L(s) = 1 | + (2 − i)5-s + 3i·9-s + (5 + 5i)13-s + (−3 − 3i)17-s + (3 − 4i)25-s + 10·29-s + (5 − 5i)37-s − 8·41-s + (3 + 6i)45-s + 7i·49-s + (−5 − 5i)53-s + 10i·61-s + (15 + 5i)65-s + (11 − 11i)73-s − 9·81-s + ⋯ |
L(s) = 1 | + (0.894 − 0.447i)5-s + i·9-s + (1.38 + 1.38i)13-s + (−0.727 − 0.727i)17-s + (0.600 − 0.800i)25-s + 1.85·29-s + (0.821 − 0.821i)37-s − 1.24·41-s + (0.447 + 0.894i)45-s + i·49-s + (−0.686 − 0.686i)53-s + 1.28i·61-s + (1.86 + 0.620i)65-s + (1.28 − 1.28i)73-s − 81-s + ⋯ |
Λ(s)=(=(640s/2ΓC(s)L(s)(0.973−0.229i)Λ(2−s)
Λ(s)=(=(640s/2ΓC(s+1/2)L(s)(0.973−0.229i)Λ(1−s)
Degree: |
2 |
Conductor: |
640
= 27⋅5
|
Sign: |
0.973−0.229i
|
Analytic conductor: |
5.11042 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ640(447,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 640, ( :1/2), 0.973−0.229i)
|
Particular Values
L(1) |
≈ |
1.79097+0.208530i |
L(21) |
≈ |
1.79097+0.208530i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−2+i)T |
good | 3 | 1−3iT2 |
| 7 | 1−7iT2 |
| 11 | 1+11T2 |
| 13 | 1+(−5−5i)T+13iT2 |
| 17 | 1+(3+3i)T+17iT2 |
| 19 | 1−19T2 |
| 23 | 1+23iT2 |
| 29 | 1−10T+29T2 |
| 31 | 1−31T2 |
| 37 | 1+(−5+5i)T−37iT2 |
| 41 | 1+8T+41T2 |
| 43 | 1−43iT2 |
| 47 | 1−47iT2 |
| 53 | 1+(5+5i)T+53iT2 |
| 59 | 1−59T2 |
| 61 | 1−10iT−61T2 |
| 67 | 1+67iT2 |
| 71 | 1−71T2 |
| 73 | 1+(−11+11i)T−73iT2 |
| 79 | 1+79T2 |
| 83 | 1−83iT2 |
| 89 | 1−16iT−89T2 |
| 97 | 1+(13+13i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65767338927181772321516981806, −9.656067500408260093938161875664, −8.884489111685687606360383364266, −8.208456564630146961974742584140, −6.86542742522800213775067869616, −6.16604991613569018299740908008, −5.04073816145963120921586494585, −4.25650204458828518379193223841, −2.58447357404155016141704038582, −1.47774598846936886897286320391,
1.20775996873364005314871711799, 2.81448259458608918789009487815, 3.74490299329917498493524187894, 5.19857404185808768269645006621, 6.31517888356130832358685866429, 6.54182879850666127986144728761, 8.116407126842502297632691688064, 8.766128671741601924661907876758, 9.816763381046881515957460382662, 10.47327371233460928634585879200