145888. 0.117393
\(275\) 500052. 0.398734
\(276\) 5.95214e6 4.70328
\(277\) 1.42189e6 1.11344 0.556721 0.830699i \(-0.312059\pi\)
0.556721 + 0.830699i \(0.312059\pi\)
\(278\) 3.20793e6 2.48950
\(279\) −213181. −0.163960
\(280\) 0 0
\(281\) −1.90371e6 −1.43825 −0.719126 0.694879i \(-0.755458\pi\)
−0.719126 + 0.694879i \(0.755458\pi\)
\(282\) −403139. −0.301878
\(283\) 1.04222e6 0.773556 0.386778 0.922173i \(-0.373588\pi\)
0.386778 + 0.922173i \(0.373588\pi\)
\(284\) 4.97055e6 3.65686
\(285\) −121401. −0.0885338
\(286\) −1.00727e6 −0.728169
\(287\) 0 0
\(288\) 2.48078e6 1.76241
\(289\) 1.09211e6 0.769168
\(290\) 140367. 0.0980100
\(291\) 993915. 0.688045
\(292\) −122485. −0.0840670
\(293\) 2.49381e6 1.69705 0.848524 0.529157i \(-0.177492\pi\)
0.848524 + 0.529157i \(0.177492\pi\)
\(294\) 0 0
\(295\) −844905. −0.565266
\(296\) 6.08673e6 4.03789
\(297\) −564232. −0.371164
\(298\) 646927. 0.422002
\(299\) −606605. −0.392399
\(300\) 1.46715e6 0.941175
\(301\) 0 0
\(302\) −2.65001e6 −1.67198
\(303\) 3.83428e6 2.39926
\(304\) 332626. 0.206429
\(305\) 1.91116e6 1.17638
\(306\) −3.26446e6 −1.99300
\(307\) 2.24762e6 1.36106 0.680530 0.732721i \(-0.261750\pi\)
0.680530 + 0.732721i \(0.261750\pi\)
\(308\) 0 0
\(309\) 752603. 0.448404
\(310\) −544782. −0.321973
\(311\) 803100. 0.470835 0.235418 0.971894i \(-0.424354\pi\)
0.235418 + 0.971894i \(0.424354\pi\)
\(312\) −1.76135e6 −1.02438
\(313\) 138328. 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(314\) −1.49448e6 −0.855394
\(315\) 0 0
\(316\) −5.98014e6 −3.36894
\(317\) 2.95651e6 1.65246 0.826232 0.563330i \(-0.190480\pi\)
0.826232 + 0.563330i \(0.190480\pi\)
\(318\) −3.63183e6 −2.01399
\(319\) −158945. −0.0874524
\(320\) 2.22741e6 1.21598
\(321\) 1.17906e6 0.638666
\(322\) 0 0
\(323\) −194172. −0.103557
\(324\) −5.41473e6 −2.86559
\(325\) −149522. −0.0785232
\(326\) 4.09433e6 2.13373
\(327\) −4.16131e6 −2.15209
\(328\) −9.19793e6 −4.72069
\(329\) 0 0
\(330\) 5.90613e6 2.98551
\(331\) −1.50820e6 −0.756639 −0.378320 0.925675i \(-0.623498\pi\)
−0.378320 + 0.925675i \(0.623498\pi\)
\(332\) −5.84076e6 −2.90820
\(333\) 2.38813e6 1.18018
\(334\) 1.99297e6 0.977540
\(335\) −1.21406e6 −0.591055
\(336\) 0 0
\(337\) −2.60970e6 −1.25174 −0.625872 0.779926i \(-0.715257\pi\)
−0.625872 + 0.779926i \(0.715257\pi\)
\(338\) 301188. 0.143399
\(339\) 5.51434e6 2.60612
\(340\) −5.94176e6 −2.78752
\(341\) 616887. 0.287290
\(342\) 252338. 0.116659
\(343\) 0 0
\(344\) −8.96508e6 −4.08468
\(345\) 3.55682e6 1.60884
\(346\) 814699. 0.365853
\(347\) 1.66208e6 0.741016 0.370508 0.928829i \(-0.379184\pi\)
0.370508 + 0.928829i \(0.379184\pi\)
\(348\) −466344. −0.206423
\(349\) −876744. −0.385309 −0.192654 0.981267i \(-0.561710\pi\)
−0.192654 + 0.981267i \(0.561710\pi\)
\(350\) 0 0
\(351\) 168713. 0.0730938
\(352\) −7.17870e6 −3.08808
\(353\) 506945. 0.216533 0.108266 0.994122i \(-0.465470\pi\)
0.108266 + 0.994122i \(0.465470\pi\)
\(354\) 3.94111e6 1.67152
\(355\) 2.97025e6 1.25090
\(356\) 6.10479e6 2.55297
\(357\) 0 0
\(358\) 4.80543e6 1.98164
\(359\) −1.75965e6 −0.720594 −0.360297 0.932838i \(-0.617325\pi\)
−0.360297 + 0.932838i \(0.617325\pi\)
\(360\) 4.60206e6 1.87153
\(361\) −2.46109e6 −0.993938
\(362\) −2.47525e6 −0.992767
\(363\) −3.31607e6 −1.32086
\(364\) 0 0
\(365\) −73193.3 −0.0287567
\(366\) −8.91469e6 −3.47859
\(367\) −2.17152e6 −0.841587 −0.420793 0.907157i \(-0.638248\pi\)
