Properties

Label 3240.2.q.bh.2161.4
Level $3240$
Weight $2$
Character 3240.2161
Analytic conductor $25.872$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(1081,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1081");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.3887771904.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 26x^{6} + 217x^{4} + 672x^{2} + 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2161.4
Root \(3.61675i\) of defining polynomial
Character \(\chi\) \(=\) 3240.2161
Dual form 3240.2.q.bh.1081.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{5} +(2.17440 - 3.76617i) q^{7} +(1.35058 - 2.33927i) q^{11} +(3.13219 + 5.42512i) q^{13} +5.37969 q^{17} -6.23349 q^{19} +(2.80837 + 4.86424i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(0.381473 - 0.660731i) q^{29} +(-3.30837 - 5.73027i) q^{31} +4.34880 q^{35} +11.1491 q^{37} +(4.51367 + 7.81790i) q^{41} +(-4.84249 + 8.38744i) q^{43} +(2.61352 - 4.52676i) q^{47} +(-5.95601 - 10.3161i) q^{49} +10.6294 q^{53} +2.70115 q^{55} +(0.866025 + 1.50000i) q^{59} +(-0.816460 + 1.41415i) q^{61} +(-3.13219 + 5.42512i) q^{65} +(-4.76295 - 8.24967i) q^{67} -14.3017 q^{71} -10.6132 q^{73} +(-5.87339 - 10.1730i) q^{77} +(-0.267949 + 0.464102i) q^{79} +(0.0731007 - 0.126614i) q^{83} +(2.68985 + 4.65895i) q^{85} +7.85997 q^{89} +27.2425 q^{91} +(-3.11675 - 5.39836i) q^{95} +(0.194848 - 0.337487i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} - 2 q^{7} + 4 q^{11} + 4 q^{17} + 10 q^{23} - 4 q^{25} - 4 q^{29} - 14 q^{31} - 4 q^{35} + 28 q^{37} + 4 q^{41} - 22 q^{43} - 10 q^{49} + 16 q^{53} + 8 q^{55} - 4 q^{61} - 24 q^{67} - 56 q^{71}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 2.17440 3.76617i 0.821845 1.42348i −0.0824614 0.996594i \(-0.526278\pi\)
0.904307 0.426883i \(-0.140389\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.35058 2.33927i 0.407214 0.705316i −0.587362 0.809324i \(-0.699834\pi\)
0.994576 + 0.104008i \(0.0331668\pi\)
\(12\) 0 0
\(13\) 3.13219 + 5.42512i 0.868714 + 1.50466i 0.863311 + 0.504672i \(0.168386\pi\)
0.00540274 + 0.999985i \(0.498280\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.37969 1.30477 0.652384 0.757889i \(-0.273769\pi\)
0.652384 + 0.757889i \(0.273769\pi\)
\(18\) 0 0
\(19\) −6.23349 −1.43006 −0.715030 0.699093i \(-0.753587\pi\)
−0.715030 + 0.699093i \(0.753587\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.80837 + 4.86424i 0.585586 + 1.01427i 0.994802 + 0.101827i \(0.0324690\pi\)
−0.409216 + 0.912438i \(0.634198\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.381473 0.660731i 0.0708378 0.122695i −0.828431 0.560091i \(-0.810766\pi\)
0.899269 + 0.437397i \(0.144099\pi\)
\(30\) 0 0
\(31\) −3.30837 5.73027i −0.594201 1.02919i −0.993659 0.112435i \(-0.964135\pi\)
0.399458 0.916752i \(-0.369198\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.34880 0.735081
\(36\) 0 0
\(37\) 11.1491 1.83290 0.916449 0.400152i \(-0.131043\pi\)
0.916449 + 0.400152i \(0.131043\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.51367 + 7.81790i 0.704916 + 1.22095i 0.966722 + 0.255830i \(0.0823488\pi\)
−0.261805 + 0.965121i \(0.584318\pi\)
\(42\) 0 0
\(43\) −4.84249 + 8.38744i −0.738473 + 1.27907i 0.214710 + 0.976678i \(0.431119\pi\)
−0.953183 + 0.302395i \(0.902214\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.61352 4.52676i 0.381222 0.660295i −0.610015 0.792389i \(-0.708837\pi\)
0.991237 + 0.132094i \(0.0421701\pi\)
\(48\) 0 0
\(49\) −5.95601 10.3161i −0.850859 1.47373i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.6294 1.46005 0.730027 0.683418i \(-0.239507\pi\)
0.730027 + 0.683418i \(0.239507\pi\)
\(54\) 0 0
\(55\) 2.70115 0.364224
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.866025 + 1.50000i 0.112747 + 0.195283i 0.916877 0.399170i \(-0.130702\pi\)
−0.804130 + 0.594454i \(0.797368\pi\)
\(60\) 0 0
\(61\) −0.816460 + 1.41415i −0.104537 + 0.181063i −0.913549 0.406729i \(-0.866669\pi\)
0.809012 + 0.587792i \(0.200003\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.13219 + 5.42512i −0.388501 + 0.672903i
\(66\) 0 0
\(67\) −4.76295 8.24967i −0.581887 1.00786i −0.995256 0.0972936i \(-0.968981\pi\)
0.413369 0.910564i \(-0.364352\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.3017 −1.69730 −0.848651 0.528953i \(-0.822585\pi\)
−0.848651 + 0.528953i \(0.822585\pi\)
\(72\) 0 0
\(73\) −10.6132 −1.24218 −0.621090 0.783740i \(-0.713310\pi\)
−0.621090 + 0.783740i \(0.713310\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.87339 10.1730i −0.669334 1.15932i
\(78\) 0 0
\(79\) −0.267949 + 0.464102i −0.0301466 + 0.0522155i −0.880705 0.473665i \(-0.842931\pi\)
