Properties

Label 648.2.i.j
Level 648648
Weight 22
Character orbit 648.i
Analytic conductor 5.1745.174
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,2,Mod(217,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.217");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 648=2334 648 = 2^{3} \cdot 3^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 648.i (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.174306050985.17430605098
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3β22β1+2)q52β2q7+2β1q11+(2β32β2+β11)q13+(β34)q17+(2β34)q19+(4β3+4β2++2)q23++(8β22β1)q97+O(q100) q + (\beta_{3} - \beta_{2} - 2 \beta_1 + 2) q^{5} - 2 \beta_{2} q^{7} + 2 \beta_1 q^{11} + (2 \beta_{3} - 2 \beta_{2} + \beta_1 - 1) q^{13} + (\beta_{3} - 4) q^{17} + ( - 2 \beta_{3} - 4) q^{19} + ( - 4 \beta_{3} + 4 \beta_{2} + \cdots + 2) q^{23}+ \cdots + (8 \beta_{2} - 2 \beta_1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q5+4q112q1316q1716q19+4q234q25+12q29+8q3124q35+12q37+16q4310q49+16q53+16q55+16q5914q618q65+4q97+O(q100) 4 q + 4 q^{5} + 4 q^{11} - 2 q^{13} - 16 q^{17} - 16 q^{19} + 4 q^{23} - 4 q^{25} + 12 q^{29} + 8 q^{31} - 24 q^{35} + 12 q^{37} + 16 q^{43} - 10 q^{49} + 16 q^{53} + 16 q^{55} + 16 q^{59} - 14 q^{61} - 8 q^{65}+ \cdots - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ122 \zeta_{12}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ123+ζ12 \zeta_{12}^{3} + \zeta_{12} Copy content Toggle raw display
β3\beta_{3}== ζ123+2ζ12 -\zeta_{12}^{3} + 2\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+β2)/3 ( \beta_{3} + \beta_{2} ) / 3 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β3+2β2)/3 ( -\beta_{3} + 2\beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/648Z)×\left(\mathbb{Z}/648\mathbb{Z}\right)^\times.

nn 325325 487487 569569
χ(n)\chi(n) 11 11 1+β1-1 + \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
217.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 0 0 0.133975 + 0.232051i 0 1.73205 3.00000i 0 0 0
217.2 0 0 0 1.86603 + 3.23205i 0 −1.73205 + 3.00000i 0 0 0
433.1 0 0 0 0.133975 0.232051i 0 1.73205 + 3.00000i 0 0 0
433.2 0 0 0 1.86603 3.23205i 0 −1.73205 3.00000i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 648.2.i.j 4
3.b odd 2 1 648.2.i.i 4
4.b odd 2 1 1296.2.i.t 4
9.c even 3 1 648.2.a.e 2
9.c even 3 1 inner 648.2.i.j 4
9.d odd 6 1 648.2.a.h yes 2
9.d odd 6 1 648.2.i.i 4
12.b even 2 1 1296.2.i.r 4
36.f odd 6 1 1296.2.a.m 2
36.f odd 6 1 1296.2.i.t 4
36.h even 6 1 1296.2.a.q 2
36.h even 6 1 1296.2.i.r 4
72.j odd 6 1 5184.2.a.bg 2
72.l even 6 1 5184.2.a.bi 2
72.n even 6 1 5184.2.a.cb 2
72.p odd 6 1 5184.2.a.bz 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
648.2.a.e 2 9.c even 3 1
648.2.a.h yes 2 9.d odd 6 1
648.2.i.i 4 3.b odd 2 1
648.2.i.i 4 9.d odd 6 1
648.2.i.j 4 1.a even 1 1 trivial
648.2.i.j 4 9.c even 3 1 inner
1296.2.a.m 2 36.f odd 6 1
1296.2.a.q 2 36.h even 6 1
1296.2.i.r 4 12.b even 2 1
1296.2.i.r 4 36.h even 6 1
1296.2.i.t 4 4.b odd 2 1
1296.2.i.t 4 36.f odd 6 1
5184.2.a.bg 2 72.j odd 6 1
5184.2.a.bi 2 72.l even 6 1
5184.2.a.bz 2 72.p odd 6 1
5184.2.a.cb 2 72.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(648,[χ])S_{2}^{\mathrm{new}}(648, [\chi]):

T544T53+15T524T5+1 T_{5}^{4} - 4T_{5}^{3} + 15T_{5}^{2} - 4T_{5} + 1 Copy content Toggle raw display
T74+12T72+144 T_{7}^{4} + 12T_{7}^{2} + 144 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T44T3++1 T^{4} - 4 T^{3} + \cdots + 1 Copy content Toggle raw display
77 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
1111 (T22T+4)2 (T^{2} - 2 T + 4)^{2} Copy content Toggle raw display
1313 T4+2T3++121 T^{4} + 2 T^{3} + \cdots + 121 Copy content Toggle raw display
1717 (T2+8T+13)2 (T^{2} + 8 T + 13)^{2} Copy content Toggle raw display
1919 (T2+8T+4)2 (T^{2} + 8 T + 4)^{2} Copy content Toggle raw display
2323 T44T3++1936 T^{4} - 4 T^{3} + \cdots + 1936 Copy content Toggle raw display
2929 T412T3++1089 T^{4} - 12 T^{3} + \cdots + 1089 Copy content Toggle raw display
3131 T48T3++1024 T^{4} - 8 T^{3} + \cdots + 1024 Copy content Toggle raw display
3737 (T26T3)2 (T^{2} - 6 T - 3)^{2} Copy content Toggle raw display
4141 T4+48T2+2304 T^{4} + 48T^{2} + 2304 Copy content Toggle raw display
4343 T416T3++2704 T^{4} - 16 T^{3} + \cdots + 2704 Copy content Toggle raw display
4747 T4+48T2+2304 T^{4} + 48T^{2} + 2304 Copy content Toggle raw display
5353 (T28T32)2 (T^{2} - 8 T - 32)^{2} Copy content Toggle raw display
5959 (T28T+64)2 (T^{2} - 8 T + 64)^{2} Copy content Toggle raw display
6161 T4+14T3++1369 T^{4} + 14 T^{3} + \cdots + 1369 Copy content Toggle raw display
6767 T48T3++16 T^{4} - 8 T^{3} + \cdots + 16 Copy content Toggle raw display
7171 (T2)4 (T - 2)^{4} Copy content Toggle raw display
7373 (T1)4 (T - 1)^{4} Copy content Toggle raw display
7979 T4+8T3++16 T^{4} + 8 T^{3} + \cdots + 16 Copy content Toggle raw display
8383 T48T3++1024 T^{4} - 8 T^{3} + \cdots + 1024 Copy content Toggle raw display
8989 (T227)2 (T^{2} - 27)^{2} Copy content Toggle raw display
9797 T4+4T3++35344 T^{4} + 4 T^{3} + \cdots + 35344 Copy content Toggle raw display
show more
show less