−0.420793 + 0.907157i \(0.638248\pi\)
\(368\) −9.74531e6 −3.75125
\(369\) −3.60881e6 −1.37974
\(370\) 6.10284e6 2.31754
\(371\) 0 0
\(372\) 1.80994e6 0.678120
\(373\) 4.92257e6 1.83197 0.915987 0.401207i \(-0.131409\pi\)
0.915987 + 0.401207i \(0.131409\pi\)
\(374\) 9.44643e6 3.49211
\(375\) 3.97337e6 1.45909
\(376\) 908994. 0.331582
\(377\) 47526.8 0.0172221
\(378\) 0 0
\(379\) −2.28253e6 −0.816241 −0.408120 0.912928i \(-0.633816\pi\)
−0.408120 + 0.912928i \(0.633816\pi\)
\(380\) 459290. 0.163165
\(381\) −2.79123e6 −0.985105
\(382\) −2.16587e6 −0.759407
\(383\) −3.06754e6 −1.06854 −0.534272 0.845312i \(-0.679414\pi\)
−0.534272 + 0.845312i \(0.679414\pi\)
\(384\) −1.88058e6 −0.650823
\(385\) 0 0
\(386\) 191169. 0.0653053
\(387\) −3.51745e6 −1.19385
\(388\) −3.76024e6 −1.26805
\(389\) 5.07035e6 1.69889 0.849443 0.527680i \(-0.176938\pi\)
0.849443 + 0.527680i \(0.176938\pi\)
\(390\) −1.76601e6 −0.587939
\(391\) 5.68887e6 1.88185
\(392\) 0 0
\(393\) 7.44016e6 2.42997
\(394\) 3.50016e6 1.13592
\(395\) −3.57355e6 −1.15241
\(396\) −8.74369e6 −2.80193
\(397\) 708622. 0.225651 0.112826 0.993615i \(-0.464010\pi\)
0.112826 + 0.993615i \(0.464010\pi\)
\(398\) −3.83751e6 −1.21435
\(399\) 0 0
\(400\) −2.40213e6 −0.750665
\(401\) 1.66439e6 0.516885 0.258443 0.966027i \(-0.416791\pi\)
0.258443 + 0.966027i \(0.416791\pi\)
\(402\) 5.66304e6 1.74777
\(403\) −184458. −0.0565762
\(404\) −1.45061e7 −4.42178
\(405\) −3.23568e6 −0.980230
\(406\) 0 0
\(407\) −6.91058e6 −2.06789
\(408\) 1.65183e7 4.91265
\(409\) 2.86555e6 0.847031 0.423515 0.905889i \(-0.360796\pi\)
0.423515 + 0.905889i \(0.360796\pi\)
\(410\) −9.22227e6 −2.70943
\(411\) −289634. −0.0845756
\(412\) −2.84729e6 −0.826397
\(413\) 0 0
\(414\) −7.39304e6 −2.11993
\(415\) −3.49026e6 −0.994804
\(416\) 2.14653e6 0.608139
\(417\) −6.36875e6 −1.79355
\(418\) −730196. −0.204408
\(419\) 979119. 0.272458 0.136229 0.990677i \(-0.456502\pi\)
0.136229 + 0.990677i \(0.456502\pi\)
\(420\) 0 0
\(421\) −1.38633e6 −0.381208 −0.190604 0.981667i \(-0.561045\pi\)
−0.190604 + 0.981667i \(0.561045\pi\)
\(422\) 911480. 0.249153
\(423\) 356644. 0.0969135
\(424\) 8.18903e6 2.21217
\(425\) 1.40225e6 0.376577
\(426\) −1.38549e7 −3.69896
\(427\) 0 0
\(428\) −4.46070e6 −1.17705
\(429\) 1.99975e6 0.524606
\(430\) −8.98881e6 −2.34440
\(431\) −3.17560e6 −0.823441 −0.411720 0.911310i \(-0.635072\pi\)
−0.411720 + 0.911310i \(0.635072\pi\)
\(432\) 2.71043e6 0.698761
\(433\) 4.41385e6 1.13135 0.565676 0.824628i \(-0.308615\pi\)
0.565676 + 0.824628i \(0.308615\pi\)
\(434\) 0 0
\(435\) −278673. −0.0706109
\(436\) 1.57433e7 3.96625
\(437\) −439742. −0.110153
\(438\) 341414. 0.0850347
\(439\) −4.16949e6 −1.03258 −0.516288 0.856415i \(-0.672687\pi\)
−0.516288 + 0.856415i \(0.672687\pi\)
\(440\) −1.33171e7 −3.27928
\(441\) 0 0
\(442\) −2.82461e6 −0.687706
\(443\) −4.62749e6 −1.12031 −0.560153 0.828389i \(-0.689258\pi\)
−0.560153 + 0.828389i \(0.689258\pi\)
\(444\) −2.02755e7 −4.88107
\(445\) 3.64804e6 0.873292
\(446\) 8.73472e6 2.07928
\(447\) −1.28435e6 −0.304029
\(448\) 0 0
\(449\) 4.38061e6 1.02546 0.512730 0.858550i \(-0.328634\pi\)
0.512730 + 0.858550i \(0.328634\pi\)
\(450\) −1.82232e6 −0.424221
\(451\) 1.04429e7 2.41757
\(452\) −2.08622e7 −4.80301
\(453\) 5.26110e6 1.20457
\(454\) −5.02424e6 −1.14401
\(455\) 0 0
\(456\) −1.27684e6 −0.287558