0.850558 + 0.525880i \(0.176264\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.0731007 0.126614i 0.00802385 0.0138977i −0.861986 0.506933i \(-0.830779\pi\)
0.870009 + 0.493035i \(0.164113\pi\)
\(84\) 0 0
\(85\) 2.68985 + 4.65895i 0.291755 + 0.505334i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.85997 0.833155 0.416578 0.909100i \(-0.363229\pi\)
0.416578 + 0.909100i \(0.363229\pi\)
\(90\) 0 0
\(91\) 27.2425 2.85579
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.11675 5.39836i −0.319771 0.553860i
\(96\) 0 0
\(97\) 0.194848 0.337487i 0.0197839 0.0342667i −0.855964 0.517035i \(-0.827036\pi\)
0.875748 + 0.482769i \(0.160369\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.43142 11.1396i 0.639951 1.10843i −0.345492 0.938422i \(-0.612288\pi\)
0.985443 0.170006i \(-0.0543786\pi\)
\(102\) 0 0
\(103\) −2.94865 5.10722i −0.290539 0.503229i 0.683398 0.730046i \(-0.260501\pi\)
−0.973937 + 0.226817i \(0.927168\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.3923 1.39136 0.695678 0.718353i \(-0.255104\pi\)
0.695678 + 0.718353i \(0.255104\pi\)
\(108\) 0 0
\(109\) 5.15264 0.493534 0.246767 0.969075i \(-0.420632\pi\)
0.246767 + 0.969075i \(0.420632\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.19129 15.9198i −0.864643 1.49761i −0.867401 0.497610i \(-0.834211\pi\)
0.00275732 0.999996i \(-0.499122\pi\)
\(114\) 0 0
\(115\) −2.80837 + 4.86424i −0.261882 + 0.453593i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.6976 20.2608i 1.07232 1.85731i
\(120\) 0 0
\(121\) 1.85188 + 3.20755i 0.168353 + 0.291596i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −7.27700 −0.645729 −0.322865 0.946445i \(-0.604646\pi\)
−0.322865 + 0.946445i \(0.604646\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.68249 + 4.64620i 0.234370 + 0.405941i 0.959089 0.283103i \(-0.0913640\pi\)
−0.724720 + 0.689044i \(0.758031\pi\)
\(132\) 0 0
\(133\) −13.5541 + 23.4764i −1.17529 + 2.03566i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.34880 4.06823i 0.200671 0.347573i −0.748074 0.663616i \(-0.769021\pi\)
0.948745 + 0.316043i \(0.102354\pi\)
\(138\) 0 0
\(139\) 0.331181 + 0.573622i 0.0280904 + 0.0486540i 0.879729 0.475476i \(-0.157724\pi\)
−0.851638 + 0.524130i \(0.824391\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 16.9211 1.41501
\(144\) 0 0
\(145\) 0.762947 0.0633593
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.08085 + 1.87208i 0.0885464 + 0.153367i 0.906897 0.421353i \(-0.138444\pi\)
−0.818350 + 0.574719i \(0.805111\pi\)
\(150\) 0 0
\(151\) 4.22396 7.31612i 0.343741 0.595377i −0.641383 0.767221i \(-0.721639\pi\)
0.985124 + 0.171844i \(0.0549724\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.30837 5.73027i 0.265735 0.460266i
\(156\) 0 0
\(157\) −2.87555 4.98060i −0.229494 0.397495i 0.728164 0.685403i \(-0.240374\pi\)
−0.957658 + 0.287907i \(0.907040\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 24.4261 1.92504
\(162\) 0 0
\(163\) 12.8438 1.00600 0.503002 0.864285i \(-0.332229\pi\)
0.503002 + 0.864285i \(0.332229\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.9542 + 18.9733i 0.847664 + 1.46820i 0.883287 + 0.468832i \(0.155325\pi\)
−0.0356235 + 0.999365i \(0.511342\pi\)
\(168\) 0 0
\(169\) −13.1213 + 22.7267i −1.00933 + 1.74821i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.34427 + 2.32835i −0.102203 + 0.177021i −0.912592 0.408871i \(-0.865922\pi\)
0.810389 + 0.585892i \(0.199256\pi\)
\(174\) 0 0
\(175\) 2.17440 + 3.76617i 0.164369 + 0.284696i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.02733 0.674735 0.337367 0.941373i \(-0.390464\pi\)
0.337367 + 0.941373i \(0.390464\pi\)
\(180\) 0 0
\(181\) −5.85024 −0.434845 −0.217422 0.976078i \(-0.569765\pi\)
−0.217422 + 0.976078i \(0.569765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.57454 + 9.65539i 0.409848 + 0.709878i
\(186\) 0 0
\(187\) 7.26569 12.5845i 0.531320 0.920273i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.49678 11.2528i 0.470090 0.814220i −0.529325 0.848419i \(-0.677555\pi\)
0.999415 + 0.0341989i \(0.0108880\pi\)
\(192\) 0 0
\(193\) −2.25664 3.90862i −0.162437 0.281348i 0.773305 0.634034i \(-0.218602\pi\)
−0.935742 + 0.352685i \(0.885269\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.8431 −1.20002 −0.600011 0.799992i \(-0.704837\pi\)
−0.600011 + 0.799992i \(0.704837\pi\)
\(198\) 0 0
\(199\) 11.6006 0.822343 0.411171 0.911558i \(-0.365120\pi\)
0.411171 + 0.911558i \(0.365120\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.65895 2.87339i −0.116435 0.201672i
\(204\) 0 0
