Properties

Label 6480.2.a.cb.1.4
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.29268.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 5x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.25548\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +4.57301 q^{7} +4.59208 q^{11} -3.67925 q^{13} -2.55395 q^{17} -4.76643 q^{19} +2.57301 q^{23} +1.00000 q^{25} +1.91282 q^{29} -3.46677 q^{31} +4.57301 q^{35} +5.46677 q^{37} +6.64113 q^{41} +6.55395 q^{43} -10.0398 q^{47} +13.9125 q^{49} +4.03813 q^{53} +4.59208 q^{55} -12.2713 q^{59} +9.59208 q^{61} -3.67925 q^{65} +11.3394 q^{67} +1.67925 q^{71} +3.12530 q^{73} +20.9996 q^{77} +13.2823 q^{79} -10.7855 q^{83} -2.55395 q^{85} +4.04905 q^{89} -16.8253 q^{91} -4.76643 q^{95} +17.3792 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + q^{7} - q^{11} + 4 q^{13} + 5 q^{17} - q^{19} - 7 q^{23} + 4 q^{25} + 7 q^{29} + 2 q^{31} + q^{35} + 6 q^{37} + 12 q^{41} + 11 q^{43} - 7 q^{47} + 3 q^{49} + 12 q^{53} - q^{55} - 11 q^{59}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 4.57301 1.72844 0.864218 0.503117i \(-0.167813\pi\)
0.864218 + 0.503117i \(0.167813\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.59208 1.38456 0.692282 0.721627i \(-0.256606\pi\)
0.692282 + 0.721627i \(0.256606\pi\)
\(12\) 0 0
\(13\) −3.67925 −1.02044 −0.510221 0.860043i \(-0.670436\pi\)
−0.510221 + 0.860043i \(0.670436\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.55395 −0.619424 −0.309712 0.950830i \(-0.600233\pi\)
−0.309712 + 0.950830i \(0.600233\pi\)
\(18\) 0 0
\(19\) −4.76643 −1.09349 −0.546747 0.837298i \(-0.684134\pi\)
−0.546747 + 0.837298i \(0.684134\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.57301 0.536511 0.268255 0.963348i \(-0.413553\pi\)
0.268255 + 0.963348i \(0.413553\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.91282 0.355202 0.177601 0.984103i \(-0.443166\pi\)
0.177601 + 0.984103i \(0.443166\pi\)
\(30\) 0 0
\(31\) −3.46677 −0.622651 −0.311326 0.950303i \(-0.600773\pi\)
−0.311326 + 0.950303i \(0.600773\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.57301 0.772980
\(36\) 0 0
\(37\) 5.46677 0.898732 0.449366 0.893348i \(-0.351650\pi\)
0.449366 + 0.893348i \(0.351650\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.64113 1.03717 0.518585 0.855026i \(-0.326459\pi\)
0.518585 + 0.855026i \(0.326459\pi\)
\(42\) 0 0
\(43\) 6.55395 0.999468 0.499734 0.866179i \(-0.333431\pi\)
0.499734 + 0.866179i \(0.333431\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.0398 −1.46445 −0.732227 0.681061i \(-0.761519\pi\)
−0.732227 + 0.681061i \(0.761519\pi\)
\(48\) 0 0
\(49\) 13.9125 1.98749
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.03813 0.554679 0.277340 0.960772i \(-0.410547\pi\)
0.277340 + 0.960772i \(0.410547\pi\)
\(54\) 0 0
\(55\) 4.59208 0.619196
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.2713 −1.59759 −0.798796 0.601602i \(-0.794529\pi\)
−0.798796 + 0.601602i \(0.794529\pi\)
\(60\) 0 0
\(61\) 9.59208 1.22814 0.614070 0.789252i \(-0.289531\pi\)
0.614070 + 0.789252i \(0.289531\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.67925 −0.456355
\(66\) 0 0
\(67\) 11.3394 1.38533 0.692667 0.721258i \(-0.256436\pi\)
0.692667 + 0.721258i \(0.256436\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.67925 0.199291 0.0996454 0.995023i \(-0.468229\pi\)
0.0996454 + 0.995023i \(0.468229\pi\)
\(72\) 0 0
\(73\) 3.12530 0.365789 0.182895 0.983133i \(-0.441453\pi\)
0.182895 + 0.983133i \(0.441453\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20.9996 2.39313
\(78\) 0 0
\(79\) 13.2823 1.49437 0.747185 0.664616i \(-0.231405\pi\)
0.747185 + 0.664616i \(0.231405\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.7855 −1.18386 −0.591931 0.805989i \(-0.701634\pi\)