\(457\) −2.43273e6 −0.544884 −0.272442 0.962172i \(-0.587831\pi\)
−0.272442 + 0.962172i \(0.587831\pi\)
\(458\) 6.68910e6 1.49006
\(459\) −1.58223e6 −0.350539
\(460\) −1.34564e7 −2.96506
\(461\) 1.86839e6 0.409464 0.204732 0.978818i \(-0.434368\pi\)
0.204732 + 0.978818i \(0.434368\pi\)
\(462\) 0 0
\(463\) 3.66203e6 0.793906 0.396953 0.917839i \(-0.370068\pi\)
0.396953 + 0.917839i \(0.370068\pi\)
\(464\) 763535. 0.164639
\(465\) 1.08156e6 0.231964
\(466\) −4.02412e6 −0.858433
\(467\) 460989. 0.0978135 0.0489068 0.998803i \(-0.484426\pi\)
0.0489068 + 0.998803i \(0.484426\pi\)
\(468\) 2.61448e6 0.551787
\(469\) 0 0
\(470\) 911400. 0.190311
\(471\) 2.96701e6 0.616264
\(472\) −8.88638e6 −1.83599
\(473\) 1.01785e7 2.09186
\(474\) 1.66690e7 3.40772
\(475\) −108392. −0.0220427
\(476\) 0 0
\(477\) 3.21297e6 0.646562
\(478\) −4.59847e6 −0.920541
\(479\) 4.25527e6 0.847400 0.423700 0.905803i \(-0.360731\pi\)
0.423700 + 0.905803i \(0.360731\pi\)
\(480\) −1.25861e7 −2.49338
\(481\) 2.06636e6 0.407233
\(482\) 5.69886e6 1.11730
\(483\) 0 0
\(484\) 1.25456e7 2.43431
\(485\) −2.24700e6 −0.433760
\(486\) 1.25348e7 2.40728
\(487\) 5.38051e6 1.02802 0.514009 0.857785i \(-0.328160\pi\)
0.514009 + 0.857785i \(0.328160\pi\)
\(488\) 2.01008e7 3.82088
\(489\) −8.12852e6 −1.53723
\(490\) 0 0
\(491\) −9.27857e6 −1.73691 −0.868455 0.495768i \(-0.834887\pi\)
−0.868455 + 0.495768i \(0.834887\pi\)
\(492\) 3.06393e7 5.70645
\(493\) −445717. −0.0825927
\(494\) 218339. 0.0402544
\(495\) −5.22497e6 −0.958452
\(496\) −2.96337e6 −0.540857
\(497\) 0 0
\(498\) 1.62805e7 2.94167
\(499\) −4.18990e6 −0.753274 −0.376637 0.926361i \(-0.622920\pi\)
−0.376637 + 0.926361i \(0.622920\pi\)
\(500\) −1.50323e7 −2.68906
\(501\) −3.95667e6 −0.704264
\(502\) 4.69881e6 0.832201
\(503\) −5.65368e6 −0.996348 −0.498174 0.867077i \(-0.665996\pi\)
−0.498174 + 0.867077i \(0.665996\pi\)
\(504\) 0 0
\(505\) −8.66840e6 −1.51255
\(506\) 2.13934e7 3.71453
\(507\) −597953. −0.103311
\(508\) 1.05599e7 1.81552
\(509\) −6.81804e6 −1.16645 −0.583224 0.812312i \(-0.698209\pi\)
−0.583224 + 0.812312i \(0.698209\pi\)
\(510\) 1.65620e7 2.81961
\(511\) 0 0
\(512\) −8.76587e6 −1.47782
\(513\) 122304. 0.0205186
\(514\) −8.68676e6 −1.45027
\(515\) −1.70145e6 −0.282685
\(516\) 2.98637e7 4.93763
\(517\) −1.03203e6 −0.169811
\(518\) 0 0
\(519\) −1.61743e6 −0.263577
\(520\) 3.98199e6 0.645791
\(521\) −6.09883e6 −0.984355 −0.492178 0.870495i \(-0.663799\pi\)
−0.492178 + 0.870495i \(0.663799\pi\)
\(522\) 579237. 0.0930422
\(523\) −6.06138e6 −0.968986 −0.484493 0.874795i \(-0.660996\pi\)
−0.484493 + 0.874795i \(0.660996\pi\)
\(524\) −2.81480e7 −4.47837
\(525\) 0 0
\(526\) −1.65687e7 −2.61111
\(527\) 1.72988e6 0.271325
\(528\) 3.21267e7 5.01512
\(529\) 6.44729e6 1.00170
\(530\) 8.21070e6 1.26967
\(531\) −3.48657e6 −0.536615
\(532\) 0 0
\(533\) −3.12257e6 −0.476095
\(534\) −1.70165e7 −2.58236
\(535\) −2.66558e6 −0.402630
\(536\) −1.27690e7 −1.91975
\(537\) −9.54029e6 −1.42766
\(538\) 1.70590e7 2.54096
\(539\) 0 0
\(540\) 3.74257e6 0.552313
\(541\) 1.42169e6 0.208839 0.104420 0.994533i \(-0.466702\pi\)
0.104420 + 0.994533i \(0.466702\pi\)
\(542\) 1.71812e7 2.51221
\(543\) 4.91414e6 0.715234
\(544\) −2.01306e7 −2.91648
\(545\) 9.40774e6 1.35673
\(546\) 0 0
\(547\) −4.79167e6 −0.684728 −0.342364 0.939567i \(-0.611228\pi\)
−0.342364 + 0.939567i \(0.611228\pi\)
