Properties

Label 6480.2.a.ca.1.4
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.62352.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 11x^{2} + 12x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3240)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.61675\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +4.34880 q^{7} -2.70115 q^{11} -6.26439 q^{13} -5.37969 q^{17} +6.23349 q^{19} -5.61675 q^{23} +1.00000 q^{25} +0.762947 q^{29} -6.61675 q^{31} +4.34880 q^{35} +11.1491 q^{37} +9.02733 q^{41} -9.68498 q^{43} -5.22705 q^{47} +11.9120 q^{49} -10.6294 q^{53} -2.70115 q^{55} -1.73205 q^{59} +1.63292 q^{61} -6.26439 q^{65} -9.52589 q^{67} -14.3017 q^{71} -10.6132 q^{73} -11.7468 q^{77} -0.535898 q^{79} -0.146201 q^{83} -5.37969 q^{85} -7.85997 q^{89} -27.2425 q^{91} +6.23349 q^{95} -0.389697 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 2 q^{7} - 4 q^{11} - 2 q^{17} - 10 q^{23} + 4 q^{25} - 4 q^{29} - 14 q^{31} - 2 q^{35} + 14 q^{37} + 4 q^{41} - 22 q^{43} + 10 q^{49} - 8 q^{53} - 4 q^{55} + 4 q^{61} - 24 q^{67} - 28 q^{71}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 4.34880 1.64369 0.821845 0.569711i \(-0.192945\pi\)
0.821845 + 0.569711i \(0.192945\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.70115 −0.814429 −0.407214 0.913333i \(-0.633500\pi\)
−0.407214 + 0.913333i \(0.633500\pi\)
\(12\) 0 0
\(13\) −6.26439 −1.73743 −0.868714 0.495314i \(-0.835053\pi\)
−0.868714 + 0.495314i \(0.835053\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.37969 −1.30477 −0.652384 0.757889i \(-0.726231\pi\)
−0.652384 + 0.757889i \(0.726231\pi\)
\(18\) 0 0
\(19\) 6.23349 1.43006 0.715030 0.699093i \(-0.246413\pi\)
0.715030 + 0.699093i \(0.246413\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.61675 −1.17117 −0.585586 0.810610i \(-0.699136\pi\)
−0.585586 + 0.810610i \(0.699136\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.762947 0.141676 0.0708378 0.997488i \(-0.477433\pi\)
0.0708378 + 0.997488i \(0.477433\pi\)
\(30\) 0 0
\(31\) −6.61675 −1.18840 −0.594201 0.804316i \(-0.702532\pi\)
−0.594201 + 0.804316i \(0.702532\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.34880 0.735081
\(36\) 0 0
\(37\) 11.1491 1.83290 0.916449 0.400152i \(-0.131043\pi\)
0.916449 + 0.400152i \(0.131043\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.02733 1.40983 0.704916 0.709290i \(-0.250985\pi\)
0.704916 + 0.709290i \(0.250985\pi\)
\(42\) 0 0
\(43\) −9.68498 −1.47695 −0.738473 0.674283i \(-0.764453\pi\)
−0.738473 + 0.674283i \(0.764453\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.22705 −0.762443 −0.381222 0.924484i \(-0.624497\pi\)
−0.381222 + 0.924484i \(0.624497\pi\)
\(48\) 0 0
\(49\) 11.9120 1.70172
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.6294 −1.46005 −0.730027 0.683418i \(-0.760493\pi\)
−0.730027 + 0.683418i \(0.760493\pi\)
\(54\) 0 0
\(55\) −2.70115 −0.364224
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.73205 −0.225494 −0.112747 0.993624i \(-0.535965\pi\)
−0.112747 + 0.993624i \(0.535965\pi\)
\(60\) 0 0
\(61\) 1.63292 0.209074 0.104537 0.994521i \(-0.466664\pi\)
0.104537 + 0.994521i \(0.466664\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.26439 −0.777002
\(66\) 0 0
\(67\) −9.52589 −1.16377 −0.581887 0.813270i \(-0.697685\pi\)
−0.581887 + 0.813270i \(0.697685\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.3017 −1.69730 −0.848651 0.528953i \(-0.822585\pi\)
−0.848651 + 0.528953i \(0.822585\pi\)
\(72\) 0 0
\(73\) −10.6132 −1.24218 −0.621090 0.783740i \(-0.713310\pi\)
−0.621090 + 0.783740i \(0.713310\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −11.7468 −1.33867
\(78\) 0 0
\(79\) −0.535898 −0.0602933 −0.0301466 0.999545i \(-0.509597\pi\)
−0.0301466 + 0.999545i \(0.509597\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.146201 −0.0160477 −0.00802385 0.999968i \(-0.502554\pi\)
−0.00802385 + 0.999968i \(0.502554\pi\)
\(84\) 0 0
\(85\) −5.37969 −0.583510