−0.591931 + 0.805989i \(0.701634\pi\)
\(84\) 0 0
\(85\) −2.55395 −0.277015
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.04905 0.429198 0.214599 0.976702i \(-0.431155\pi\)
0.214599 + 0.976702i \(0.431155\pi\)
\(90\) 0 0
\(91\) −16.8253 −1.76377
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.76643 −0.489026
\(96\) 0 0
\(97\) 17.3792 1.76459 0.882297 0.470693i \(-0.155996\pi\)
0.882297 + 0.470693i \(0.155996\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 13.1460 1.30808 0.654039 0.756461i \(-0.273073\pi\)
0.654039 + 0.756461i \(0.273073\pi\)
\(102\) 0 0
\(103\) 11.5049 1.13361 0.566806 0.823851i \(-0.308179\pi\)
0.566806 + 0.823851i \(0.308179\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.52396 −0.534022 −0.267011 0.963694i \(-0.586036\pi\)
−0.267011 + 0.963694i \(0.586036\pi\)
\(108\) 0 0
\(109\) −16.7381 −1.60322 −0.801610 0.597847i \(-0.796023\pi\)
−0.801610 + 0.597847i \(0.796023\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.78752 0.356300 0.178150 0.984003i \(-0.442989\pi\)
0.178150 + 0.984003i \(0.442989\pi\)
\(114\) 0 0
\(115\) 2.57301 0.239935
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −11.6793 −1.07064
\(120\) 0 0
\(121\) 10.0872 0.917016
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 11.1444 0.988903 0.494451 0.869205i \(-0.335369\pi\)
0.494451 + 0.869205i \(0.335369\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 21.8249 1.90685 0.953426 0.301627i \(-0.0975297\pi\)
0.953426 + 0.301627i \(0.0975297\pi\)
\(132\) 0 0
\(133\) −21.7970 −1.89004
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.44569 −0.379821 −0.189910 0.981801i \(-0.560820\pi\)
−0.189910 + 0.981801i \(0.560820\pi\)
\(138\) 0 0
\(139\) −11.1668 −0.947152 −0.473576 0.880753i \(-0.657037\pi\)
−0.473576 + 0.880753i \(0.657037\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −16.8954 −1.41287
\(144\) 0 0
\(145\) 1.91282 0.158851
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −13.0868 −1.07211 −0.536057 0.844182i \(-0.680087\pi\)
−0.536057 + 0.844182i \(0.680087\pi\)
\(150\) 0 0
\(151\) 0.358872 0.0292046 0.0146023 0.999893i \(-0.495352\pi\)
0.0146023 + 0.999893i \(0.495352\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.46677 −0.278458
\(156\) 0 0
\(157\) −13.0698 −1.04308 −0.521541 0.853226i \(-0.674643\pi\)
−0.521541 + 0.853226i \(0.674643\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 11.7664 0.927325
\(162\) 0 0
\(163\) 18.7872 1.47152 0.735762 0.677240i \(-0.236824\pi\)
0.735762 + 0.677240i \(0.236824\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −14.2523 −1.10287 −0.551437 0.834217i \(-0.685920\pi\)
−0.551437 + 0.834217i \(0.685920\pi\)
\(168\) 0 0
\(169\) 0.536913 0.0413010
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.18416 −0.698258 −0.349129 0.937075i \(-0.613523\pi\)
−0.349129 + 0.937075i \(0.613523\pi\)
\(174\) 0 0
\(175\) 4.57301 0.345687
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −18.7872 −1.40422 −0.702109 0.712069i \(-0.747758\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(180\) 0 0
\(181\) 11.9128 0.885473 0.442737 0.896652i \(-0.354008\pi\)
0.442737 + 0.896652i \(0.354008\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.46677 0.401925
\(186\) 0 0
\(187\) −11.7279 −0.857632
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.74571 −0.343387 −0.171694 0.985150i \(-0.554924\pi\)
−0.171694 + 0.985150i \(0.554924\pi\)
\(192\) 0 0
\(193\) 8.55395 0.615727 0.307863 0.951431i \(-0.400386\pi\)
0.307863 + 0.951431i \(0.400386\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.2539 −0.873056 −0.436528 0.899691i \(-0.643792\pi\)
−0.436528 + 0.899691i \(0.643792\pi\)
\(198\) 0 0
\(199\) −1.71738 −0.121742 −0.0608710 0.998146i \(-0.519388\pi\)
