gp: [N,k,chi] = [648,2,Mod(217,648)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(648, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("648.217");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,4,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2
v^2
β 2 \beta_{2} β 2 = = =
ζ 12 3 + ζ 12 \zeta_{12}^{3} + \zeta_{12} ζ 1 2 3 + ζ 1 2
v^3 + v
β 3 \beta_{3} β 3 = = =
− ζ 12 3 + 2 ζ 12 -\zeta_{12}^{3} + 2\zeta_{12} − ζ 1 2 3 + 2 ζ 1 2
-v^3 + 2*v
ζ 12 \zeta_{12} ζ 1 2 = = =
( β 3 + β 2 ) / 3 ( \beta_{3} + \beta_{2} ) / 3 ( β 3 + β 2 ) / 3
(b3 + b2) / 3
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2 = = =
β 1 \beta_1 β 1
b1
ζ 12 3 \zeta_{12}^{3} ζ 1 2 3 = = =
( − β 3 + 2 β 2 ) / 3 ( -\beta_{3} + 2\beta_{2} ) / 3 ( − β 3 + 2 β 2 ) / 3
(-b3 + 2*b2) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 648 Z ) × \left(\mathbb{Z}/648\mathbb{Z}\right)^\times ( Z / 6 4 8 Z ) × .
n n n
325 325 3 2 5
487 487 4 8 7
569 569 5 6 9
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 + β 1 -1 + \beta_{1} − 1 + β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 648 , [ χ ] ) S_{2}^{\mathrm{new}}(648, [\chi]) S 2 n e w ( 6 4 8 , [ χ ] ) :
T 5 4 − 4 T 5 3 + 15 T 5 2 − 4 T 5 + 1 T_{5}^{4} - 4T_{5}^{3} + 15T_{5}^{2} - 4T_{5} + 1 T 5 4 − 4 T 5 3 + 1 5 T 5 2 − 4 T 5 + 1
T5^4 - 4*T5^3 + 15*T5^2 - 4*T5 + 1
T 7 4 + 12 T 7 2 + 144 T_{7}^{4} + 12T_{7}^{2} + 144 T 7 4 + 1 2 T 7 2 + 1 4 4
T7^4 + 12*T7^2 + 144
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 − 4 T 3 + ⋯ + 1 T^{4} - 4 T^{3} + \cdots + 1 T 4 − 4 T 3 + ⋯ + 1
T^4 - 4*T^3 + 15*T^2 - 4*T + 1
7 7 7
T 4 + 12 T 2 + 144 T^{4} + 12T^{2} + 144 T 4 + 1 2 T 2 + 1 4 4
T^4 + 12*T^2 + 144
11 11 1 1
( T 2 − 2 T + 4 ) 2 (T^{2} - 2 T + 4)^{2} ( T 2 − 2 T + 4 ) 2
(T^2 - 2*T + 4)^2
13 13 1 3
T 4 + 2 T 3 + ⋯ + 121 T^{4} + 2 T^{3} + \cdots + 121 T 4 + 2 T 3 + ⋯ + 1 2 1
T^4 + 2*T^3 + 15*T^2 - 22*T + 121
17 17 1 7
( T 2 + 8 T + 13 ) 2 (T^{2} + 8 T + 13)^{2} ( T 2 + 8 T + 1 3 ) 2
(T^2 + 8*T + 13)^2
19 19 1 9
( T 2 + 8 T + 4 ) 2 (T^{2} + 8 T + 4)^{2} ( T 2 + 8 T + 4 ) 2
(T^2 + 8*T + 4)^2
23 23 2 3
T 4 − 4 T 3 + ⋯ + 1936 T^{4} - 4 T^{3} + \cdots + 1936 T 4 − 4 T 3 + ⋯ + 1 9 3 6
T^4 - 4*T^3 + 60*T^2 + 176*T + 1936
29 29 2 9
T 4 − 12 T 3 + ⋯ + 1089 T^{4} - 12 T^{3} + \cdots + 1089 T 4 − 1 2 T 3 + ⋯ + 1 0 8 9
T^4 - 12*T^3 + 111*T^2 - 396*T + 1089
31 31 3 1
T 4 − 8 T 3 + ⋯ + 1024 T^{4} - 8 T^{3} + \cdots + 1024 T 4 − 8 T 3 + ⋯ + 1 0 2 4
T^4 - 8*T^3 + 96*T^2 + 256*T + 1024
37 37 3 7
( T 2 − 6 T − 3 ) 2 (T^{2} - 6 T - 3)^{2} ( T 2 − 6 T − 3 ) 2
(T^2 - 6*T - 3)^2
41 41 4 1
T 4 + 48 T 2 + 2304 T^{4} + 48T^{2} + 2304 T 4 + 4 8 T 2 + 2 3 0 4
T^4 + 48*T^2 + 2304
43 43 4 3
T 4 − 16 T 3 + ⋯ + 2704 T^{4} - 16 T^{3} + \cdots + 2704 T 4 − 1 6 T 3 + ⋯ + 2 7 0 4
T^4 - 16*T^3 + 204*T^2 - 832*T + 2704
47 47 4 7
T 4 + 48 T 2 + 2304 T^{4} + 48T^{2} + 2304 T 4 + 4 8 T 2 + 2 3 0 4
T^4 + 48*T^2 + 2304
53 53 5 3
( T 2 − 8 T − 32 ) 2 (T^{2} - 8 T - 32)^{2} ( T 2 − 8 T − 3 2 ) 2
(T^2 - 8*T - 32)^2
59 59 5 9
( T 2 − 8 T + 64 ) 2 (T^{2} - 8 T + 64)^{2} ( T 2 − 8 T + 6 4 ) 2
(T^2 - 8*T + 64)^2
61 61 6 1
T 4 + 14 T 3 + ⋯ + 1369 T^{4} + 14 T^{3} + \cdots + 1369 T 4 + 1 4 T 3 + ⋯ + 1 3 6 9
T^4 + 14*T^3 + 159*T^2 + 518*T + 1369
67 67 6 7
T 4 − 8 T 3 + ⋯ + 16 T^{4} - 8 T^{3} + \cdots + 16 T 4 − 8 T 3 + ⋯ + 1 6
T^4 - 8*T^3 + 60*T^2 - 32*T + 16
71 71 7 1
( T − 2 ) 4 (T - 2)^{4} ( T − 2 ) 4
(T - 2)^4
73 73 7 3
( T − 1 ) 4 (T - 1)^{4} ( T − 1 ) 4
(T - 1)^4
79 79 7 9
T 4 + 8 T 3 + ⋯ + 16 T^{4} + 8 T^{3} + \cdots + 16 T 4 + 8 T 3 + ⋯ + 1 6
T^4 + 8*T^3 + 60*T^2 + 32*T + 16
83 83 8 3
T 4 − 8 T 3 + ⋯ + 1024 T^{4} - 8 T^{3} + \cdots + 1024 T 4 − 8 T 3 + ⋯ + 1 0 2 4
T^4 - 8*T^3 + 96*T^2 + 256*T + 1024
89 89 8 9
( T 2 − 27 ) 2 (T^{2} - 27)^{2} ( T 2 − 2 7 ) 2
(T^2 - 27)^2
97 97 9 7
T 4 + 4 T 3 + ⋯ + 35344 T^{4} + 4 T^{3} + \cdots + 35344 T 4 + 4 T 3 + ⋯ + 3 5 3 4 4
T^4 + 4*T^3 + 204*T^2 - 752*T + 35344
show more
show less