\(548\) 1.09576e6 0.155871
\(549\) 7.88655e6 1.11675
\(550\) 5.27327e6 0.743316
\(551\) 34453.3 0.00483451
\(552\) 3.74092e7 5.22553
\(553\) 0 0
\(554\) 1.49945e7 2.07567
\(555\) −1.21160e7 −1.66966
\(556\) 2.40946e7 3.30547
\(557\) −7.93011e6 −1.08303 −0.541516 0.840690i \(-0.682149\pi\)
−0.541516 + 0.840690i \(0.682149\pi\)
\(558\) −2.24809e6 −0.305653
\(559\) −3.04352e6 −0.411952
\(560\) 0 0
\(561\) −1.87541e7 −2.51588
\(562\) −2.00755e7 −2.68117
\(563\) −2.89581e6 −0.385035 −0.192517 0.981294i \(-0.561665\pi\)
−0.192517 + 0.981294i \(0.561665\pi\)
\(564\) −3.02796e6 −0.400822
\(565\) −1.24666e7 −1.64296
\(566\) 1.09906e7 1.44205
\(567\) 0 0
\(568\) 3.12399e7 4.06293
\(569\) −460757. −0.0596611 −0.0298305 0.999555i \(-0.509497\pi\)
−0.0298305 + 0.999555i \(0.509497\pi\)
\(570\) −1.28022e6 −0.165044
\(571\) 1.12080e7 1.43859 0.719297 0.694703i \(-0.244464\pi\)
0.719297 + 0.694703i \(0.244464\pi\)
\(572\) −7.56559e6 −0.966835
\(573\) 4.29994e6 0.547111
\(574\) 0 0
\(575\) 3.17569e6 0.400561
\(576\) 9.19159e6 1.15434
\(577\) 2.59789e6 0.324849 0.162424 0.986721i \(-0.448069\pi\)
0.162424 + 0.986721i \(0.448069\pi\)
\(578\) 1.15168e7 1.43387
\(579\) −379530. −0.0470489
\(580\) 1.05429e6 0.130134
\(581\) 0 0
\(582\) 1.04813e7 1.28265
\(583\) −9.29743e6 −1.13290
\(584\) −769818. −0.0934019
\(585\) 1.56234e6 0.188749
\(586\) 2.62983e7 3.16362
\(587\) −1.34937e7 −1.61635 −0.808177 0.588939i \(-0.799546\pi\)
−0.808177 + 0.588939i \(0.799546\pi\)
\(588\) 0 0
\(589\) −133718. −0.0158818
\(590\) −8.90990e6 −1.05376
\(591\) −6.94891e6 −0.818367
\(592\) 3.31967e7 3.89306
\(593\) −1.44345e7 −1.68564 −0.842821 0.538194i \(-0.819107\pi\)
−0.842821 + 0.538194i \(0.819107\pi\)
\(594\) −5.95007e6 −0.691920
\(595\) 0 0
\(596\) 4.85904e6 0.560318
\(597\) 7.61867e6 0.874869
\(598\) −6.39692e6 −0.731506
\(599\) 7.05761e6 0.803694 0.401847 0.915707i \(-0.368368\pi\)
0.401847 + 0.915707i \(0.368368\pi\)
\(600\) 9.22102e6 1.04568
\(601\) −2.35971e6 −0.266485 −0.133242 0.991083i \(-0.542539\pi\)
−0.133242 + 0.991083i \(0.542539\pi\)
\(602\) 0 0
\(603\) −5.00991e6 −0.561096
\(604\) −1.99041e7 −2.21999
\(605\) 7.49684e6 0.832703
\(606\) 4.04342e7 4.47268
\(607\) −4.27931e6 −0.471414 −0.235707 0.971824i \(-0.575741\pi\)
−0.235707 + 0.971824i \(0.575741\pi\)
\(608\) 1.55607e6 0.170714
\(609\) 0 0
\(610\) 2.01540e7 2.19299
\(611\) 308591. 0.0334410
\(612\) −2.45192e7 −2.64623
\(613\) −4.64215e6 −0.498963 −0.249481 0.968380i \(-0.580260\pi\)
−0.249481 + 0.968380i \(0.580260\pi\)
\(614\) 2.37022e7 2.53727
\(615\) 1.83091e7 1.95200
\(616\) 0 0
\(617\) 1.70525e6 0.180333 0.0901667 0.995927i \(-0.471260\pi\)
0.0901667 + 0.995927i \(0.471260\pi\)
\(618\) 7.93653e6 0.835910
\(619\) 8.83129e6 0.926398 0.463199 0.886254i \(-0.346702\pi\)
0.463199 + 0.886254i \(0.346702\pi\)
\(620\) −4.09184e6 −0.427503
\(621\) −3.58328e6 −0.372865
\(622\) 8.46905e6 0.877725
\(623\) 0 0
\(624\) −9.60633e6 −0.987634
\(625\) −6.21801e6 −0.636724
\(626\) 1.45873e6 0.148778
\(627\) 1.44967e6 0.147265
\(628\) −1.12250e7 −1.13576
\(629\) −1.93787e7 −1.95298
\(630\) 0 0
\(631\) 7.19286e6 0.719165 0.359582 0.933113i \(-0.382919\pi\)
0.359582 + 0.933113i \(0.382919\pi\)
\(632\) −3.75851e7 −3.74303
\(633\) −1.80957e6 −0.179501
\(634\) 3.11778e7 3.08050
\(635\) 6.31029e6 0.621034
\(636\) −2.72785e7 −2.67410
\(637\) 0 0
\(638\) −1.67615e6 −0.163028