−0.0608710 + 0.998146i \(0.519388\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.74737 0.613945
\(204\) 0 0
\(205\) 6.64113 0.463836
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −21.8878 −1.51401
\(210\) 0 0
\(211\) −2.53323 −0.174394 −0.0871972 0.996191i \(-0.527791\pi\)
−0.0871972 + 0.996191i \(0.527791\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.55395 0.446976
\(216\) 0 0
\(217\) −15.8536 −1.07621
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.39664 0.632086
\(222\) 0 0
\(223\) −22.3318 −1.49545 −0.747725 0.664008i \(-0.768854\pi\)
−0.747725 + 0.664008i \(0.768854\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.4177 0.691449 0.345724 0.938336i \(-0.387633\pi\)
0.345724 + 0.938336i \(0.387633\pi\)
\(228\) 0 0
\(229\) −17.5634 −1.16062 −0.580311 0.814395i \(-0.697069\pi\)
−0.580311 + 0.814395i \(0.697069\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.2328 1.25999 0.629993 0.776601i \(-0.283058\pi\)
0.629993 + 0.776601i \(0.283058\pi\)
\(234\) 0 0
\(235\) −10.0398 −0.654924
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.5045 0.679482 0.339741 0.940519i \(-0.389661\pi\)
0.339741 + 0.940519i \(0.389661\pi\)
\(240\) 0 0
\(241\) 9.32075 0.600402 0.300201 0.953876i \(-0.402946\pi\)
0.300201 + 0.953876i \(0.402946\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 13.9125 0.888834
\(246\) 0 0
\(247\) 17.5369 1.11585
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −19.9125 −1.25686 −0.628432 0.777865i \(-0.716303\pi\)
−0.628432 + 0.777865i \(0.716303\pi\)
\(252\) 0 0
\(253\) 11.8155 0.742833
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.4174 −0.712195 −0.356098 0.934449i \(-0.615893\pi\)
−0.356098 + 0.934449i \(0.615893\pi\)
\(258\) 0 0
\(259\) 24.9996 1.55340
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.57135 −0.281882 −0.140941 0.990018i \(-0.545013\pi\)
−0.140941 + 0.990018i \(0.545013\pi\)
\(264\) 0 0
\(265\) 4.03813 0.248060
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 17.5954 1.07281 0.536405 0.843961i \(-0.319782\pi\)
0.536405 + 0.843961i \(0.319782\pi\)
\(270\) 0 0
\(271\) 9.64113 0.585657 0.292828 0.956165i \(-0.405404\pi\)
0.292828 + 0.956165i \(0.405404\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.59208 0.276913
\(276\) 0 0
\(277\) 14.1042 0.847440 0.423720 0.905793i \(-0.360724\pi\)
0.423720 + 0.905793i \(0.360724\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.45585 0.206159 0.103079 0.994673i \(-0.467130\pi\)
0.103079 + 0.994673i \(0.467130\pi\)
\(282\) 0 0
\(283\) −24.1821 −1.43748 −0.718739 0.695280i \(-0.755280\pi\)
−0.718739 + 0.695280i \(0.755280\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 30.3700 1.79268
\(288\) 0 0
\(289\) −10.4773 −0.616314
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.25429 −0.306959 −0.153480 0.988152i \(-0.549048\pi\)
−0.153480 + 0.988152i \(0.549048\pi\)
\(294\) 0 0
\(295\) −12.2713 −0.714465
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.46677 −0.547478
\(300\) 0 0
\(301\) 29.9713 1.72752
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.59208 0.549241
\(306\) 0 0
\(307\) −1.31148 −0.0748503 −0.0374252 0.999299i \(-0.511916\pi\)
−0.0374252 + 0.999299i \(0.511916\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.86341 −0.502598 −0.251299 0.967910i \(-0.580858\pi\)
−0.251299 + 0.967910i \(0.580858\pi\)
\(312\) 0 0
\(313\) 2.24337 0.126803 0.0634014 0.997988i \(-0.479805\pi\)
0.0634014 + 0.997988i \(0.479805\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.5747 1.15559 0.577794 0.816182i \(-0.303914\pi\)
0.577794 + 0.816182i \(0.303914\pi\)
\(318\) 0 0
\(319\) 8.78383 0.491800
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 12.1732 0.677337
\(324\) 0 0
