L(s) = 1 | + (2 − i)5-s + 3i·9-s + (5 + 5i)13-s + (−3 − 3i)17-s + (3 − 4i)25-s + 10·29-s + (5 − 5i)37-s − 8·41-s + (3 + 6i)45-s + 7i·49-s + (−5 − 5i)53-s + 10i·61-s + (15 + 5i)65-s + (11 − 11i)73-s − 9·81-s + ⋯ |
L(s) = 1 | + (0.894 − 0.447i)5-s + i·9-s + (1.38 + 1.38i)13-s + (−0.727 − 0.727i)17-s + (0.600 − 0.800i)25-s + 1.85·29-s + (0.821 − 0.821i)37-s − 1.24·41-s + (0.447 + 0.894i)45-s + i·49-s + (−0.686 − 0.686i)53-s + 1.28i·61-s + (1.86 + 0.620i)65-s + (1.28 − 1.28i)73-s − 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.229i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.79097 + 0.208530i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.79097 + 0.208530i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2 + i)T \) |
good | 3 | \( 1 - 3iT^{2} \) |
| 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 + (-5 - 5i)T + 13iT^{2} \) |
| 17 | \( 1 + (3 + 3i)T + 17iT^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 23iT^{2} \) |
| 29 | \( 1 - 10T + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + (-5 + 5i)T - 37iT^{2} \) |
| 41 | \( 1 + 8T + 41T^{2} \) |
| 43 | \( 1 - 43iT^{2} \) |
| 47 | \( 1 - 47iT^{2} \) |
| 53 | \( 1 + (5 + 5i)T + 53iT^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 - 10iT - 61T^{2} \) |
| 67 | \( 1 + 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (-11 + 11i)T - 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 - 16iT - 89T^{2} \) |
| 97 | \( 1 + (13 + 13i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65767338927181772321516981806, −9.656067500408260093938161875664, −8.884489111685687606360383364266, −8.208456564630146961974742584140, −6.86542742522800213775067869616, −6.16604991613569018299740908008, −5.04073816145963120921586494585, −4.25650204458828518379193223841, −2.58447357404155016141704038582, −1.47774598846936886897286320391,
1.20775996873364005314871711799, 2.81448259458608918789009487815, 3.74490299329917498493524187894, 5.19857404185808768269645006621, 6.31517888356130832358685866429, 6.54182879850666127986144728761, 8.116407126842502297632691688064, 8.766128671741601924661907876758, 9.816763381046881515957460382662, 10.47327371233460928634585879200