Properties

Label 640.2.o.f
Level 640640
Weight 22
Character orbit 640.o
Analytic conductor 5.1105.110
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,2,Mod(63,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 640=275 640 = 2^{7} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 640.o (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.110425729365.11042572936
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D4]\mathrm{U}(1)[D_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(i+2)q5+3iq9+(5i+5)q13+(3i3)q17+(4i+3)q25+10q29+(5i+5)q378q41+(6i+3)q45+7iq49+(5i5)q53+10iq61++(13i13)q97+O(q100) q + ( - i + 2) q^{5} + 3 i q^{9} + (5 i + 5) q^{13} + ( - 3 i - 3) q^{17} + ( - 4 i + 3) q^{25} + 10 q^{29} + ( - 5 i + 5) q^{37} - 8 q^{41} + (6 i + 3) q^{45} + 7 i q^{49} + ( - 5 i - 5) q^{53} + 10 i q^{61}+ \cdots + ( - 13 i - 13) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q5+10q136q17+6q25+20q29+10q3716q41+6q4510q53+30q65+22q7318q8118q8526q97+O(q100) 2 q + 4 q^{5} + 10 q^{13} - 6 q^{17} + 6 q^{25} + 20 q^{29} + 10 q^{37} - 16 q^{41} + 6 q^{45} - 10 q^{53} + 30 q^{65} + 22 q^{73} - 18 q^{81} - 18 q^{85} - 26 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/640Z)×\left(\mathbb{Z}/640\mathbb{Z}\right)^\times.

nn 257257 261261 511511
χ(n)\chi(n) ii 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
63.1
1.00000i
1.00000i
0 0 0 2.00000 + 1.00000i 0 0 0 3.00000i 0
447.1 0 0 0 2.00000 1.00000i 0 0 0 3.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
40.i odd 4 1 inner
40.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 640.2.o.f yes 2
4.b odd 2 1 CM 640.2.o.f yes 2
5.c odd 4 1 640.2.o.c 2
8.b even 2 1 640.2.o.c 2
8.d odd 2 1 640.2.o.c 2
16.e even 4 1 1280.2.n.e 2
16.e even 4 1 1280.2.n.h 2
16.f odd 4 1 1280.2.n.e 2
16.f odd 4 1 1280.2.n.h 2
20.e even 4 1 640.2.o.c 2
40.i odd 4 1 inner 640.2.o.f yes 2
40.k even 4 1 inner 640.2.o.f yes 2
80.i odd 4 1 1280.2.n.e 2
80.j even 4 1 1280.2.n.h 2
80.s even 4 1 1280.2.n.e 2
80.t odd 4 1 1280.2.n.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.2.o.c 2 5.c odd 4 1
640.2.o.c 2 8.b even 2 1
640.2.o.c 2 8.d odd 2 1
640.2.o.c 2 20.e even 4 1
640.2.o.f yes 2 1.a even 1 1 trivial
640.2.o.f yes 2 4.b odd 2 1 CM
640.2.o.f yes 2 40.i odd 4 1 inner
640.2.o.f yes 2 40.k even 4 1 inner
1280.2.n.e 2 16.e even 4 1
1280.2.n.e 2 16.f odd 4 1
1280.2.n.e 2 80.i odd 4 1
1280.2.n.e 2 80.s even 4 1
1280.2.n.h 2 16.e even 4 1
1280.2.n.h 2 16.f odd 4 1
1280.2.n.h 2 80.j even 4 1
1280.2.n.h 2 80.t odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(640,[χ])S_{2}^{\mathrm{new}}(640, [\chi]):

T3 T_{3} Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display
T13210T13+50 T_{13}^{2} - 10T_{13} + 50 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T24T+5 T^{2} - 4T + 5 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T210T+50 T^{2} - 10T + 50 Copy content Toggle raw display
1717 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T10)2 (T - 10)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T210T+50 T^{2} - 10T + 50 Copy content Toggle raw display
4141 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+10T+50 T^{2} + 10T + 50 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+100 T^{2} + 100 Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T222T+242 T^{2} - 22T + 242 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2+256 T^{2} + 256 Copy content Toggle raw display
9797 T2+26T+338 T^{2} + 26T + 338 Copy content Toggle raw display
show more
show less