L(s) = 1 | + (1.86 + 3.23i)5-s + (−1.73 + 3i)7-s + (1 − 1.73i)11-s + (1.23 + 2.13i)13-s − 2.26·17-s − 7.46·19-s + (−2.46 − 4.26i)23-s + (−4.46 + 7.73i)25-s + (2.13 − 3.69i)29-s + (5.46 + 9.46i)31-s − 12.9·35-s − 0.464·37-s + (3.46 + 6i)41-s + (2.26 − 3.92i)43-s + (3.46 − 6i)47-s + ⋯ |
L(s) = 1 | + (0.834 + 1.44i)5-s + (−0.654 + 1.13i)7-s + (0.301 − 0.522i)11-s + (0.341 + 0.591i)13-s − 0.550·17-s − 1.71·19-s + (−0.513 − 0.889i)23-s + (−0.892 + 1.54i)25-s + (0.396 − 0.686i)29-s + (0.981 + 1.69i)31-s − 2.18·35-s − 0.0762·37-s + (0.541 + 0.937i)41-s + (0.345 − 0.599i)43-s + (0.505 − 0.875i)47-s + ⋯ |
Λ(s)=(=(648s/2ΓC(s)L(s)(−0.342−0.939i)Λ(2−s)
Λ(s)=(=(648s/2ΓC(s+1/2)L(s)(−0.342−0.939i)Λ(1−s)
Degree: |
2 |
Conductor: |
648
= 23⋅34
|
Sign: |
−0.342−0.939i
|
Analytic conductor: |
5.17430 |
Root analytic conductor: |
2.27471 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ648(217,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 648, ( :1/2), −0.342−0.939i)
|
Particular Values
L(1) |
≈ |
0.803827+1.14798i |
L(21) |
≈ |
0.803827+1.14798i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(−1.86−3.23i)T+(−2.5+4.33i)T2 |
| 7 | 1+(1.73−3i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1+1.73i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−1.23−2.13i)T+(−6.5+11.2i)T2 |
| 17 | 1+2.26T+17T2 |
| 19 | 1+7.46T+19T2 |
| 23 | 1+(2.46+4.26i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.13+3.69i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−5.46−9.46i)T+(−15.5+26.8i)T2 |
| 37 | 1+0.464T+37T2 |
| 41 | 1+(−3.46−6i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2.26+3.92i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−3.46+6i)T+(−23.5−40.7i)T2 |
| 53 | 1−10.9T+53T2 |
| 59 | 1+(−4−6.92i)T+(−29.5+51.0i)T2 |
| 61 | 1+(5.23−9.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.267−0.464i)T+(−33.5+58.0i)T2 |
| 71 | 1−2T+71T2 |
| 73 | 1−T+73T2 |
| 79 | 1+(0.267−0.464i)T+(−39.5−68.4i)T2 |
| 83 | 1+(1.46−2.53i)T+(−41.5−71.8i)T2 |
| 89 | 1−5.19T+89T2 |
| 97 | 1+(−5.92+10.2i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.60077381552566648312639035669, −10.17230732993925358068589104096, −9.005695093263614897205060637678, −8.510210156719578903667854725124, −6.84365271564091683279906536926, −6.39399928466460444669654418554, −5.79018973126271885165810825743, −4.18039995764769126180089180976, −2.84266783318905781118572179705, −2.20503263524625572612342910275,
0.74472293952866474962420748327, 2.11015797825674241479677131512, 3.92859583736378663934600248803, 4.60650802936672040788348898344, 5.81792926715268055459196533350, 6.56914772412111454538092192586, 7.75564102954044241309589187220, 8.677106304019078570860908699145, 9.483037619524655563714656114900, 10.13179255602022547138628758357