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.85997 −0.833155 −0.416578 0.909100i \(-0.636771\pi\)
−0.416578 + 0.909100i \(0.636771\pi\)
\(90\) 0 0
\(91\) −27.2425 −2.85579
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.23349 0.639543
\(96\) 0 0
\(97\) −0.389697 −0.0395677 −0.0197839 0.999804i \(-0.506298\pi\)
−0.0197839 + 0.999804i \(0.506298\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.8628 1.27990 0.639951 0.768416i \(-0.278955\pi\)
0.639951 + 0.768416i \(0.278955\pi\)
\(102\) 0 0
\(103\) −5.89731 −0.581079 −0.290539 0.956863i \(-0.593835\pi\)
−0.290539 + 0.956863i \(0.593835\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.3923 1.39136 0.695678 0.718353i \(-0.255104\pi\)
0.695678 + 0.718353i \(0.255104\pi\)
\(108\) 0 0
\(109\) 5.15264 0.493534 0.246767 0.969075i \(-0.420632\pi\)
0.246767 + 0.969075i \(0.420632\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.3826 −1.72929 −0.864643 0.502386i \(-0.832456\pi\)
−0.864643 + 0.502386i \(0.832456\pi\)
\(114\) 0 0
\(115\) −5.61675 −0.523764
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −23.3952 −2.14463
\(120\) 0 0
\(121\) −3.70376 −0.336706
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 7.27700 0.645729 0.322865 0.946445i \(-0.395354\pi\)
0.322865 + 0.946445i \(0.395354\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.36497 −0.468740 −0.234370 0.972148i \(-0.575303\pi\)
−0.234370 + 0.972148i \(0.575303\pi\)
\(132\) 0 0
\(133\) 27.1082 2.35058
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.69759 0.401342 0.200671 0.979659i \(-0.435688\pi\)
0.200671 + 0.979659i \(0.435688\pi\)
\(138\) 0 0
\(139\) 0.662362 0.0561808 0.0280904 0.999605i \(-0.491057\pi\)
0.0280904 + 0.999605i \(0.491057\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 16.9211 1.41501
\(144\) 0 0
\(145\) 0.762947 0.0633593
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.16169 0.177093 0.0885464 0.996072i \(-0.471778\pi\)
0.0885464 + 0.996072i \(0.471778\pi\)
\(150\) 0 0
\(151\) 8.44793 0.687483 0.343741 0.939064i \(-0.388306\pi\)
0.343741 + 0.939064i \(0.388306\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.61675 −0.531470
\(156\) 0 0
\(157\) 5.75111 0.458988 0.229494 0.973310i \(-0.426293\pi\)
0.229494 + 0.973310i \(0.426293\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −24.4261 −1.92504
\(162\) 0 0
\(163\) −12.8438 −1.00600 −0.503002 0.864285i \(-0.667771\pi\)
−0.503002 + 0.864285i \(0.667771\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.9085 −1.69533 −0.847664 0.530533i \(-0.821992\pi\)
−0.847664 + 0.530533i \(0.821992\pi\)
\(168\) 0 0
\(169\) 26.2425 2.01866
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.68854 −0.204406 −0.102203 0.994764i \(-0.532589\pi\)
−0.102203 + 0.994764i \(0.532589\pi\)
\(174\) 0 0
\(175\) 4.34880 0.328738
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.02733 0.674735 0.337367 0.941373i \(-0.390464\pi\)
0.337367 + 0.941373i \(0.390464\pi\)
\(180\) 0 0
\(181\) −5.85024 −0.434845 −0.217422 0.976078i \(-0.569765\pi\)
−0.217422 + 0.976078i \(0.569765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.1491 0.819697
\(186\) 0 0
\(187\) 14.5314 1.06264
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.9936 −0.940181 −0.470090 0.882618i \(-0.655779\pi\)
−0.470090 + 0.882618i \(0.655779\pi\)
\(192\) 0 0
\(193\) 4.51328 0.324873 0.162437 0.986719i \(-0.448065\pi\)
0.162437 + 0.986719i \(0.448065\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.8431 1.20002 0.600011 0.799992i \(-0.295163\pi\)
0.600011 + 0.799992i \(0.295163\pi\)
\(198\) 0 0
\(199\) −11.6006 −0.822343 −0.411171 0.911558i \(-0.634880\pi\)
−0.411171 + 0.911558i \(0.634880\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.31790 0.232871
\(204\) 0 0
\(205\) 9.02733 0.630496
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −16.8376 −1.16468
\(210\) 0 0
\(211\) 0.863531 0.0594480 0.0297240 0.999558i \(-0.490537\pi\)
