L(s) = 1 | + 4·5-s + 7-s − 11-s + 4·13-s + 5·17-s − 19-s − 7·23-s + 10·25-s + 7·29-s + 2·31-s + 4·35-s + 6·37-s + 12·41-s + 11·43-s − 7·47-s − 12·49-s + 12·53-s − 4·55-s − 11·59-s + 19·61-s + 16·65-s + 10·67-s − 12·71-s + 9·73-s − 77-s + 24·79-s − 23·83-s + ⋯ |
L(s) = 1 | + 1.78·5-s + 0.377·7-s − 0.301·11-s + 1.10·13-s + 1.21·17-s − 0.229·19-s − 1.45·23-s + 2·25-s + 1.29·29-s + 0.359·31-s + 0.676·35-s + 0.986·37-s + 1.87·41-s + 1.67·43-s − 1.02·47-s − 1.71·49-s + 1.64·53-s − 0.539·55-s − 1.43·59-s + 2.43·61-s + 1.98·65-s + 1.22·67-s − 1.42·71-s + 1.05·73-s − 0.113·77-s + 2.70·79-s − 2.52·83-s + ⋯ |
Λ(s)=(=((216⋅316⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅316⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅316⋅54
|
Sign: |
1
|
Analytic conductor: |
7.16817×106 |
Root analytic conductor: |
7.19326 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅316⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
19.01573662 |
L(21) |
≈ |
19.01573662 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)4 |
good | 7 | S4×C2 | 1−T+13T2−4pT3+88T4−4p2T5+13p2T6−p3T7+p4T8 |
| 11 | C2≀S4 | 1+T+2T2+13T3+238T4+13pT5+2p2T6+p3T7+p4T8 |
| 13 | C2≀S4 | 1−4T+28T2−136T3+406T4−136pT5+28p2T6−4p3T7+p4T8 |
| 17 | C2≀S4 | 1−5T+38T2−215T3+886T4−215pT5+38p2T6−5p3T7+p4T8 |
| 19 | C2≀S4 | 1+T−8T2+25T3+322T4+25pT5−8p2T6+p3T7+p4T8 |
| 23 | C2≀S4 | 1+7T+95T2+436T3+3250T4+436pT5+95p2T6+7p3T7+p4T8 |
| 29 | C2≀S4 | 1−7T+101T2−454T3+3970T4−454pT5+101p2T6−7p3T7+p4T8 |
| 31 | C2≀S4 | 1−2T+64T2−206T3+2470T4−206pT5+64p2T6−2p3T7+p4T8 |
| 37 | C2≀S4 | 1−6T+100T2−414T3+4806T4−414pT5+100p2T6−6p3T7+p4T8 |
| 41 | C2≀S4 | 1−12T+134T2−684T3+5259T4−684pT5+134p2T6−12p3T7+p4T8 |
| 43 | C2≀S4 | 1−11T+178T2−1235T3+11398T4−1235pT5+178p2T6−11p3T7+p4T8 |
| 47 | C2≀S4 | 1+7T+83T2+346T3+4456T4+346pT5+83p2T6+7p3T7+p4T8 |
| 53 | C2≀S4 | 1−12T+164T2−1620T3+11910T4−1620pT5+164p2T6−12p3T7+p4T8 |
| 59 | C2≀S4 | 1+11T+170T2+1367T3+230pT4+1367pT5+170p2T6+11p3T7+p4T8 |
| 61 | C2≀S4 | 1−19T+337T2−3502T3+33658T4−3502pT5+337p2T6−19p3T7+p4T8 |
| 67 | C2≀S4 | 1−10T+208T2−1630T3+20347T4−1630pT5+208p2T6−10p3T7+p4T8 |
| 71 | C2≀S4 | 1+12T+308T2+2520T3+33582T4+2520pT5+308p2T6+12p3T7+p4T8 |
| 73 | C2≀S4 | 1−9T+244T2−1395T3+23814T4−1395pT5+244p2T6−9p3T7+p4T8 |
| 79 | C2≀S4 | 1−24T+196T2+648T3−19386T4+648pT5+196p2T6−24p3T7+p4T8 |
| 83 | C2≀S4 | 1+23T+425T2+4820T3+51496T4+4820pT5+425p2T6+23p3T7+p4T8 |
| 89 | C2≀S4 | 1−21T+329T2−3366T3+35214T4−3366pT5+329p2T6−21p3T7+p4T8 |
| 97 | C2≀S4 | 1−T+178T2−1519T3+14506T4−1519pT5+178p2T6−p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.84472318689221125699222374686, −5.35085665056741555096697644476, −5.29728476669164893721153059566, −5.25187645704199186982455270215, −4.93875945065464647333230265862, −4.57914688918907683285568537238, −4.47353728382967180642034849876, −4.38460558315350216167745181507, −4.34212944116838976093605573840, −3.80566764476569587991713530921, −3.55197066434517151432097471000, −3.49119432541602348092443955134, −3.49058999990764495960044904378, −2.94351761527776211780913887488, −2.80886101622709067625655333676, −2.61771070816209598691420058924, −2.43261700231109649831869141726, −2.11166606127574900519902338700, −1.89983096557817494817584214441, −1.79694556849377185811927061473, −1.62387000382622096167288019199, −0.942204769781160033092270366829, −0.933904778781747995355308999752, −0.811831955513461632413192716327, −0.48845638341821851160548601542,
0.48845638341821851160548601542, 0.811831955513461632413192716327, 0.933904778781747995355308999752, 0.942204769781160033092270366829, 1.62387000382622096167288019199, 1.79694556849377185811927061473, 1.89983096557817494817584214441, 2.11166606127574900519902338700, 2.43261700231109649831869141726, 2.61771070816209598691420058924, 2.80886101622709067625655333676, 2.94351761527776211780913887488, 3.49058999990764495960044904378, 3.49119432541602348092443955134, 3.55197066434517151432097471000, 3.80566764476569587991713530921, 4.34212944116838976093605573840, 4.38460558315350216167745181507, 4.47353728382967180642034849876, 4.57914688918907683285568537238, 4.93875945065464647333230265862, 5.25187645704199186982455270215, 5.29728476669164893721153059566, 5.35085665056741555096697644476, 5.84472318689221125699222374686