Properties

Label 640.2.o.f
Level $640$
Weight $2$
Character orbit 640.o
Analytic conductor $5.110$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,2,Mod(63,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - i + 2) q^{5} + 3 i q^{9} + (5 i + 5) q^{13} + ( - 3 i - 3) q^{17} + ( - 4 i + 3) q^{25} + 10 q^{29} + ( - 5 i + 5) q^{37} - 8 q^{41} + (6 i + 3) q^{45} + 7 i q^{49} + ( - 5 i - 5) q^{53} + 10 i q^{61}+ \cdots + ( - 13 i - 13) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} + 10 q^{13} - 6 q^{17} + 6 q^{25} + 20 q^{29} + 10 q^{37} - 16 q^{41} + 6 q^{45} - 10 q^{53} + 30 q^{65} + 22 q^{73} - 18 q^{81} - 18 q^{85} - 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(i\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
63.1
1.00000i
1.00000i
0 0 0 2.00000 + 1.00000i 0 0 0 3.00000i 0
447.1 0 0 0 2.00000 1.00000i 0 0 0 3.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
40.i odd 4 1 inner
40.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 640.2.o.f yes 2
4.b odd 2 1 CM 640.2.o.f yes 2
5.c odd 4 1 640.2.o.c 2
8.b even 2 1 640.2.o.c 2
8.d odd 2 1 640.2.o.c 2
16.e even 4 1 1280.2.n.e 2
16.e even 4 1 1280.2.n.h 2
16.f odd 4 1 1280.2.n.e 2
16.f odd 4 1 1280.2.n.h 2
20.e even 4 1 640.2.o.c 2
40.i odd 4 1 inner 640.2.o.f yes 2
40.k even 4 1 inner 640.2.o.f yes 2
80.i odd 4 1 1280.2.n.e 2
80.j even 4 1 1280.2.n.h 2
80.s even 4 1 1280.2.n.e 2
80.t odd 4 1 1280.2.n.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.2.o.c 2 5.c odd 4 1
640.2.o.c 2 8.b even 2 1
640.2.o.c 2 8.d odd 2 1
640.2.o.c 2 20.e even 4 1
640.2.o.f yes 2 1.a even 1 1 trivial
640.2.o.f yes 2 4.b odd 2 1 CM
640.2.o.f yes 2 40.i odd 4 1 inner
640.2.o.f yes 2 40.k even 4 1 inner
1280.2.n.e 2 16.e even 4 1
1280.2.n.e 2 16.f odd 4 1
1280.2.n.e 2 80.i odd 4 1
1280.2.n.e 2 80.s even 4 1
1280.2.n.h 2 16.e even 4 1
1280.2.n.h 2 16.f odd 4 1
1280.2.n.h 2 80.j even 4 1
1280.2.n.h 2 80.t odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(640, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{13}^{2} - 10T_{13} + 50 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 10T + 50 \) Copy content Toggle raw display
$17$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 10)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 10T + 50 \) Copy content Toggle raw display
$41$ \( (T + 8)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 10T + 50 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 100 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 22T + 242 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 256 \) Copy content Toggle raw display
$97$ \( T^{2} + 26T + 338 \) Copy content Toggle raw display
show more
show less