0.0297240 + 0.999558i \(0.490537\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.68498 −0.660510
\(216\) 0 0
\(217\) −28.7749 −1.95337
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 33.7005 2.26694
\(222\) 0 0
\(223\) 8.86641 0.593739 0.296869 0.954918i \(-0.404057\pi\)
0.296869 + 0.954918i \(0.404057\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.6850 0.908304 0.454152 0.890924i \(-0.349942\pi\)
0.454152 + 0.890924i \(0.349942\pi\)
\(228\) 0 0
\(229\) −2.46698 −0.163023 −0.0815114 0.996672i \(-0.525975\pi\)
−0.0815114 + 0.996672i \(0.525975\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.8438 −0.841425 −0.420712 0.907194i \(-0.638220\pi\)
−0.420712 + 0.907194i \(0.638220\pi\)
\(234\) 0 0
\(235\) −5.22705 −0.340975
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.53590 −0.552141 −0.276071 0.961137i \(-0.589032\pi\)
−0.276071 + 0.961137i \(0.589032\pi\)
\(240\) 0 0
\(241\) 5.13976 0.331081 0.165540 0.986203i \(-0.447063\pi\)
0.165540 + 0.986203i \(0.447063\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.9120 0.761032
\(246\) 0 0
\(247\) −39.0490 −2.48463
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.13080 0.0713753 0.0356877 0.999363i \(-0.488638\pi\)
0.0356877 + 0.999363i \(0.488638\pi\)
\(252\) 0 0
\(253\) 15.1717 0.953837
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.1688 −0.634313 −0.317157 0.948373i \(-0.602728\pi\)
−0.317157 + 0.948373i \(0.602728\pi\)
\(258\) 0 0
\(259\) 48.4851 3.01272
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.20731 0.506084 0.253042 0.967455i \(-0.418569\pi\)
0.253042 + 0.967455i \(0.418569\pi\)
\(264\) 0 0
\(265\) −10.6294 −0.652956
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −26.9246 −1.64162 −0.820812 0.571198i \(-0.806479\pi\)
−0.820812 + 0.571198i \(0.806479\pi\)
\(270\) 0 0
\(271\) 4.30529 0.261528 0.130764 0.991414i \(-0.458257\pi\)
0.130764 + 0.991414i \(0.458257\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.70115 −0.162886
\(276\) 0 0
\(277\) 20.2181 1.21479 0.607394 0.794401i \(-0.292215\pi\)
0.607394 + 0.794401i \(0.292215\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.140803 −0.00839959 −0.00419979 0.999991i \(-0.501337\pi\)
−0.00419979 + 0.999991i \(0.501337\pi\)
\(282\) 0 0
\(283\) −0.230611 −0.0137084 −0.00685420 0.999977i \(-0.502182\pi\)
−0.00685420 + 0.999977i \(0.502182\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 39.2580 2.31733
\(288\) 0 0
\(289\) 11.9411 0.702417
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.12290 0.474545 0.237272 0.971443i \(-0.423747\pi\)
0.237272 + 0.971443i \(0.423747\pi\)
\(294\) 0 0
\(295\) −1.73205 −0.100844
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 35.1855 2.03483
\(300\) 0 0
\(301\) −42.1180 −2.42764
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.63292 0.0935008
\(306\) 0 0
\(307\) 0.444364 0.0253612 0.0126806 0.999920i \(-0.495964\pi\)
0.0126806 + 0.999920i \(0.495964\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.52521 0.370011 0.185005 0.982738i \(-0.440770\pi\)
0.185005 + 0.982738i \(0.440770\pi\)
\(312\) 0 0
\(313\) −16.9576 −0.958503 −0.479251 0.877678i \(-0.659092\pi\)
−0.479251 + 0.877678i \(0.659092\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.9936 −0.785957 −0.392978 0.919548i \(-0.628555\pi\)
−0.392978 + 0.919548i \(0.628555\pi\)
\(318\) 0 0
\(319\) −2.06084 −0.115385
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −33.5343 −1.86590
\(324\) 0 0
\(325\) −6.26439 −0.347486
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −22.7314 −1.25322
\(330\) 0 0
\(331\) −19.2820 −1.05983 −0.529917 0.848050i \(-0.677777\pi\)
−0.529917 + 0.848050i \(0.677777\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.52589 −0.520455
\(336\) 0 0
\(337\) 17.2587 0.940142 0.470071 0.882629i \(-0.344228\pi\)
0.470071 + 0.882629i \(0.344228\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 17.8729 0.967869
\(342\) 0 0