\(205\) −4.51367 + 7.81790i −0.315248 + 0.546026i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.41881 + 14.5818i −0.582341 + 1.00864i
\(210\) 0 0
\(211\) 0.431766 + 0.747840i 0.0297240 + 0.0514834i 0.880505 0.474037i \(-0.157204\pi\)
−0.850781 + 0.525521i \(0.823871\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.68498 −0.660510
\(216\) 0 0
\(217\) −28.7749 −1.95337
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.8502 + 29.1855i 1.13347 + 1.96323i
\(222\) 0 0
\(223\) 4.43321 7.67854i 0.296869 0.514193i −0.678549 0.734555i \(-0.737391\pi\)
0.975418 + 0.220363i \(0.0707241\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.84249 + 11.8515i −0.454152 + 0.786614i −0.998639 0.0521549i \(-0.983391\pi\)
0.544487 + 0.838769i \(0.316724\pi\)
\(228\) 0 0
\(229\) 1.23349 + 2.13647i 0.0815114 + 0.141182i 0.903899 0.427745i \(-0.140692\pi\)
−0.822388 + 0.568927i \(0.807359\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.8438 0.841425 0.420712 0.907194i \(-0.361780\pi\)
0.420712 + 0.907194i \(0.361780\pi\)
\(234\) 0 0
\(235\) 5.22705 0.340975
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.26795 + 7.39230i 0.276071 + 0.478168i 0.970405 0.241484i \(-0.0776343\pi\)
−0.694334 + 0.719653i \(0.744301\pi\)
\(240\) 0 0
\(241\) −2.56988 + 4.45116i −0.165540 + 0.286725i −0.936847 0.349739i \(-0.886270\pi\)
0.771307 + 0.636464i \(0.219604\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.95601 10.3161i 0.380516 0.659073i
\(246\) 0 0
\(247\) −19.5245 33.8174i −1.24231 2.15175i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.13080 0.0713753 0.0356877 0.999363i \(-0.488638\pi\)
0.0356877 + 0.999363i \(0.488638\pi\)
\(252\) 0 0
\(253\) 15.1717 0.953837
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.08441 8.80646i −0.317157 0.549332i 0.662737 0.748852i \(-0.269395\pi\)
−0.979894 + 0.199521i \(0.936061\pi\)
\(258\) 0 0
\(259\) 24.2425 41.9893i 1.50636 2.60909i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.10366 + 7.10774i −0.253042 + 0.438282i −0.964362 0.264587i \(-0.914764\pi\)
0.711320 + 0.702869i \(0.248098\pi\)
\(264\) 0 0
\(265\) 5.31468 + 9.20529i 0.326478 + 0.565477i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 26.9246 1.64162 0.820812 0.571198i \(-0.193521\pi\)
0.820812 + 0.571198i \(0.193521\pi\)
\(270\) 0 0
\(271\) −4.30529 −0.261528 −0.130764 0.991414i \(-0.541743\pi\)
−0.130764 + 0.991414i \(0.541743\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.35058 + 2.33927i 0.0814429 + 0.141063i
\(276\) 0 0
\(277\) −10.1090 + 17.5094i −0.607394 + 1.05204i 0.384275 + 0.923219i \(0.374452\pi\)
−0.991668 + 0.128818i \(0.958882\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.0704014 + 0.121939i −0.00419979 + 0.00727425i −0.868118 0.496358i \(-0.834670\pi\)
0.863918 + 0.503633i \(0.168004\pi\)
\(282\) 0 0
\(283\) −0.115305 0.199715i −0.00685420 0.0118718i 0.862578 0.505924i \(-0.168848\pi\)
−0.869432 + 0.494052i \(0.835515\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 39.2580 2.31733
\(288\) 0 0
\(289\) 11.9411 0.702417
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.06145 + 7.03464i 0.237272 + 0.410968i 0.959931 0.280238i \(-0.0904132\pi\)
−0.722658 + 0.691206i \(0.757080\pi\)
\(294\) 0 0
\(295\) −0.866025 + 1.50000i −0.0504219 + 0.0873334i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −17.5927 + 30.4715i −1.01741 + 1.76221i
\(300\) 0 0
\(301\) 21.0590 + 36.4753i 1.21382 + 2.10240i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.63292 −0.0935008
\(306\) 0 0
\(307\) −0.444364 −0.0253612 −0.0126806 0.999920i \(-0.504036\pi\)
−0.0126806 + 0.999920i \(0.504036\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.26261 5.65100i −0.185005 0.320439i 0.758573 0.651588i \(-0.225897\pi\)
−0.943578 + 0.331149i \(0.892564\pi\)
\(312\) 0 0
\(313\) 8.47882 14.6858i 0.479251 0.830088i −0.520465 0.853883i \(-0.674242\pi\)
0.999717 + 0.0237950i \(0.00757489\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.99678 + 12.1188i −0.392978 + 0.680658i −0.992841 0.119445i \(-0.961889\pi\)
0.599863 + 0.800103i \(0.295222\pi\)
\(318\) 0 0
\(319\) −1.03042 1.78474i −0.0576924 0.0999261i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −33.5343 −1.86590
\(324\) 0 0
\(325\) −6.26439 −0.347486
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −11.3657 19.6859i −0.626610 1.08532i
\(330\) 0 0
\(331\) −9.64099 + 16.6987i −0.529917 + 0.917843i 0.469474 + 0.882946i \(0.344444\pi\)
−0.999391 + 0.0348968i \(0.988890\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.76295 8.24967i 0.260228 0.450727i
\(336\) 0 0