\(639\) 1.22570e7 1.18749
\(640\) 4.25153e6 0.410294
\(641\) −1.60215e7 −1.54013 −0.770066 0.637964i \(-0.779777\pi\)
−0.770066 + 0.637964i \(0.779777\pi\)
\(642\) 1.24337e7 1.19059
\(643\) 3.26167e6 0.311109 0.155554 0.987827i \(-0.450284\pi\)
0.155554 + 0.987827i \(0.450284\pi\)
\(644\) 0 0
\(645\) 1.78456e7 1.68901
\(646\) −2.04763e6 −0.193050
\(647\) −1.06996e6 −0.100486 −0.0502431 0.998737i \(-0.516000\pi\)
−0.0502431 + 0.998737i \(0.516000\pi\)
\(648\) −3.40316e7 −3.18379
\(649\) 1.00892e7 0.940251
\(650\) −1.57678e6 −0.146382
\(651\) 0 0
\(652\) 3.07523e7 2.83308
\(653\) 1.77899e7 1.63264 0.816319 0.577602i \(-0.196011\pi\)
0.816319 + 0.577602i \(0.196011\pi\)
\(654\) −4.38829e7 −4.01191
\(655\) −1.68204e7 −1.53191
\(656\) −5.01651e7 −4.55137
\(657\) −302038. −0.0272991
\(658\) 0 0
\(659\) 4.31144e6 0.386731 0.193365 0.981127i \(-0.438060\pi\)
0.193365 + 0.981127i \(0.438060\pi\)
\(660\) 4.43607e7 3.96404
\(661\) −7.41111e6 −0.659750 −0.329875 0.944025i \(-0.607007\pi\)
−0.329875 + 0.944025i \(0.607007\pi\)
\(662\) −1.59046e7 −1.41052
\(663\) 5.60773e6 0.495454
\(664\) −3.67092e7 −3.23113
\(665\) 0 0
\(666\) 2.51839e7 2.20007
\(667\) −1.00942e6 −0.0878531
\(668\) 1.49691e7 1.29794
\(669\) −1.73412e7 −1.49800
\(670\) −1.28028e7 −1.10184
\(671\) −2.28215e7 −1.95676
\(672\) 0 0
\(673\) −1.80495e7 −1.53613 −0.768066 0.640370i \(-0.778781\pi\)
−0.768066 + 0.640370i \(0.778781\pi\)
\(674\) −2.75204e7 −2.33349
\(675\) −883245. −0.0746142
\(676\) 2.26221e6 0.190400
\(677\) 1.54749e7 1.29764 0.648821 0.760941i \(-0.275262\pi\)
0.648821 + 0.760941i \(0.275262\pi\)
\(678\) 5.81511e7 4.85830
\(679\) 0 0
\(680\) −3.73440e7 −3.09705
\(681\) 9.97469e6 0.824198
\(682\) 6.50535e6 0.535562
\(683\) −554378. −0.0454730 −0.0227365 0.999741i \(-0.507238\pi\)
−0.0227365 + 0.999741i \(0.507238\pi\)
\(684\) 1.89530e6 0.154895
\(685\) 654793. 0.0533185
\(686\) 0 0
\(687\) −1.32800e7 −1.07351
\(688\) −4.88951e7 −3.93817
\(689\) 2.78006e6 0.223103
\(690\) 3.75082e7 2.99919
\(691\) 2.88772e6 0.230070 0.115035 0.993361i \(-0.463302\pi\)
0.115035 + 0.993361i \(0.463302\pi\)
\(692\) 6.11917e6 0.485766
\(693\) 0 0
\(694\) 1.75273e7 1.38139
\(695\) 1.43982e7 1.13070
\(696\) −2.93097e6 −0.229345
\(697\) 2.92841e7 2.28323
\(698\) −9.24565e6 −0.718288
\(699\) 7.98914e6 0.618454
\(700\) 0 0
\(701\) 1.52188e7 1.16973 0.584866 0.811130i \(-0.301147\pi\)
0.584866 + 0.811130i \(0.301147\pi\)
\(702\) 1.77915e6 0.136261
\(703\) 1.49795e6 0.114317
\(704\) −2.65979e7 −2.02263
\(705\) −1.80942e6 −0.137109
\(706\) 5.34595e6 0.403658
\(707\) 0 0
\(708\) 2.96015e7 2.21937
\(709\) −2.27767e6 −0.170167 −0.0850835 0.996374i \(-0.527116\pi\)
−0.0850835 + 0.996374i \(0.527116\pi\)
\(710\) 3.13226e7 2.33191
\(711\) −1.47465e7 −1.09400
\(712\) 3.83686e7 2.83646
\(713\) 3.91768e6 0.288606
\(714\) 0 0
\(715\) −4.52096e6 −0.330724
\(716\) 3.60934e7 2.63115
\(717\) 9.12940e6 0.663200
\(718\) −1.85563e7 −1.34332
\(719\) 1.21691e7 0.877879 0.438939 0.898517i \(-0.355354\pi\)
0.438939 + 0.898517i \(0.355354\pi\)
\(720\) 2.50994e7 1.80440
\(721\) 0 0
\(722\) −2.59533e7 −1.85289
\(723\) −1.13140e7 −0.804955
\(724\) −1.85915e7 −1.31816
\(725\) −248812. −0.0175803
\(726\) −3.49694e7 −2.46234
\(727\) −1.38530e7 −0.972095 −0.486047 0.873932i \(-0.661562\pi\)
−0.486047 + 0.873932i \(0.661562\pi\)
\(728\) 0 0
\(729\) −8.27350e6 −0.576594