\(343\) 21.3614 1.15341
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.6032 −0.730257 −0.365128 0.930957i \(-0.618975\pi\)
−0.365128 + 0.930957i \(0.618975\pi\)
\(348\) 0 0
\(349\) −1.61963 −0.0866965 −0.0433483 0.999060i \(-0.513803\pi\)
−0.0433483 + 0.999060i \(0.513803\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 29.0802 1.54778 0.773890 0.633319i \(-0.218308\pi\)
0.773890 + 0.633319i \(0.218308\pi\)
\(354\) 0 0
\(355\) −14.3017 −0.759057
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.9218 −0.734762 −0.367381 0.930070i \(-0.619746\pi\)
−0.367381 + 0.930070i \(0.619746\pi\)
\(360\) 0 0
\(361\) 19.8564 1.04507
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.6132 −0.555519
\(366\) 0 0
\(367\) −18.6652 −0.974318 −0.487159 0.873313i \(-0.661967\pi\)
−0.487159 + 0.873313i \(0.661967\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −46.2249 −2.39988
\(372\) 0 0
\(373\) 19.1872 0.993475 0.496738 0.867901i \(-0.334531\pi\)
0.496738 + 0.867901i \(0.334531\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.77939 −0.246151
\(378\) 0 0
\(379\) 1.82213 0.0935966 0.0467983 0.998904i \(-0.485098\pi\)
0.0467983 + 0.998904i \(0.485098\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.95438 −0.202060 −0.101030 0.994883i \(-0.532214\pi\)
−0.101030 + 0.994883i \(0.532214\pi\)
\(384\) 0 0
\(385\) −11.7468 −0.598671
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.1646 1.27589 0.637947 0.770080i \(-0.279784\pi\)
0.637947 + 0.770080i \(0.279784\pi\)
\(390\) 0 0
\(391\) 30.2164 1.52811
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.535898 −0.0269640
\(396\) 0 0
\(397\) −13.8635 −0.695791 −0.347895 0.937533i \(-0.613104\pi\)
−0.347895 + 0.937533i \(0.613104\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −36.4190 −1.81868 −0.909338 0.416058i \(-0.863411\pi\)
−0.909338 + 0.416058i \(0.863411\pi\)
\(402\) 0 0
\(403\) 41.4499 2.06476
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −30.1154 −1.49276
\(408\) 0 0
\(409\) 30.3524 1.50083 0.750416 0.660966i \(-0.229853\pi\)
0.750416 + 0.660966i \(0.229853\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.53234 −0.370642
\(414\) 0 0
\(415\) −0.146201 −0.00717675
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.2306 0.499798 0.249899 0.968272i \(-0.419603\pi\)
0.249899 + 0.968272i \(0.419603\pi\)
\(420\) 0 0
\(421\) 10.3043 0.502202 0.251101 0.967961i \(-0.419207\pi\)
0.251101 + 0.967961i \(0.419207\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.37969 −0.260953
\(426\) 0 0
\(427\) 7.10124 0.343653
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −41.0317 −1.97643 −0.988213 0.153086i \(-0.951079\pi\)
−0.988213 + 0.153086i \(0.951079\pi\)
\(432\) 0 0
\(433\) 16.7270 0.803850 0.401925 0.915673i \(-0.368341\pi\)
0.401925 + 0.915673i \(0.368341\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −35.0119 −1.67485
\(438\) 0 0
\(439\) −12.4860 −0.595926 −0.297963 0.954577i \(-0.596307\pi\)
−0.297963 + 0.954577i \(0.596307\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.61606 −0.361850 −0.180925 0.983497i \(-0.557909\pi\)
−0.180925 + 0.983497i \(0.557909\pi\)
\(444\) 0 0
\(445\) −7.85997 −0.372598
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.8585 0.606831 0.303415 0.952858i \(-0.401873\pi\)
0.303415 + 0.952858i \(0.401873\pi\)
\(450\) 0 0
\(451\) −24.3842 −1.14821
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −27.2425 −1.27715
\(456\) 0 0
\(457\) 12.6132 0.590020 0.295010 0.955494i \(-0.404677\pi\)
0.295010 + 0.955494i \(0.404677\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −31.2157 −1.45386 −0.726930 0.686712i \(-0.759053\pi\)
−0.726930 + 0.686712i \(0.759053\pi\)
\(462\) 0 0
\(463\) −3.95910 −0.183995 −0.0919975 0.995759i \(-0.529325\pi\)
−0.0919975 + 0.995759i \(0.529325\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.7260 −0.959083 −0.479542 0.877519i \(-0.659197\pi\)
−0.479542 + 0.877519i \(0.659197\pi\)