\(337\) −8.62936 14.9465i −0.470071 0.814187i 0.529343 0.848408i \(-0.322438\pi\)
−0.999414 + 0.0342208i \(0.989105\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −17.8729 −0.967869
\(342\) 0 0
\(343\) −21.3614 −1.15341
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.80159 + 11.7807i 0.365128 + 0.632421i 0.988797 0.149268i \(-0.0476917\pi\)
−0.623668 + 0.781689i \(0.714358\pi\)
\(348\) 0 0
\(349\) 0.809813 1.40264i 0.0433483 0.0750814i −0.843537 0.537071i \(-0.819531\pi\)
0.886885 + 0.461989i \(0.152864\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.5401 25.1842i 0.773890 1.34042i −0.161525 0.986869i \(-0.551641\pi\)
0.935416 0.353549i \(-0.115025\pi\)
\(354\) 0 0
\(355\) −7.15086 12.3857i −0.379528 0.657362i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.9218 −0.734762 −0.367381 0.930070i \(-0.619746\pi\)
−0.367381 + 0.930070i \(0.619746\pi\)
\(360\) 0 0
\(361\) 19.8564 1.04507
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.30659 9.19129i −0.277760 0.481094i
\(366\) 0 0
\(367\) −9.33262 + 16.1646i −0.487159 + 0.843784i −0.999891 0.0147647i \(-0.995300\pi\)
0.512732 + 0.858549i \(0.328633\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 23.1125 40.0319i 1.19994 2.07836i
\(372\) 0 0
\(373\) −9.59360 16.6166i −0.496738 0.860375i 0.503255 0.864138i \(-0.332136\pi\)
−0.999993 + 0.00376306i \(0.998802\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.77939 0.246151
\(378\) 0 0
\(379\) −1.82213 −0.0935966 −0.0467983 0.998904i \(-0.514902\pi\)
−0.0467983 + 0.998904i \(0.514902\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.97719 + 3.42460i 0.101030 + 0.174989i 0.912109 0.409947i \(-0.134453\pi\)
−0.811079 + 0.584936i \(0.801120\pi\)
\(384\) 0 0
\(385\) 5.87339 10.1730i 0.299335 0.518464i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.5823 21.7932i 0.637947 1.10496i −0.347935 0.937519i \(-0.613117\pi\)
0.985883 0.167439i \(-0.0535496\pi\)
\(390\) 0 0
\(391\) 15.1082 + 26.1681i 0.764054 + 1.32338i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.535898 −0.0269640
\(396\) 0 0
\(397\) −13.8635 −0.695791 −0.347895 0.937533i \(-0.613104\pi\)
−0.347895 + 0.937533i \(0.613104\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.2095 31.5397i −0.909338 1.57502i −0.814986 0.579481i \(-0.803255\pi\)
−0.0943519 0.995539i \(-0.530078\pi\)
\(402\) 0 0
\(403\) 20.7249 35.8966i 1.03238 1.78814i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.0577 26.0807i 0.746382 1.29277i
\(408\) 0 0
\(409\) −15.1762 26.2860i −0.750416 1.29976i −0.947621 0.319396i \(-0.896520\pi\)
0.197205 0.980362i \(-0.436813\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.53234 0.370642
\(414\) 0 0
\(415\) 0.146201 0.00717675
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.11531 8.85997i −0.249899 0.432838i 0.713599 0.700555i \(-0.247064\pi\)
−0.963498 + 0.267717i \(0.913731\pi\)
\(420\) 0 0
\(421\) −5.15217 + 8.92381i −0.251101 + 0.434920i −0.963829 0.266520i \(-0.914126\pi\)
0.712728 + 0.701440i \(0.247459\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.68985 + 4.65895i −0.130477 + 0.225992i
\(426\) 0 0
\(427\) 3.55062 + 6.14985i 0.171827 + 0.297612i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −41.0317 −1.97643 −0.988213 0.153086i \(-0.951079\pi\)
−0.988213 + 0.153086i \(0.951079\pi\)
\(432\) 0 0
\(433\) 16.7270 0.803850 0.401925 0.915673i \(-0.368341\pi\)
0.401925 + 0.915673i \(0.368341\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −17.5060 30.3212i −0.837424 1.45046i
\(438\) 0 0
\(439\) −6.24302 + 10.8132i −0.297963 + 0.516087i −0.975670 0.219245i \(-0.929641\pi\)
0.677707 + 0.735332i \(0.262974\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.80803 6.59570i 0.180925 0.313371i −0.761271 0.648434i \(-0.775424\pi\)
0.942196 + 0.335063i \(0.108758\pi\)
\(444\) 0 0
\(445\) 3.92998 + 6.80693i 0.186299 + 0.322680i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.8585 −0.606831 −0.303415 0.952858i \(-0.598127\pi\)
−0.303415 + 0.952858i \(0.598127\pi\)
\(450\) 0 0
\(451\) 24.3842 1.14821
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 13.6213 + 23.5927i 0.638575 + 1.10604i
\(456\) 0 0
\(457\) −6.30659 + 10.9233i −0.295010 + 0.510972i −0.974987 0.222261i \(-0.928656\pi\)
0.679977 + 0.733233i \(0.261990\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.6078 + 27.0336i −0.726930 + 1.25908i 0.231245 + 0.972895i \(0.425720\pi\)
−0.958175 + 0.286183i \(0.907613\pi\)
\(462\) 0 0
\(463\) −1.97955 3.42868i −0.0919975 0.159344i 0.816354 0.577552i \(-0.195992\pi\)
−0.908352 + 0.418207i \(0.862659\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.7260 −0.959083 −0.479542 0.877519i \(-0.659197\pi\)