\(730\) −771855. −0.0536079
\(731\) 2.85428e7 1.97562
\(732\) −6.69579e7 −4.61874
\(733\) −3.28701e6 −0.225965 −0.112983 0.993597i \(-0.536040\pi\)
−0.112983 + 0.993597i \(0.536040\pi\)
\(734\) −2.28996e7 −1.56888
\(735\) 0 0
\(736\) −4.55899e7 −3.10223
\(737\) 1.44973e7 0.983147
\(738\) −3.80565e7 −2.57210
\(739\) −8.02971e6 −0.540865 −0.270433 0.962739i \(-0.587167\pi\)
−0.270433 + 0.962739i \(0.587167\pi\)
\(740\) 4.58381e7 3.07714
\(741\) −433470. −0.0290011
\(742\) 0 0
\(743\) 2.00914e7 1.33517 0.667587 0.744532i \(-0.267327\pi\)
0.667587 + 0.744532i \(0.267327\pi\)
\(744\) 1.13755e7 0.753419
\(745\) 2.90361e6 0.191667
\(746\) 5.19106e7 3.41515
\(747\) −1.44028e7 −0.944380
\(748\) 7.09517e7 4.63670
\(749\) 0 0
\(750\) 4.19010e7 2.72001
\(751\) −7.47195e6 −0.483431 −0.241715 0.970347i \(-0.577710\pi\)
−0.241715 + 0.970347i \(0.577710\pi\)
\(752\) 4.95761e6 0.319689
\(753\) −9.32861e6 −0.599555
\(754\) 501192. 0.0321052
\(755\) −1.18941e7 −0.759388
\(756\) 0 0
\(757\) −2.42248e7 −1.53646 −0.768228 0.640176i \(-0.778861\pi\)
−0.768228 + 0.640176i \(0.778861\pi\)
\(758\) −2.40703e7 −1.52163
\(759\) −4.24726e7 −2.67611
\(760\) 2.88664e6 0.181284
\(761\) −1.54929e7 −0.969776 −0.484888 0.874576i \(-0.661140\pi\)
−0.484888 + 0.874576i \(0.661140\pi\)
\(762\) −2.94347e7 −1.83642
\(763\) 0 0
\(764\) −1.62678e7 −1.00831
\(765\) −1.46519e7 −0.905192
\(766\) −3.23485e7 −1.99197
\(767\) −3.01680e6 −0.185165
\(768\) 1.16964e7 0.715567
\(769\) 2.63582e7 1.60731 0.803656 0.595094i \(-0.202885\pi\)
0.803656 + 0.595094i \(0.202885\pi\)
\(770\) 0 0
\(771\) 1.72459e7 1.04484
\(772\) 1.43586e6 0.0867099
\(773\) −5.63865e6 −0.339411 −0.169706 0.985495i \(-0.554282\pi\)
−0.169706 + 0.985495i \(0.554282\pi\)
\(774\) −3.70931e7 −2.22557
\(775\) 965672. 0.0577531
\(776\) −2.36331e7 −1.40885
\(777\) 0 0
\(778\) 5.34691e7 3.16704
\(779\) −2.26362e6 −0.133647
\(780\) −1.32644e7 −0.780643
\(781\) −3.54683e7 −2.08072
\(782\) 5.99916e7 3.50812
\(783\) 280746. 0.0163647
\(784\) 0 0
\(785\) −6.70770e6 −0.388508
\(786\) 7.84598e7 4.52992
\(787\) −2.56511e7 −1.47628 −0.738141 0.674647i \(-0.764296\pi\)
−0.738141 + 0.674647i \(0.764296\pi\)
\(788\) 2.62895e7 1.50823
\(789\) 3.28941e7 1.88116
\(790\) −3.76846e7 −2.14831
\(791\) 0 0
\(792\) −5.49541e7 −3.11306
\(793\) 6.82393e6 0.385347
\(794\) 7.47273e6 0.420657
\(795\) −1.63008e7 −0.914728
\(796\) −2.88234e7 −1.61236
\(797\) 1.12754e7 0.628761 0.314380 0.949297i \(-0.398203\pi\)
0.314380 + 0.949297i \(0.398203\pi\)
\(798\) 0 0
\(799\) −2.89403e6 −0.160375
\(800\) −1.12375e7 −0.620790
\(801\) 1.50539e7 0.829027
\(802\) 1.75517e7 0.963572
\(803\) 874014. 0.0478332
\(804\) 4.25349e7 2.32063
\(805\) 0 0
\(806\) −1.94519e6 −0.105469
\(807\) −3.38675e7 −1.83062
\(808\) −9.11708e7 −4.91278
\(809\) 1.41748e7 0.761458 0.380729 0.924687i \(-0.375673\pi\)
0.380729 + 0.924687i \(0.375673\pi\)
\(810\) −3.41217e7 −1.82733
\(811\) 1.08255e7 0.577959 0.288979 0.957335i \(-0.406684\pi\)
0.288979 + 0.957335i \(0.406684\pi\)
\(812\) 0 0
\(813\) −3.41101e7 −1.80991
\(814\) −7.28751e7 −3.85495
\(815\) 1.83766e7 0.969108
\(816\) 9.00902e7 4.73644
\(817\) −2.20632e6 −0.115641
\(818\) 3.02184e7 1.57902
\(819\) 0 0
\(820\) −6.92681e7 −3.59748
\(821\) 1.07177e7 0.554935 0.277468 0.960735i \(-0.410505\pi\)
0.277468 + 0.960735i \(0.410505\pi\)
\(822\) −3.05432e6 −0.157665