\(468\) 0 0
\(469\) −41.4262 −1.91288
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 26.1606 1.20287
\(474\) 0 0
\(475\) 6.23349 0.286012
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 29.7221 1.35804 0.679020 0.734120i \(-0.262405\pi\)
0.679020 + 0.734120i \(0.262405\pi\)
\(480\) 0 0
\(481\) −69.8422 −3.18453
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.389697 −0.0176952
\(486\) 0 0
\(487\) 0.0532416 0.00241260 0.00120630 0.999999i \(-0.499616\pi\)
0.00120630 + 0.999999i \(0.499616\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.8585 −0.580297 −0.290148 0.956982i \(-0.593705\pi\)
−0.290148 + 0.956982i \(0.593705\pi\)
\(492\) 0 0
\(493\) −4.10442 −0.184854
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −62.1953 −2.78984
\(498\) 0 0
\(499\) −38.2192 −1.71093 −0.855464 0.517862i \(-0.826728\pi\)
−0.855464 + 0.517862i \(0.826728\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −31.0828 −1.38591 −0.692956 0.720980i \(-0.743692\pi\)
−0.692956 + 0.720980i \(0.743692\pi\)
\(504\) 0 0
\(505\) 12.8628 0.572389
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −34.9340 −1.54842 −0.774210 0.632928i \(-0.781853\pi\)
−0.774210 + 0.632928i \(0.781853\pi\)
\(510\) 0 0
\(511\) −46.1546 −2.04176
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.89731 −0.259866
\(516\) 0 0
\(517\) 14.1191 0.620956
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16.3880 0.717970 0.358985 0.933343i \(-0.383123\pi\)
0.358985 + 0.933343i \(0.383123\pi\)
\(522\) 0 0
\(523\) −14.6682 −0.641393 −0.320697 0.947182i \(-0.603917\pi\)
−0.320697 + 0.947182i \(0.603917\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 35.5961 1.55059
\(528\) 0 0
\(529\) 8.54783 0.371645
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −56.5507 −2.44948
\(534\) 0 0
\(535\) 14.3923 0.622234
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −32.1762 −1.38593
\(540\) 0 0
\(541\) 29.9301 1.28680 0.643398 0.765532i \(-0.277524\pi\)
0.643398 + 0.765532i \(0.277524\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.15264 0.220715
\(546\) 0 0
\(547\) 40.4233 1.72838 0.864188 0.503170i \(-0.167833\pi\)
0.864188 + 0.503170i \(0.167833\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.75582 0.202605
\(552\) 0 0
\(553\) −2.33051 −0.0991035
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.62909 0.238512 0.119256 0.992864i \(-0.461949\pi\)
0.119256 + 0.992864i \(0.461949\pi\)
\(558\) 0 0
\(559\) 60.6705 2.56609
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.28555 −0.0541795 −0.0270897 0.999633i \(-0.508624\pi\)
−0.0270897 + 0.999633i \(0.508624\pi\)
\(564\) 0 0
\(565\) −18.3826 −0.773361
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.40154 −0.226444 −0.113222 0.993570i \(-0.536117\pi\)
−0.113222 + 0.993570i \(0.536117\pi\)
\(570\) 0 0
\(571\) 23.8008 0.996032 0.498016 0.867168i \(-0.334062\pi\)
0.498016 + 0.867168i \(0.334062\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.61675 −0.234234
\(576\) 0 0
\(577\) −26.9926 −1.12372 −0.561858 0.827233i \(-0.689913\pi\)
−0.561858 + 0.827233i \(0.689913\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.635800 −0.0263774
\(582\) 0 0
\(583\) 28.7115 1.18911
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26.3208 1.08637 0.543187 0.839611i \(-0.317217\pi\)
0.543187 + 0.839611i \(0.317217\pi\)
\(588\) 0 0
\(589\) −41.2454 −1.69949
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 27.4951 1.12909 0.564544 0.825403i \(-0.309052\pi\)
0.564544 + 0.825403i \(0.309052\pi\)
\(594\) 0 0
\(595\) −23.3952 −0.959109
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −9.96409 −0.407122 −0.203561 0.979062i \(-0.565251\pi\)
−0.203561 + 0.979062i \(0.565251\pi\)
\(600\) 0 0
\(601\) 31.2782 1.27586 0.637931 0.770093i \(-0.279790\pi\)
0.637931 + 0.770093i \(0.279790\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.70376 −0.150579
\(606\) 0 0
\(607\) −26.3331 −1.06883 −0.534414 0.845223i \(-0.679468\pi\)