−0.479542 + 0.877519i \(0.659197\pi\)
\(468\) 0 0
\(469\) −41.4262 −1.91288
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 13.0803 + 22.6558i 0.601434 + 1.04171i
\(474\) 0 0
\(475\) 3.11675 5.39836i 0.143006 0.247694i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −14.8611 + 25.7401i −0.679020 + 1.17610i 0.296257 + 0.955108i \(0.404262\pi\)
−0.975277 + 0.220988i \(0.929072\pi\)
\(480\) 0 0
\(481\) 34.9211 + 60.4851i 1.59226 + 2.75788i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.389697 0.0176952
\(486\) 0 0
\(487\) −0.0532416 −0.00241260 −0.00120630 0.999999i \(-0.500384\pi\)
−0.00120630 + 0.999999i \(0.500384\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.42926 + 11.1358i 0.290148 + 0.502552i 0.973845 0.227215i \(-0.0729620\pi\)
−0.683696 + 0.729767i \(0.739629\pi\)
\(492\) 0 0
\(493\) 2.05221 3.55453i 0.0924269 0.160088i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −31.0976 + 53.8627i −1.39492 + 2.41607i
\(498\) 0 0
\(499\) −19.1096 33.0988i −0.855464 1.48171i −0.876214 0.481923i \(-0.839939\pi\)
0.0207497 0.999785i \(-0.493395\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −31.0828 −1.38591 −0.692956 0.720980i \(-0.743692\pi\)
−0.692956 + 0.720980i \(0.743692\pi\)
\(504\) 0 0
\(505\) 12.8628 0.572389
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.4670 30.2537i −0.774210 1.34097i −0.935237 0.354022i \(-0.884814\pi\)
0.161027 0.986950i \(-0.448519\pi\)
\(510\) 0 0
\(511\) −23.0773 + 39.9710i −1.02088 + 1.76821i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.94865 5.10722i 0.129933 0.225051i
\(516\) 0 0
\(517\) −7.05953 12.2275i −0.310478 0.537764i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.3880 −0.717970 −0.358985 0.933343i \(-0.616877\pi\)
−0.358985 + 0.933343i \(0.616877\pi\)
\(522\) 0 0
\(523\) 14.6682 0.641393 0.320697 0.947182i \(-0.396083\pi\)
0.320697 + 0.947182i \(0.396083\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17.7980 30.8271i −0.775294 1.34285i
\(528\) 0 0
\(529\) −4.27391 + 7.40264i −0.185822 + 0.321854i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −28.2754 + 48.9743i −1.22474 + 2.12131i
\(534\) 0 0
\(535\) 7.19615 + 12.4641i 0.311117 + 0.538870i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −32.1762 −1.38593
\(540\) 0 0
\(541\) 29.9301 1.28680 0.643398 0.765532i \(-0.277524\pi\)
0.643398 + 0.765532i \(0.277524\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.57632 + 4.46232i 0.110358 + 0.191145i
\(546\) 0 0
\(547\) 20.2116 35.0076i 0.864188 1.49682i −0.00366412 0.999993i \(-0.501166\pi\)
0.867852 0.496823i \(-0.165500\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.37791 + 4.11866i −0.101302 + 0.175461i
\(552\) 0 0
\(553\) 1.16526 + 2.01828i 0.0495517 + 0.0858261i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.62909 −0.238512 −0.119256 0.992864i \(-0.538051\pi\)
−0.119256 + 0.992864i \(0.538051\pi\)
\(558\) 0 0
\(559\) −60.6705 −2.56609
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.642775 + 1.11332i 0.0270897 + 0.0469208i 0.879252 0.476356i \(-0.158043\pi\)
−0.852163 + 0.523277i \(0.824709\pi\)
\(564\) 0 0
\(565\) 9.19129 15.9198i 0.386680 0.669750i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.70077 + 4.67787i −0.113222 + 0.196106i −0.917068 0.398732i \(-0.869451\pi\)
0.803846 + 0.594838i \(0.202784\pi\)
\(570\) 0 0
\(571\) 11.9004 + 20.6121i 0.498016 + 0.862589i 0.999997 0.00228950i \(-0.000728772\pi\)
−0.501981 + 0.864878i \(0.667395\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.61675 −0.234234
\(576\) 0 0
\(577\) −26.9926 −1.12372 −0.561858 0.827233i \(-0.689913\pi\)
−0.561858 + 0.827233i \(0.689913\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.317900 0.550619i −0.0131887 0.0228435i
\(582\) 0 0
\(583\) 14.3558 24.8649i 0.594555 1.02980i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.1604 + 22.7945i −0.543187 + 0.940828i 0.455531 + 0.890220i \(0.349449\pi\)
−0.998719 + 0.0506084i \(0.983884\pi\)
\(588\) 0 0
\(589\) 20.6227 + 35.7196i 0.849744 + 1.47180i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −27.4951 −1.12909 −0.564544 0.825403i \(-0.690948\pi\)
−0.564544 + 0.825403i \(0.690948\pi\)
\(594\) 0 0
\(595\) 23.3952 0.959109
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.98204 + 8.62915i 0.203561 + 0.352578i 0.949673 0.313242i \(-0.101415\pi\)
−0.746112 + 0.665820i \(0.768082\pi\)
\(600\) 0 0
\(601\) −15.6391 + 27.0877i −0.637931 + 1.10493i 0.347955 + 0.937511i \(0.386876\pi\)
−0.985886 + 0.167418i \(0.946457\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.85188 + 3.20755i −0.0752897 + 0.130406i