\(823\) 2.21626e7 1.14057 0.570283 0.821448i \(-0.306833\pi\)
0.570283 + 0.821448i \(0.306833\pi\)
\(824\) −1.78952e7 −0.918162
\(825\) −1.04691e7 −0.535519
\(826\) 0 0
\(827\) 1.68800e7 0.858240 0.429120 0.903248i \(-0.358824\pi\)
0.429120 + 0.903248i \(0.358824\pi\)
\(828\) −5.55288e7 −2.81477
\(829\) −2.51198e7 −1.26949 −0.634747 0.772720i \(-0.718896\pi\)
−0.634747 + 0.772720i \(0.718896\pi\)
\(830\) −3.68063e7 −1.85450
\(831\) −2.97688e7 −1.49540
\(832\) 7.95313e6 0.398318
\(833\) 0 0
\(834\) −6.71613e7 −3.34352
\(835\) 8.94508e6 0.443985
\(836\) −5.48447e6 −0.271406
\(837\) −1.08961e6 −0.0537598
\(838\) 1.03252e7 0.507914
\(839\) −3.11719e7 −1.52883 −0.764414 0.644726i \(-0.776971\pi\)
−0.764414 + 0.644726i \(0.776971\pi\)
\(840\) 0 0
\(841\) −2.04321e7 −0.996144
\(842\) −1.46195e7 −0.710644
\(843\) 3.98561e7 1.93164
\(844\) 6.84609e6 0.330816
\(845\) 1.35183e6 0.0651298
\(846\) 3.76097e6 0.180665
\(847\) 0 0
\(848\) 4.46626e7 2.13282
\(849\) −2.18199e7 −1.03892
\(850\) 1.47874e7 0.702011
\(851\) −4.38872e7 −2.07737
\(852\) −1.04064e8 −4.91134
\(853\) 2.01270e7 0.947121 0.473560 0.880761i \(-0.342969\pi\)
0.473560 + 0.880761i \(0.342969\pi\)
\(854\) 0 0
\(855\) 1.13257e6 0.0529848
\(856\) −2.80355e7 −1.30775
\(857\) −1.08390e7 −0.504126 −0.252063 0.967711i \(-0.581109\pi\)
−0.252063 + 0.967711i \(0.581109\pi\)
\(858\) 2.10883e7 0.977965
\(859\) −9.56603e6 −0.442332 −0.221166 0.975236i \(-0.570986\pi\)
−0.221166 + 0.975236i \(0.570986\pi\)
\(860\) −6.75146e7 −3.11280
\(861\) 0 0
\(862\) −3.34881e7 −1.53505
\(863\) −8.82553e6 −0.403380 −0.201690 0.979449i \(-0.564643\pi\)
−0.201690 + 0.979449i \(0.564643\pi\)
\(864\) 1.26798e7 0.577866
\(865\) 3.65663e6 0.166165
\(866\) 4.65460e7 2.10905
\(867\) −2.28644e7 −1.03303
\(868\) 0 0
\(869\) 4.26724e7 1.91689
\(870\) −2.93873e6 −0.131632
\(871\) −4.33489e6 −0.193612
\(872\) 9.89468e7 4.40667
\(873\) −9.27245e6 −0.411774
\(874\) −4.63727e6 −0.205345
\(875\) 0 0
\(876\) 2.56435e6 0.112906
\(877\) 2.70383e7 1.18708 0.593541 0.804804i \(-0.297729\pi\)
0.593541 + 0.804804i \(0.297729\pi\)
\(878\) −4.39692e7 −1.92492
\(879\) −5.22104e7 −2.27921
\(880\) −7.26308e7 −3.16165
\(881\) 2.91334e7 1.26459 0.632297 0.774726i \(-0.282112\pi\)
0.632297 + 0.774726i \(0.282112\pi\)
\(882\) 0 0
\(883\) −2.14179e7 −0.924431 −0.462216 0.886768i \(-0.652945\pi\)
−0.462216 + 0.886768i \(0.652945\pi\)
\(884\) −2.12155e7 −0.913110
\(885\) 1.76890e7 0.759179
\(886\) −4.87990e7 −2.08846
\(887\) −1.11025e6 −0.0473819 −0.0236910 0.999719i \(-0.507542\pi\)
−0.0236910 + 0.999719i \(0.507542\pi\)
\(888\) −1.27432e8 −5.42307
\(889\) 0 0
\(890\) 3.84702e7 1.62798
\(891\) 3.86379e7 1.63049
\(892\) 6.56061e7 2.76078
\(893\) 223705. 0.00938742
\(894\) −1.35441e7 −0.566768
\(895\) 2.15683e7 0.900033
\(896\) 0 0
\(897\) 1.26999e7 0.527010
\(898\) 4.61955e7 1.91165
\(899\) −306946. −0.0126667
\(900\) −1.36873e7 −0.563265
\(901\) −2.60720e7 −1.06995
\(902\) 1.10125e8 4.50681
\(903\) 0 0
\(904\) −1.31119e8 −5.33634
\(905\) −1.11097e7 −0.450901
\(906\) 5.54806e7 2.24554
\(907\) −3.19985e7 −1.29155 −0.645776 0.763527i \(-0.723466\pi\)
−0.645776 + 0.763527i \(0.723466\pi\)
\(908\) −3.77368e7 −1.51898
\(909\) −3.57709e7 −1.43589
\(910\) 0 0
\(911\) −2.62475e7 −1.04783 −0.523917 0.851769i \(-0.675530\pi\)
−0.523917 + 0.851769i \(0.675530\pi\)
\(912\) −6.96385e6 −0.277244