−0.534414 + 0.845223i \(0.679468\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 32.7443 1.32469
\(612\) 0 0
\(613\) −18.6020 −0.751329 −0.375664 0.926756i \(-0.622585\pi\)
−0.375664 + 0.926756i \(0.622585\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17.3276 −0.697584 −0.348792 0.937200i \(-0.613408\pi\)
−0.348792 + 0.937200i \(0.613408\pi\)
\(618\) 0 0
\(619\) −21.5155 −0.864780 −0.432390 0.901687i \(-0.642330\pi\)
−0.432390 + 0.901687i \(0.642330\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −34.1814 −1.36945
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −59.9786 −2.39150
\(630\) 0 0
\(631\) 20.9696 0.834786 0.417393 0.908726i \(-0.362944\pi\)
0.417393 + 0.908726i \(0.362944\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.27700 0.288779
\(636\) 0 0
\(637\) −74.6216 −2.95661
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.8405 0.625662 0.312831 0.949809i \(-0.398723\pi\)
0.312831 + 0.949809i \(0.398723\pi\)
\(642\) 0 0
\(643\) 16.9508 0.668475 0.334238 0.942489i \(-0.391521\pi\)
0.334238 + 0.942489i \(0.391521\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 41.0504 1.61386 0.806929 0.590648i \(-0.201128\pi\)
0.806929 + 0.590648i \(0.201128\pi\)
\(648\) 0 0
\(649\) 4.67854 0.183649
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.7270 1.20244 0.601221 0.799083i \(-0.294681\pi\)
0.601221 + 0.799083i \(0.294681\pi\)
\(654\) 0 0
\(655\) −5.36497 −0.209627
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 24.2349 0.944059 0.472030 0.881583i \(-0.343521\pi\)
0.472030 + 0.881583i \(0.343521\pi\)
\(660\) 0 0
\(661\) 36.2849 1.41132 0.705659 0.708552i \(-0.250651\pi\)
0.705659 + 0.708552i \(0.250651\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 27.1082 1.05121
\(666\) 0 0
\(667\) −4.28528 −0.165927
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.41077 −0.170276
\(672\) 0 0
\(673\) 8.41231 0.324271 0.162135 0.986769i \(-0.448162\pi\)
0.162135 + 0.986769i \(0.448162\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −42.1090 −1.61838 −0.809189 0.587548i \(-0.800093\pi\)
−0.809189 + 0.587548i \(0.800093\pi\)
\(678\) 0 0
\(679\) −1.69471 −0.0650371
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.2140 0.888260 0.444130 0.895962i \(-0.353513\pi\)
0.444130 + 0.895962i \(0.353513\pi\)
\(684\) 0 0
\(685\) 4.69759 0.179486
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 66.5864 2.53674
\(690\) 0 0
\(691\) 30.7432 1.16953 0.584763 0.811204i \(-0.301187\pi\)
0.584763 + 0.811204i \(0.301187\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.662362 0.0251248
\(696\) 0 0
\(697\) −48.5643 −1.83950
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.1624 0.572675 0.286338 0.958129i \(-0.407562\pi\)
0.286338 + 0.958129i \(0.407562\pi\)
\(702\) 0 0
\(703\) 69.4977 2.62116
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 55.9379 2.10376
\(708\) 0 0
\(709\) −39.6115 −1.48764 −0.743821 0.668378i \(-0.766989\pi\)
−0.743821 + 0.668378i \(0.766989\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 37.1646 1.39182
\(714\) 0 0
\(715\) 16.9211 0.632812
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −35.7093 −1.33173 −0.665865 0.746072i \(-0.731937\pi\)
−0.665865 + 0.746072i \(0.731937\pi\)
\(720\) 0 0
\(721\) −25.6462 −0.955114
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.762947 0.0283351
\(726\) 0 0
\(727\) −25.6538 −0.951447 −0.475724 0.879595i \(-0.657814\pi\)
−0.475724 + 0.879595i \(0.657814\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 52.1022 1.92707
\(732\) 0 0
\(733\) 2.30529 0.0851477 0.0425739 0.999093i \(-0.486444\pi\)
0.0425739 + 0.999093i \(0.486444\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.7309 0.947810
\(738\) 0 0
\(739\) −7.86679 −0.289385 −0.144692 0.989477i \(-0.546219\pi\)
−0.144692 + 0.989477i \(0.546219\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.56507 −0.277535 −0.138768 0.990325i \(-0.544314\pi\)