\(606\) 0 0
\(607\) −13.1666 22.8052i −0.534414 0.925633i −0.999191 0.0402049i \(-0.987199\pi\)
0.464777 0.885428i \(-0.346134\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 32.7443 1.32469
\(612\) 0 0
\(613\) −18.6020 −0.751329 −0.375664 0.926756i \(-0.622585\pi\)
−0.375664 + 0.926756i \(0.622585\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8.66382 15.0062i −0.348792 0.604126i 0.637243 0.770663i \(-0.280075\pi\)
−0.986035 + 0.166537i \(0.946741\pi\)
\(618\) 0 0
\(619\) −10.7577 + 18.6330i −0.432390 + 0.748922i −0.997079 0.0763826i \(-0.975663\pi\)
0.564689 + 0.825304i \(0.308996\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 17.0907 29.6020i 0.684724 1.18598i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 59.9786 2.39150
\(630\) 0 0
\(631\) −20.9696 −0.834786 −0.417393 0.908726i \(-0.637056\pi\)
−0.417393 + 0.908726i \(0.637056\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.63850 6.30207i −0.144389 0.250090i
\(636\) 0 0
\(637\) 37.3108 64.6242i 1.47831 2.56050i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.92025 13.7183i 0.312831 0.541839i −0.666143 0.745824i \(-0.732056\pi\)
0.978974 + 0.203985i \(0.0653893\pi\)
\(642\) 0 0
\(643\) 8.47541 + 14.6798i 0.334238 + 0.578916i 0.983338 0.181786i \(-0.0581879\pi\)
−0.649101 + 0.760703i \(0.724855\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 41.0504 1.61386 0.806929 0.590648i \(-0.201128\pi\)
0.806929 + 0.590648i \(0.201128\pi\)
\(648\) 0 0
\(649\) 4.67854 0.183649
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 15.3635 + 26.6104i 0.601221 + 1.04135i 0.992637 + 0.121131i \(0.0386521\pi\)
−0.391416 + 0.920214i \(0.628015\pi\)
\(654\) 0 0
\(655\) −2.68249 + 4.64620i −0.104813 + 0.181542i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.1175 + 20.9881i −0.472030 + 0.817579i −0.999488 0.0320016i \(-0.989812\pi\)
0.527458 + 0.849581i \(0.323145\pi\)
\(660\) 0 0
\(661\) −18.1424 31.4236i −0.705659 1.22224i −0.966453 0.256843i \(-0.917318\pi\)
0.260794 0.965394i \(-0.416016\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −27.1082 −1.05121
\(666\) 0 0
\(667\) 4.28528 0.165927
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.20539 + 3.81984i 0.0851380 + 0.147463i
\(672\) 0 0
\(673\) −4.20616 + 7.28528i −0.162135 + 0.280827i −0.935634 0.352971i \(-0.885171\pi\)
0.773499 + 0.633798i \(0.218505\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21.0545 + 36.4674i −0.809189 + 1.40156i 0.104237 + 0.994552i \(0.466760\pi\)
−0.913426 + 0.407004i \(0.866573\pi\)
\(678\) 0 0
\(679\) −0.847356 1.46766i −0.0325185 0.0563238i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.2140 0.888260 0.444130 0.895962i \(-0.353513\pi\)
0.444130 + 0.895962i \(0.353513\pi\)
\(684\) 0 0
\(685\) 4.69759 0.179486
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 33.2932 + 57.6655i 1.26837 + 2.19688i
\(690\) 0 0
\(691\) 15.3716 26.6244i 0.584763 1.01284i −0.410141 0.912022i \(-0.634521\pi\)
0.994905 0.100818i \(-0.0321460\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.331181 + 0.573622i −0.0125624 + 0.0217587i
\(696\) 0 0
\(697\) 24.2821 + 42.0579i 0.919752 + 1.59306i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.1624 −0.572675 −0.286338 0.958129i \(-0.592438\pi\)
−0.286338 + 0.958129i \(0.592438\pi\)
\(702\) 0 0
\(703\) −69.4977 −2.62116
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −27.9690 48.4436i −1.05188 1.82191i
\(708\) 0 0
\(709\) 19.8058 34.3046i 0.743821 1.28834i −0.206922 0.978357i \(-0.566345\pi\)
0.950743 0.309979i \(-0.100322\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.5823 32.1855i 0.695912 1.20536i
\(714\) 0 0
\(715\) 8.46054 + 14.6541i 0.316406 + 0.548032i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −35.7093 −1.33173 −0.665865 0.746072i \(-0.731937\pi\)
−0.665865 + 0.746072i \(0.731937\pi\)
\(720\) 0 0
\(721\) −25.6462 −0.955114
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.381473 + 0.660731i 0.0141676 + 0.0245389i
\(726\) 0 0
\(727\) −12.8269 + 22.2169i −0.475724 + 0.823977i −0.999613 0.0278087i \(-0.991147\pi\)
0.523890 + 0.851786i \(0.324480\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −26.0511 + 45.1218i −0.963535 + 1.66889i
\(732\) 0 0
\(733\) −1.15264 1.99644i −0.0425739 0.0737401i 0.843953 0.536417i \(-0.180222\pi\)
−0.886527 + 0.462677i \(0.846889\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −25.7309 −0.947810
\(738\) 0 0
\(739\) 7.86679 0.289385 0.144692 0.989477i \(-0.453781\pi\)
