Properties

Label 2-648-9.7-c1-0-2
Degree 22
Conductor 648648
Sign 0.3420.939i-0.342 - 0.939i
Analytic cond. 5.174305.17430
Root an. cond. 2.274712.27471
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.86 + 3.23i)5-s + (−1.73 + 3i)7-s + (1 − 1.73i)11-s + (1.23 + 2.13i)13-s − 2.26·17-s − 7.46·19-s + (−2.46 − 4.26i)23-s + (−4.46 + 7.73i)25-s + (2.13 − 3.69i)29-s + (5.46 + 9.46i)31-s − 12.9·35-s − 0.464·37-s + (3.46 + 6i)41-s + (2.26 − 3.92i)43-s + (3.46 − 6i)47-s + ⋯
L(s)  = 1  + (0.834 + 1.44i)5-s + (−0.654 + 1.13i)7-s + (0.301 − 0.522i)11-s + (0.341 + 0.591i)13-s − 0.550·17-s − 1.71·19-s + (−0.513 − 0.889i)23-s + (−0.892 + 1.54i)25-s + (0.396 − 0.686i)29-s + (0.981 + 1.69i)31-s − 2.18·35-s − 0.0762·37-s + (0.541 + 0.937i)41-s + (0.345 − 0.599i)43-s + (0.505 − 0.875i)47-s + ⋯

Functional equation

Λ(s)=(648s/2ΓC(s)L(s)=((0.3420.939i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.342 - 0.939i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(648s/2ΓC(s+1/2)L(s)=((0.3420.939i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 648648    =    23342^{3} \cdot 3^{4}
Sign: 0.3420.939i-0.342 - 0.939i
Analytic conductor: 5.174305.17430
Root analytic conductor: 2.274712.27471
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ648(217,)\chi_{648} (217, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 648, ( :1/2), 0.3420.939i)(2,\ 648,\ (\ :1/2),\ -0.342 - 0.939i)

Particular Values

L(1)L(1) \approx 0.803827+1.14798i0.803827 + 1.14798i
L(12)L(\frac12) \approx 0.803827+1.14798i0.803827 + 1.14798i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
good5 1+(1.863.23i)T+(2.5+4.33i)T2 1 + (-1.86 - 3.23i)T + (-2.5 + 4.33i)T^{2}
7 1+(1.733i)T+(3.56.06i)T2 1 + (1.73 - 3i)T + (-3.5 - 6.06i)T^{2}
11 1+(1+1.73i)T+(5.59.52i)T2 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2}
13 1+(1.232.13i)T+(6.5+11.2i)T2 1 + (-1.23 - 2.13i)T + (-6.5 + 11.2i)T^{2}
17 1+2.26T+17T2 1 + 2.26T + 17T^{2}
19 1+7.46T+19T2 1 + 7.46T + 19T^{2}
23 1+(2.46+4.26i)T+(11.5+19.9i)T2 1 + (2.46 + 4.26i)T + (-11.5 + 19.9i)T^{2}
29 1+(2.13+3.69i)T+(14.525.1i)T2 1 + (-2.13 + 3.69i)T + (-14.5 - 25.1i)T^{2}
31 1+(5.469.46i)T+(15.5+26.8i)T2 1 + (-5.46 - 9.46i)T + (-15.5 + 26.8i)T^{2}
37 1+0.464T+37T2 1 + 0.464T + 37T^{2}
41 1+(3.466i)T+(20.5+35.5i)T2 1 + (-3.46 - 6i)T + (-20.5 + 35.5i)T^{2}
43 1+(2.26+3.92i)T+(21.537.2i)T2 1 + (-2.26 + 3.92i)T + (-21.5 - 37.2i)T^{2}
47 1+(3.46+6i)T+(23.540.7i)T2 1 + (-3.46 + 6i)T + (-23.5 - 40.7i)T^{2}
53 110.9T+53T2 1 - 10.9T + 53T^{2}
59 1+(46.92i)T+(29.5+51.0i)T2 1 + (-4 - 6.92i)T + (-29.5 + 51.0i)T^{2}
61 1+(5.239.06i)T+(30.552.8i)T2 1 + (5.23 - 9.06i)T + (-30.5 - 52.8i)T^{2}
67 1+(0.2670.464i)T+(33.5+58.0i)T2 1 + (-0.267 - 0.464i)T + (-33.5 + 58.0i)T^{2}
71 12T+71T2 1 - 2T + 71T^{2}
73 1T+73T2 1 - T + 73T^{2}
79 1+(0.2670.464i)T+(39.568.4i)T2 1 + (0.267 - 0.464i)T + (-39.5 - 68.4i)T^{2}
83 1+(1.462.53i)T+(41.571.8i)T2 1 + (1.46 - 2.53i)T + (-41.5 - 71.8i)T^{2}
89 15.19T+89T2 1 - 5.19T + 89T^{2}
97 1+(5.92+10.2i)T+(48.584.0i)T2 1 + (-5.92 + 10.2i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.60077381552566648312639035669, −10.17230732993925358068589104096, −9.005695093263614897205060637678, −8.510210156719578903667854725124, −6.84365271564091683279906536926, −6.39399928466460444669654418554, −5.79018973126271885165810825743, −4.18039995764769126180089180976, −2.84266783318905781118572179705, −2.20503263524625572612342910275, 0.74472293952866474962420748327, 2.11015797825674241479677131512, 3.92859583736378663934600248803, 4.60650802936672040788348898344, 5.81792926715268055459196533350, 6.56914772412111454538092192586, 7.75564102954044241309589187220, 8.677106304019078570860908699145, 9.483037619524655563714656114900, 10.13179255602022547138628758357

Graph of the ZZ-function along the critical line