−0.138768 + 0.990325i \(0.544314\pi\)
\(744\) 0 0
\(745\) 2.16169 0.0791983
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 62.5892 2.28696
\(750\) 0 0
\(751\) 50.6087 1.84674 0.923368 0.383916i \(-0.125425\pi\)
0.923368 + 0.383916i \(0.125425\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.44793 0.307452
\(756\) 0 0
\(757\) −54.7114 −1.98852 −0.994259 0.106999i \(-0.965876\pi\)
−0.994259 + 0.106999i \(0.965876\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 35.9555 1.30339 0.651694 0.758482i \(-0.274059\pi\)
0.651694 + 0.758482i \(0.274059\pi\)
\(762\) 0 0
\(763\) 22.4078 0.811217
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.8502 0.391779
\(768\) 0 0
\(769\) −2.02327 −0.0729610 −0.0364805 0.999334i \(-0.511615\pi\)
−0.0364805 + 0.999334i \(0.511615\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.5708 0.703914 0.351957 0.936016i \(-0.385516\pi\)
0.351957 + 0.936016i \(0.385516\pi\)
\(774\) 0 0
\(775\) −6.61675 −0.237681
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 56.2718 2.01615
\(780\) 0 0
\(781\) 38.6312 1.38233
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.75111 0.205266
\(786\) 0 0
\(787\) 0.980262 0.0349426 0.0174713 0.999847i \(-0.494438\pi\)
0.0174713 + 0.999847i \(0.494438\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −79.9421 −2.84241
\(792\) 0 0
\(793\) −10.2292 −0.363251
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12.1869 −0.431683 −0.215841 0.976428i \(-0.569249\pi\)
−0.215841 + 0.976428i \(0.569249\pi\)
\(798\) 0 0
\(799\) 28.1199 0.994811
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 28.6678 1.01167
\(804\) 0 0
\(805\) −24.4261 −0.860906
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 13.6760 0.480823 0.240412 0.970671i \(-0.422718\pi\)
0.240412 + 0.970671i \(0.422718\pi\)
\(810\) 0 0
\(811\) 13.4256 0.471436 0.235718 0.971822i \(-0.424256\pi\)
0.235718 + 0.971822i \(0.424256\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −12.8438 −0.449898
\(816\) 0 0
\(817\) −60.3712 −2.11212
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19.9346 0.695724 0.347862 0.937546i \(-0.386908\pi\)
0.347862 + 0.937546i \(0.386908\pi\)
\(822\) 0 0
\(823\) −52.5526 −1.83187 −0.915935 0.401327i \(-0.868549\pi\)
−0.915935 + 0.401327i \(0.868549\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 50.1251 1.74302 0.871511 0.490376i \(-0.163141\pi\)
0.871511 + 0.490376i \(0.163141\pi\)
\(828\) 0 0
\(829\) −13.1526 −0.456810 −0.228405 0.973566i \(-0.573351\pi\)
−0.228405 + 0.973566i \(0.573351\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −64.0830 −2.22035
\(834\) 0 0
\(835\) −21.9085 −0.758174
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.3593 0.840976 0.420488 0.907298i \(-0.361859\pi\)
0.420488 + 0.907298i \(0.361859\pi\)
\(840\) 0 0
\(841\) −28.4179 −0.979928
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 26.2425 0.902771
\(846\) 0 0
\(847\) −16.1069 −0.553440
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −62.6216 −2.14664
\(852\) 0 0
\(853\) 5.57795 0.190985 0.0954927 0.995430i \(-0.469557\pi\)
0.0954927 + 0.995430i \(0.469557\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.03235 −0.137742 −0.0688712 0.997626i \(-0.521940\pi\)
−0.0688712 + 0.997626i \(0.521940\pi\)
\(858\) 0 0
\(859\) 38.5550 1.31548 0.657739 0.753246i \(-0.271513\pi\)
0.657739 + 0.753246i \(0.271513\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −31.3959 −1.06873 −0.534364 0.845255i \(-0.679449\pi\)
−0.534364 + 0.845255i \(0.679449\pi\)
\(864\) 0 0
\(865\) −2.68854 −0.0914132
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.44754 0.0491046
\(870\) 0 0
\(871\) 59.6739 2.02197
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.34880 0.147016
\(876\) 0 0
\(877\) 24.1208 0.814501 0.407251 0.913316i \(-0.366488\pi\)
0.407251 + 0.913316i \(0.366488\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.3270 1.42603 0.713016 0.701148i \(-0.247329\pi\)