0.144692 + 0.989477i \(0.453781\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.78253 + 6.55154i 0.138768 + 0.240353i 0.927030 0.374986i \(-0.122353\pi\)
−0.788263 + 0.615339i \(0.789019\pi\)
\(744\) 0 0
\(745\) −1.08085 + 1.87208i −0.0395992 + 0.0685878i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 31.2946 54.2038i 1.14348 1.98057i
\(750\) 0 0
\(751\) 25.3043 + 43.8284i 0.923368 + 1.59932i 0.794165 + 0.607703i \(0.207909\pi\)
0.129204 + 0.991618i \(0.458758\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.44793 0.307452
\(756\) 0 0
\(757\) −54.7114 −1.98852 −0.994259 0.106999i \(-0.965876\pi\)
−0.994259 + 0.106999i \(0.965876\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.9778 + 31.1384i 0.651694 + 1.12877i 0.982712 + 0.185142i \(0.0592745\pi\)
−0.331018 + 0.943624i \(0.607392\pi\)
\(762\) 0 0
\(763\) 11.2039 19.4057i 0.405608 0.702534i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.42512 + 9.39658i −0.195890 + 0.339291i
\(768\) 0 0
\(769\) 1.01164 + 1.75220i 0.0364805 + 0.0631861i 0.883689 0.468074i \(-0.155052\pi\)
−0.847209 + 0.531260i \(0.821719\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.5708 −0.703914 −0.351957 0.936016i \(-0.614484\pi\)
−0.351957 + 0.936016i \(0.614484\pi\)
\(774\) 0 0
\(775\) 6.61675 0.237681
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −28.1359 48.7328i −1.00807 1.74603i
\(780\) 0 0
\(781\) −19.3156 + 33.4556i −0.691166 + 1.19713i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.87555 4.98060i 0.102633 0.177765i
\(786\) 0 0
\(787\) 0.490131 + 0.848932i 0.0174713 + 0.0302612i 0.874629 0.484793i \(-0.161105\pi\)
−0.857158 + 0.515054i \(0.827772\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −79.9421 −2.84241
\(792\) 0 0
\(793\) −10.2292 −0.363251
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.09346 10.5542i −0.215841 0.373848i 0.737691 0.675138i \(-0.235916\pi\)
−0.953533 + 0.301290i \(0.902583\pi\)
\(798\) 0 0
\(799\) 14.0600 24.3526i 0.497405 0.861532i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −14.3339 + 24.8271i −0.505833 + 0.876129i
\(804\) 0 0
\(805\) 12.2130 + 21.1536i 0.430453 + 0.745567i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −13.6760 −0.480823 −0.240412 0.970671i \(-0.577282\pi\)
−0.240412 + 0.970671i \(0.577282\pi\)
\(810\) 0 0
\(811\) −13.4256 −0.471436 −0.235718 0.971822i \(-0.575744\pi\)
−0.235718 + 0.971822i \(0.575744\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.42190 + 11.1231i 0.224949 + 0.389624i
\(816\) 0 0
\(817\) 30.1856 52.2830i 1.05606 1.82915i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9.96732 17.2639i 0.347862 0.602515i −0.638007 0.770030i \(-0.720241\pi\)
0.985869 + 0.167516i \(0.0535745\pi\)
\(822\) 0 0
\(823\) −26.2763 45.5119i −0.915935 1.58645i −0.805527 0.592559i \(-0.798118\pi\)
−0.110408 0.993886i \(-0.535216\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 50.1251 1.74302 0.871511 0.490376i \(-0.163141\pi\)
0.871511 + 0.490376i \(0.163141\pi\)
\(828\) 0 0
\(829\) −13.1526 −0.456810 −0.228405 0.973566i \(-0.573351\pi\)
−0.228405 + 0.973566i \(0.573351\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −32.0415 55.4975i −1.11017 1.92288i
\(834\) 0 0
\(835\) −10.9542 + 18.9733i −0.379087 + 0.656598i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.1797 + 21.0958i −0.420488 + 0.728307i −0.995987 0.0894955i \(-0.971475\pi\)
0.575499 + 0.817802i \(0.304808\pi\)
\(840\) 0 0
\(841\) 14.2090 + 24.6106i 0.489964 + 0.848643i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −26.2425 −0.902771
\(846\) 0 0
\(847\) 16.1069 0.553440
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 31.3108 + 54.2319i 1.07332 + 1.85904i
\(852\) 0 0
\(853\) −2.78898 + 4.83065i −0.0954927 + 0.165398i −0.909814 0.415016i \(-0.863776\pi\)
0.814321 + 0.580414i \(0.197109\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.01618 + 3.49212i −0.0688712 + 0.119288i −0.898405 0.439169i \(-0.855273\pi\)
0.829533 + 0.558457i \(0.188606\pi\)
\(858\) 0 0
\(859\) 19.2775 + 33.3896i 0.657739 + 1.13924i 0.981200 + 0.192996i \(0.0618204\pi\)
−0.323461 + 0.946242i \(0.604846\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −31.3959 −1.06873 −0.534364 0.845255i \(-0.679449\pi\)
−0.534364 + 0.845255i \(0.679449\pi\)
\(864\) 0 0
\(865\) −2.68854 −0.0914132
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.723772 + 1.25361i 0.0245523 + 0.0425258i
\(870\) 0 0
\(871\) 29.8369 51.6791i 1.01099 1.75108i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.17440 + 3.76617i −0.0735081 + 0.127320i
\(876\) 0 0
\(877\) −12.0604 20.8892i −0.407251 0.705379i 0.587330 0.809348i \(-0.300179\pi\)
