L(s) = 1 | + 4·5-s − 2·7-s − 4·11-s − 2·17-s − 10·23-s + 10·25-s − 4·29-s − 14·31-s − 8·35-s + 14·37-s + 4·41-s − 22·43-s − 7·49-s − 8·53-s − 16·55-s + 4·61-s − 24·67-s − 28·71-s + 2·73-s + 8·77-s − 16·79-s − 6·83-s − 8·85-s − 8·89-s − 10·97-s − 8·101-s + 4·103-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 0.755·7-s − 1.20·11-s − 0.485·17-s − 2.08·23-s + 2·25-s − 0.742·29-s − 2.51·31-s − 1.35·35-s + 2.30·37-s + 0.624·41-s − 3.35·43-s − 49-s − 1.09·53-s − 2.15·55-s + 0.512·61-s − 2.93·67-s − 3.32·71-s + 0.234·73-s + 0.911·77-s − 1.80·79-s − 0.658·83-s − 0.867·85-s − 0.847·89-s − 1.01·97-s − 0.796·101-s + 0.394·103-s + ⋯ |
Λ(s)=(=((216⋅316⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅316⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅316⋅54
|
Sign: |
1
|
Analytic conductor: |
7.16817×106 |
Root analytic conductor: |
7.19326 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 216⋅316⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)4 |
good | 7 | C2≀C2≀C2 | 1+2T+11T2+38T4+11p2T6+2p3T7+p4T8 |
| 11 | C2≀C2≀C2 | 1+4T+9T2−12T3−152T4−12pT5+9p2T6+4p3T7+p4T8 |
| 13 | C2≀C2≀C2 | 1+pT2+36T3+216T4+36pT5+p3T6+p4T8 |
| 17 | C2≀C2≀C2 | 1+2T+30T2−18T3+370T4−18pT5+30p2T6+2p3T7+p4T8 |
| 19 | C22≀C2 | 1+26T2+699T4+26p2T6+p4T8 |
| 23 | C2≀C2≀C2 | 1+10T+117T2+30pT3+4312T4+30p2T5+117p2T6+10p3T7+p4T8 |
| 29 | C2≀C2≀C2 | 1+4T+69T2+444T3+2272T4+444pT5+69p2T6+4p3T7+p4T8 |
| 31 | C2≀C2≀C2 | 1+14T+185T2+1386T3+9572T4+1386pT5+185p2T6+14p3T7+p4T8 |
| 37 | C2≀C2≀C2 | 1−14T+146T2−1074T3+6914T4−1074pT5+146p2T6−14p3T7+p4T8 |
| 41 | C2≀C2≀C2 | 1−4T+42T2+192T3+151T4+192pT5+42p2T6−4p3T7+p4T8 |
| 43 | C2≀C2≀C2 | 1+22T+242T2+1662T3+10346T4+1662pT5+242p2T6+22p3T7+p4T8 |
| 47 | C2≀C2≀C2 | 1+75T2−462T3+2558T4−462pT5+75p2T6+p4T8 |
| 53 | C2≀C2≀C2 | 1+8T+75T2+66T3+1834T4+66pT5+75p2T6+8p3T7+p4T8 |
| 59 | C22 | (1+115T2+p2T4)2 |
| 61 | C2≀C2≀C2 | 1−4T+92T2+228T3+2630T4+228pT5+92p2T6−4p3T7+p4T8 |
| 67 | C2≀C2≀C2 | 1+24T+272T2+1560T3+8526T4+1560pT5+272p2T6+24p3T7+p4T8 |
| 71 | C2≀C2≀C2 | 1+28T+405T2+3744T3+31000T4+3744pT5+405p2T6+28p3T7+p4T8 |
| 73 | C2≀C2≀C2 | 1−2T+206T2+18T3+18866T4+18pT5+206p2T6−2p3T7+p4T8 |
| 79 | D4 | (1+8T+162T2+8pT3+p2T4)2 |
| 83 | C2≀C2≀C2 | 1+6T+254T2+990T3+28314T4+990pT5+254p2T6+6p3T7+p4T8 |
| 89 | C2≀C2≀C2 | 1+8T+pT2+1472T3+11344T4+1472pT5+p3T6+8p3T7+p4T8 |
| 97 | C2≀C2≀C2 | 1+10T+274T2+2782T3+34306T4+2782pT5+274p2T6+10p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.04375876223917170312876983222, −5.85242828563078944010608264534, −5.67021972017690320419486452180, −5.44978277006977802115247554048, −5.40295917157974544089985171397, −5.16637573268202200775598186736, −4.78682245891604885499481735250, −4.75604007723863867480755006877, −4.60417555476207775482409689858, −4.38530956867976820543473215436, −4.02514543726491529826392282211, −3.94576574135476064578232111294, −3.75655709666117738456816164020, −3.28179441814298675613681438978, −3.20121127914915394671140853899, −3.18717706319921795122653278243, −2.93245470216733428765192393534, −2.36386119914992939268171827656, −2.31621785707377617863700511445, −2.29730759574997686860877237100, −2.23342155993214923330526509632, −1.52369230532649357921893637208, −1.36729317802085522659371928118, −1.35219283967426282493437666435, −1.30724537858225723440153223838, 0, 0, 0, 0,
1.30724537858225723440153223838, 1.35219283967426282493437666435, 1.36729317802085522659371928118, 1.52369230532649357921893637208, 2.23342155993214923330526509632, 2.29730759574997686860877237100, 2.31621785707377617863700511445, 2.36386119914992939268171827656, 2.93245470216733428765192393534, 3.18717706319921795122653278243, 3.20121127914915394671140853899, 3.28179441814298675613681438978, 3.75655709666117738456816164020, 3.94576574135476064578232111294, 4.02514543726491529826392282211, 4.38530956867976820543473215436, 4.60417555476207775482409689858, 4.75604007723863867480755006877, 4.78682245891604885499481735250, 5.16637573268202200775598186736, 5.40295917157974544089985171397, 5.44978277006977802115247554048, 5.67021972017690320419486452180, 5.85242828563078944010608264534, 6.04375876223917170312876983222