0.713016 + 0.701148i \(0.247329\pi\)
\(882\) 0 0
\(883\) −44.6242 −1.50172 −0.750861 0.660460i \(-0.770361\pi\)
−0.750861 + 0.660460i \(0.770361\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25.5957 −0.859419 −0.429709 0.902967i \(-0.641384\pi\)
−0.429709 + 0.902967i \(0.641384\pi\)
\(888\) 0 0
\(889\) 31.6462 1.06138
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −32.5828 −1.09034
\(894\) 0 0
\(895\) 9.02733 0.301750
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.04822 −0.168368
\(900\) 0 0
\(901\) 57.1827 1.90503
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.85024 −0.194468
\(906\) 0 0
\(907\) −29.4009 −0.976242 −0.488121 0.872776i \(-0.662318\pi\)
−0.488121 + 0.872776i \(0.662318\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 14.6869 0.486599 0.243299 0.969951i \(-0.421770\pi\)
0.243299 + 0.969951i \(0.421770\pi\)
\(912\) 0 0
\(913\) 0.394913 0.0130697
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −23.3312 −0.770463
\(918\) 0 0
\(919\) −0.353784 −0.0116703 −0.00583513 0.999983i \(-0.501857\pi\)
−0.00583513 + 0.999983i \(0.501857\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 89.5915 2.94894
\(924\) 0 0
\(925\) 11.1491 0.366580
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −27.3340 −0.896801 −0.448400 0.893833i \(-0.648006\pi\)
−0.448400 + 0.893833i \(0.648006\pi\)
\(930\) 0 0
\(931\) 74.2535 2.43356
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14.5314 0.475227
\(936\) 0 0
\(937\) −4.17594 −0.136422 −0.0682111 0.997671i \(-0.521729\pi\)
−0.0682111 + 0.997671i \(0.521729\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 17.1969 0.560604 0.280302 0.959912i \(-0.409565\pi\)
0.280302 + 0.959912i \(0.409565\pi\)
\(942\) 0 0
\(943\) −50.7042 −1.65116
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.7086 −1.06289 −0.531443 0.847094i \(-0.678350\pi\)
−0.531443 + 0.847094i \(0.678350\pi\)
\(948\) 0 0
\(949\) 66.4851 2.15820
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −33.1122 −1.07261 −0.536305 0.844024i \(-0.680180\pi\)
−0.536305 + 0.844024i \(0.680180\pi\)
\(954\) 0 0
\(955\) −12.9936 −0.420462
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 20.4289 0.659683
\(960\) 0 0
\(961\) 12.7813 0.412301
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.51328 0.145288
\(966\) 0 0
\(967\) −49.5271 −1.59269 −0.796343 0.604846i \(-0.793235\pi\)
−0.796343 + 0.604846i \(0.793235\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.82907 0.154972 0.0774862 0.996993i \(-0.475311\pi\)
0.0774862 + 0.996993i \(0.475311\pi\)
\(972\) 0 0
\(973\) 2.88048 0.0923439
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.9411 0.478008 0.239004 0.971019i \(-0.423179\pi\)
0.239004 + 0.971019i \(0.423179\pi\)
\(978\) 0 0
\(979\) 21.2310 0.678545
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 50.5695 1.61292 0.806458 0.591291i \(-0.201382\pi\)
0.806458 + 0.591291i \(0.201382\pi\)
\(984\) 0 0
\(985\) 16.8431 0.536666
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 54.3981 1.72976
\(990\) 0 0
\(991\) −37.4566 −1.18985 −0.594924 0.803782i \(-0.702818\pi\)
−0.594924 + 0.803782i \(0.702818\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.6006 −0.367763
\(996\) 0 0
\(997\) −7.73822 −0.245072 −0.122536 0.992464i \(-0.539103\pi\)
−0.122536 + 0.992464i \(0.539103\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.ca.1.4 4
3.2 odd 2 6480.2.a.by.1.4 4
4.3 odd 2 3240.2.a.v.1.1 yes 4
12.11 even 2 3240.2.a.t.1.1 4
36.7 odd 6 3240.2.q.bg.1081.4 8
36.11 even 6 3240.2.q.bh.1081.4 8
36.23 even 6 3240.2.q.bh.2161.4 8
36.31 odd 6 3240.2.q.bg.2161.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3240.2.a.t.1.1 4 12.11 even 2
3240.2.a.v.1.1 yes 4 4.3 odd 2
3240.2.q.bg.1081.4 8 36.7 odd 6
3240.2.q.bg.2161.4 8 36.31 odd 6
3240.2.q.bh.1081.4 8 36.11 even 6
3240.2.q.bh.2161.4 8 36.23 even 6
6480.2.a.by.1.4 4 3.2 odd 2
6480.2.a.ca.1.4 4 1.1 even 1 trivial