−0.994581 + 0.103969i \(0.966846\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −42.3270 −1.42603 −0.713016 0.701148i \(-0.752671\pi\)
−0.713016 + 0.701148i \(0.752671\pi\)
\(882\) 0 0
\(883\) 44.6242 1.50172 0.750861 0.660460i \(-0.229639\pi\)
0.750861 + 0.660460i \(0.229639\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.7978 + 22.1665i 0.429709 + 0.744278i 0.996847 0.0793445i \(-0.0252827\pi\)
−0.567138 + 0.823623i \(0.691949\pi\)
\(888\) 0 0
\(889\) −15.8231 + 27.4064i −0.530690 + 0.919181i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16.2914 + 28.2175i −0.545170 + 0.944262i
\(894\) 0 0
\(895\) 4.51367 + 7.81790i 0.150875 + 0.261324i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.04822 −0.168368
\(900\) 0 0
\(901\) 57.1827 1.90503
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.92512 5.06645i −0.0972342 0.168415i
\(906\) 0 0
\(907\) −14.7005 + 25.4620i −0.488121 + 0.845451i −0.999907 0.0136626i \(-0.995651\pi\)
0.511785 + 0.859113i \(0.328984\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.34345 + 12.7192i −0.243299 + 0.421407i −0.961652 0.274272i \(-0.911563\pi\)
0.718353 + 0.695679i \(0.244896\pi\)
\(912\) 0 0
\(913\) −0.197456 0.342004i −0.00653485 0.0113187i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 23.3312 0.770463
\(918\) 0 0
\(919\) 0.353784 0.0116703 0.00583513 0.999983i \(-0.498143\pi\)
0.00583513 + 0.999983i \(0.498143\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −44.7958 77.5885i −1.47447 2.55386i
\(924\) 0 0
\(925\) −5.57454 + 9.65539i −0.183290 + 0.317467i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.6670 + 23.6720i −0.448400 + 0.776652i −0.998282 0.0585902i \(-0.981339\pi\)
0.549882 + 0.835243i \(0.314673\pi\)
\(930\) 0 0
\(931\) 37.1268 + 64.3054i 1.21678 + 2.10753i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14.5314 0.475227
\(936\) 0 0
\(937\) −4.17594 −0.136422 −0.0682111 0.997671i \(-0.521729\pi\)
−0.0682111 + 0.997671i \(0.521729\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8.59846 + 14.8930i 0.280302 + 0.485497i 0.971459 0.237207i \(-0.0762321\pi\)
−0.691157 + 0.722704i \(0.742899\pi\)
\(942\) 0 0
\(943\) −25.3521 + 43.9112i −0.825579 + 1.42994i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16.3543 28.3265i 0.531443 0.920486i −0.467884 0.883790i \(-0.654983\pi\)
0.999326 0.0366959i \(-0.0116833\pi\)
\(948\) 0 0
\(949\) −33.2425 57.5778i −1.07910 1.86905i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 33.1122 1.07261 0.536305 0.844024i \(-0.319820\pi\)
0.536305 + 0.844024i \(0.319820\pi\)
\(954\) 0 0
\(955\) 12.9936 0.420462
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.2144 17.6919i −0.329841 0.571302i
\(960\) 0 0
\(961\) −6.39066 + 11.0689i −0.206150 + 0.357063i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.25664 3.90862i 0.0726438 0.125823i
\(966\) 0 0
\(967\) −24.7636 42.8918i −0.796343 1.37931i −0.921983 0.387230i \(-0.873432\pi\)
0.125640 0.992076i \(-0.459901\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.82907 0.154972 0.0774862 0.996993i \(-0.475311\pi\)
0.0774862 + 0.996993i \(0.475311\pi\)
\(972\) 0 0
\(973\) 2.88048 0.0923439
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.47054 + 12.9394i 0.239004 + 0.413967i 0.960429 0.278526i \(-0.0898458\pi\)
−0.721425 + 0.692493i \(0.756512\pi\)
\(978\) 0 0
\(979\) 10.6155 18.3866i 0.339273 0.587638i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −25.2847 + 43.7945i −0.806458 + 1.39683i 0.108844 + 0.994059i \(0.465285\pi\)
−0.915302 + 0.402768i \(0.868048\pi\)
\(984\) 0 0
\(985\) −8.42156 14.5866i −0.268333 0.464767i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −54.3981 −1.72976
\(990\) 0 0
\(991\) 37.4566 1.18985 0.594924 0.803782i \(-0.297182\pi\)
0.594924 + 0.803782i \(0.297182\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.80029 + 10.0464i 0.183881 + 0.318492i
\(996\) 0 0
\(997\) 3.86911 6.70150i 0.122536 0.212239i −0.798231 0.602351i \(-0.794231\pi\)
0.920767 + 0.390113i \(0.127564\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3240.2.q.bh.2161.4 8
3.2 odd 2 3240.2.q.bg.2161.4 8
9.2 odd 6 3240.2.a.v.1.1 yes 4
9.4 even 3 inner 3240.2.q.bh.1081.4 8
9.5 odd 6 3240.2.q.bg.1081.4 8
9.7 even 3 3240.2.a.t.1.1 4
36.7 odd 6 6480.2.a.by.1.4 4
36.11 even 6 6480.2.a.ca.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3240.2.a.t.1.1 4 9.7 even 3
3240.2.a.v.1.1 yes 4 9.2 odd 6
3240.2.q.bg.1081.4 8 9.5 odd 6
3240.2.q.bg.2161.4 8 3.2 odd 2
3240.2.q.bh.1081.4 8 9.4 even 3 inner
3240.2.q.bh.2161.4 8 1.1 even 1 trivial
6480.2.a.by.1.4 4 36.7 odd 6
6480.2.a.ca.1.4 4 36.11 even 6