Properties

Label 8-6480e4-1.1-c1e4-0-3
Degree $8$
Conductor $1.763\times 10^{15}$
Sign $1$
Analytic cond. $7.16817\times 10^{6}$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 2·7-s − 4·11-s − 2·17-s − 10·23-s + 10·25-s − 4·29-s − 14·31-s − 8·35-s + 14·37-s + 4·41-s − 22·43-s − 7·49-s − 8·53-s − 16·55-s + 4·61-s − 24·67-s − 28·71-s + 2·73-s + 8·77-s − 16·79-s − 6·83-s − 8·85-s − 8·89-s − 10·97-s − 8·101-s + 4·103-s + ⋯
L(s)  = 1  + 1.78·5-s − 0.755·7-s − 1.20·11-s − 0.485·17-s − 2.08·23-s + 2·25-s − 0.742·29-s − 2.51·31-s − 1.35·35-s + 2.30·37-s + 0.624·41-s − 3.35·43-s − 49-s − 1.09·53-s − 2.15·55-s + 0.512·61-s − 2.93·67-s − 3.32·71-s + 0.234·73-s + 0.911·77-s − 1.80·79-s − 0.658·83-s − 0.867·85-s − 0.847·89-s − 1.01·97-s − 0.796·101-s + 0.394·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{16} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(7.16817\times 10^{6}\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{16} \cdot 3^{16} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{4} \)
good7$C_2 \wr C_2\wr C_2$ \( 1 + 2 T + 11 T^{2} + 38 T^{4} + 11 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
11$C_2 \wr C_2\wr C_2$ \( 1 + 4 T + 9 T^{2} - 12 T^{3} - 152 T^{4} - 12 p T^{5} + 9 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
13$C_2 \wr C_2\wr C_2$ \( 1 + p T^{2} + 36 T^{3} + 216 T^{4} + 36 p T^{5} + p^{3} T^{6} + p^{4} T^{8} \)
17$C_2 \wr C_2\wr C_2$ \( 1 + 2 T + 30 T^{2} - 18 T^{3} + 370 T^{4} - 18 p T^{5} + 30 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2^2 \wr C_2$ \( 1 + 26 T^{2} + 699 T^{4} + 26 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2 \wr C_2\wr C_2$ \( 1 + 10 T + 117 T^{2} + 30 p T^{3} + 4312 T^{4} + 30 p^{2} T^{5} + 117 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2 \wr C_2\wr C_2$ \( 1 + 4 T + 69 T^{2} + 444 T^{3} + 2272 T^{4} + 444 p T^{5} + 69 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
31$C_2 \wr C_2\wr C_2$ \( 1 + 14 T + 185 T^{2} + 1386 T^{3} + 9572 T^{4} + 1386 p T^{5} + 185 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2 \wr C_2\wr C_2$ \( 1 - 14 T + 146 T^{2} - 1074 T^{3} + 6914 T^{4} - 1074 p T^{5} + 146 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2 \wr C_2\wr C_2$ \( 1 - 4 T + 42 T^{2} + 192 T^{3} + 151 T^{4} + 192 p T^{5} + 42 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
43$C_2 \wr C_2\wr C_2$ \( 1 + 22 T + 242 T^{2} + 1662 T^{3} + 10346 T^{4} + 1662 p T^{5} + 242 p^{2} T^{6} + 22 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2 \wr C_2\wr C_2$ \( 1 + 75 T^{2} - 462 T^{3} + 2558 T^{4} - 462 p T^{5} + 75 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2 \wr C_2\wr C_2$ \( 1 + 8 T + 75 T^{2} + 66 T^{3} + 1834 T^{4} + 66 p T^{5} + 75 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 115 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2 \wr C_2\wr C_2$ \( 1 - 4 T + 92 T^{2} + 228 T^{3} + 2630 T^{4} + 228 p T^{5} + 92 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2 \wr C_2\wr C_2$ \( 1 + 24 T + 272 T^{2} + 1560 T^{3} + 8526 T^{4} + 1560 p T^{5} + 272 p^{2} T^{6} + 24 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2 \wr C_2\wr C_2$ \( 1 + 28 T + 405 T^{2} + 3744 T^{3} + 31000 T^{4} + 3744 p T^{5} + 405 p^{2} T^{6} + 28 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2 \wr C_2\wr C_2$ \( 1 - 2 T + 206 T^{2} + 18 T^{3} + 18866 T^{4} + 18 p T^{5} + 206 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 8 T + 162 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2 \wr C_2\wr C_2$ \( 1 + 6 T + 254 T^{2} + 990 T^{3} + 28314 T^{4} + 990 p T^{5} + 254 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2 \wr C_2\wr C_2$ \( 1 + 8 T + p T^{2} + 1472 T^{3} + 11344 T^{4} + 1472 p T^{5} + p^{3} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2 \wr C_2\wr C_2$ \( 1 + 10 T + 274 T^{2} + 2782 T^{3} + 34306 T^{4} + 2782 p T^{5} + 274 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.04375876223917170312876983222, −5.85242828563078944010608264534, −5.67021972017690320419486452180, −5.44978277006977802115247554048, −5.40295917157974544089985171397, −5.16637573268202200775598186736, −4.78682245891604885499481735250, −4.75604007723863867480755006877, −4.60417555476207775482409689858, −4.38530956867976820543473215436, −4.02514543726491529826392282211, −3.94576574135476064578232111294, −3.75655709666117738456816164020, −3.28179441814298675613681438978, −3.20121127914915394671140853899, −3.18717706319921795122653278243, −2.93245470216733428765192393534, −2.36386119914992939268171827656, −2.31621785707377617863700511445, −2.29730759574997686860877237100, −2.23342155993214923330526509632, −1.52369230532649357921893637208, −1.36729317802085522659371928118, −1.35219283967426282493437666435, −1.30724537858225723440153223838, 0, 0, 0, 0, 1.30724537858225723440153223838, 1.35219283967426282493437666435, 1.36729317802085522659371928118, 1.52369230532649357921893637208, 2.23342155993214923330526509632, 2.29730759574997686860877237100, 2.31621785707377617863700511445, 2.36386119914992939268171827656, 2.93245470216733428765192393534, 3.18717706319921795122653278243, 3.20121127914915394671140853899, 3.28179441814298675613681438978, 3.75655709666117738456816164020, 3.94576574135476064578232111294, 4.02514543726491529826392282211, 4.38530956867976820543473215436, 4.60417555476207775482409689858, 4.75604007723863867480755006877, 4.78682245891604885499481735250, 5.16637573268202200775598186736, 5.40295917157974544089985171397, 5.44978277006977802115247554048, 5.67021972017690320419486452180, 5.85242828563078944010608264534, 6.04375876223917170312876983222

Graph of the $Z$-function along the critical line