\(913\) 4.16778e7 1.65473
\(914\) −2.56542e7 −1.01577
\(915\) −4.00120e7 −1.57993
\(916\) 5.02415e7 1.97845
\(917\) 0 0
\(918\) −1.66853e7 −0.653471
\(919\) 9.77282e6 0.381708 0.190854 0.981618i \(-0.438874\pi\)
0.190854 + 0.981618i \(0.438874\pi\)
\(920\) −8.45732e7 −3.29430
\(921\) −4.70562e7 −1.82796
\(922\) 1.97030e7 0.763319
\(923\) 1.06055e7 0.409758
\(924\) 0 0
\(925\) −1.08178e7 −0.415704
\(926\) 3.86177e7 1.47999
\(927\) −7.02120e6 −0.268356
\(928\) 3.57192e6 0.136155
\(929\) −4.64936e7 −1.76748 −0.883739 0.467980i \(-0.844982\pi\)
−0.883739 + 0.467980i \(0.844982\pi\)
\(930\) 1.14056e7 0.432424
\(931\) 0 0
\(932\) −3.02250e7 −1.13979
\(933\) −1.68137e7 −0.632353
\(934\) 4.86134e6 0.182343
\(935\) 4.23986e7 1.58607
\(936\) 1.64320e7 0.613058
\(937\) −1.70196e6 −0.0633287 −0.0316643 0.999499i \(-0.510081\pi\)
−0.0316643 + 0.999499i \(0.510081\pi\)
\(938\) 0 0
\(939\) −2.89604e6 −0.107187
\(940\) 6.84549e6 0.252688
\(941\) 8.19489e6 0.301696 0.150848 0.988557i \(-0.451800\pi\)
0.150848 + 0.988557i \(0.451800\pi\)
\(942\) 3.12884e7 1.14883
\(943\) 6.63199e7 2.42865
\(944\) −4.84659e7 −1.77013
\(945\) 0 0
\(946\) 1.07337e8 3.89962
\(947\) 1.60008e7 0.579785 0.289892 0.957059i \(-0.406381\pi\)
0.289892 + 0.957059i \(0.406381\pi\)
\(948\) 1.25200e8 4.52464
\(949\) −261342. −0.00941985
\(950\) −1.14304e6 −0.0410917
\(951\) −6.18976e7 −2.21933
\(952\) 0 0
\(953\) 2.39151e7 0.852982 0.426491 0.904492i \(-0.359750\pi\)
0.426491 + 0.904492i \(0.359750\pi\)
\(954\) 3.38822e7 1.20531
\(955\) −9.72113e6 −0.344912
\(956\) −3.45389e7 −1.22226
\(957\) 3.32768e6 0.117453
\(958\) 4.48737e7 1.57971
\(959\) 0 0
\(960\) −4.66331e7 −1.63311
\(961\) −2.74379e7 −0.958389
\(962\) 2.17906e7 0.759158
\(963\) −1.09997e7 −0.382222
\(964\) 4.28039e7 1.48351
\(965\) 858026. 0.0296608
\(966\) 0 0
\(967\) 2.74831e7 0.945147 0.472573 0.881291i \(-0.343325\pi\)
0.472573 + 0.881291i \(0.343325\pi\)
\(968\) 7.88488e7 2.70462
\(969\) 4.06518e6 0.139082
\(970\) −2.36956e7 −0.808610
\(971\) 2.50885e7 0.853940 0.426970 0.904266i \(-0.359581\pi\)
0.426970 + 0.904266i \(0.359581\pi\)
\(972\) 9.41485e7 3.19630
\(973\) 0 0
\(974\) 5.67398e7 1.91642
\(975\) 3.13040e6 0.105460
\(976\) 1.09629e8 3.68383
\(977\) 3.28322e7 1.10043 0.550217 0.835022i \(-0.314545\pi\)
0.550217 + 0.835022i \(0.314545\pi\)
\(978\) −8.57189e7 −2.86569
\(979\) −4.35619e7 −1.45261
\(980\) 0 0
\(981\) 3.88218e7 1.28796
\(982\) −9.78466e7 −3.23793
\(983\) −2.97714e7 −0.982687 −0.491344 0.870966i \(-0.663494\pi\)
−0.491344 + 0.870966i \(0.663494\pi\)
\(984\) 1.92568e8 6.34010
\(985\) 1.57098e7 0.515918
\(986\) −4.70028e6 −0.153968
\(987\) 0 0
\(988\) 1.63993e6 0.0534482
\(989\) 6.46410e7 2.10144
\(990\) −5.50996e7 −1.78674
\(991\) −4.94780e6 −0.160040 −0.0800199 0.996793i \(-0.525498\pi\)
−0.0800199 + 0.996793i \(0.525498\pi\)
\(992\) −1.38631e7 −0.447281
\(993\) 3.15757e7 1.01620
\(994\) 0 0
\(995\) −1.72240e7 −0.551538
\(996\) 1.22282e8 3.90584
\(997\) −3.06523e7 −0.976620 −0.488310 0.872670i \(-0.662386\pi\)
−0.488310 + 0.872670i \(0.662386\pi\)
\(998\) −4.41844e7 −1.40424
\(999\) 1.22062e7 0.386960
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.6.a.e.1.8 8
7.6 odd 2 91.6.a.c.1.8 8
21.20 even 2 819.6.a.j.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.6.a.c.1.8 8 7.6 odd 2
637.6.a.e.1.8 8 1.1 even 1 trivial
819.6.a.j.1.1 8 21.20 even 2