\(325\) −3.67925 −0.204088
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −45.9121 −2.53122
\(330\) 0 0
\(331\) −21.7875 −1.19755 −0.598775 0.800917i \(-0.704346\pi\)
−0.598775 + 0.800917i \(0.704346\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 11.3394 0.619540
\(336\) 0 0
\(337\) 12.4457 0.677960 0.338980 0.940794i \(-0.389918\pi\)
0.338980 + 0.940794i \(0.389918\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −15.9197 −0.862100
\(342\) 0 0
\(343\) 31.6108 1.70682
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.1947 −0.923061 −0.461530 0.887124i \(-0.652699\pi\)
−0.461530 + 0.887124i \(0.652699\pi\)
\(348\) 0 0
\(349\) 9.48381 0.507657 0.253828 0.967249i \(-0.418310\pi\)
0.253828 + 0.967249i \(0.418310\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.4174 0.714134 0.357067 0.934079i \(-0.383777\pi\)
0.357067 + 0.934079i \(0.383777\pi\)
\(354\) 0 0
\(355\) 1.67925 0.0891256
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.3970 −0.654289 −0.327144 0.944974i \(-0.606086\pi\)
−0.327144 + 0.944974i \(0.606086\pi\)
\(360\) 0 0
\(361\) 3.71887 0.195730
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.12530 0.163586
\(366\) 0 0
\(367\) 20.5714 1.07382 0.536908 0.843641i \(-0.319592\pi\)
0.536908 + 0.843641i \(0.319592\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 18.4664 0.958728
\(372\) 0 0
\(373\) −4.46309 −0.231090 −0.115545 0.993302i \(-0.536861\pi\)
−0.115545 + 0.993302i \(0.536861\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.03776 −0.362463
\(378\) 0 0
\(379\) 8.77660 0.450823 0.225412 0.974264i \(-0.427627\pi\)
0.225412 + 0.974264i \(0.427627\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.21212 0.164132 0.0820658 0.996627i \(-0.473848\pi\)
0.0820658 + 0.996627i \(0.473848\pi\)
\(384\) 0 0
\(385\) 20.9996 1.07024
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.5914 1.29753 0.648766 0.760988i \(-0.275285\pi\)
0.648766 + 0.760988i \(0.275285\pi\)
\(390\) 0 0
\(391\) −6.57135 −0.332328
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.2823 0.668303
\(396\) 0 0
\(397\) 14.3902 0.722221 0.361111 0.932523i \(-0.382398\pi\)
0.361111 + 0.932523i \(0.382398\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.1384 1.30529 0.652645 0.757663i \(-0.273659\pi\)
0.652645 + 0.757663i \(0.273659\pi\)
\(402\) 0 0
\(403\) 12.7551 0.635379
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 25.1039 1.24435
\(408\) 0 0
\(409\) 6.58191 0.325455 0.162727 0.986671i \(-0.447971\pi\)
0.162727 + 0.986671i \(0.447971\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −56.1170 −2.76134
\(414\) 0 0
\(415\) −10.7855 −0.529439
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.7490 −0.622831 −0.311415 0.950274i \(-0.600803\pi\)
−0.311415 + 0.950274i \(0.600803\pi\)
\(420\) 0 0
\(421\) −1.28226 −0.0624933 −0.0312467 0.999512i \(-0.509948\pi\)
−0.0312467 + 0.999512i \(0.509948\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.55395 −0.123885
\(426\) 0 0
\(427\) 43.8647 2.12276
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.89137 −0.331946 −0.165973 0.986130i \(-0.553076\pi\)
−0.165973 + 0.986130i \(0.553076\pi\)
\(432\) 0 0
\(433\) 30.4551 1.46358 0.731790 0.681530i \(-0.238685\pi\)
0.731790 + 0.681530i \(0.238685\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.2641 −0.586671
\(438\) 0 0
\(439\) 29.7309 1.41898 0.709488 0.704717i \(-0.248926\pi\)
0.709488 + 0.704717i \(0.248926\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.32964 0.300730 0.150365 0.988631i \(-0.451955\pi\)
0.150365 + 0.988631i \(0.451955\pi\)
\(444\) 0 0
\(445\) 4.04905 0.191943
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 25.8456 1.21973 0.609866 0.792505i \(-0.291223\pi\)
0.609866 + 0.792505i \(0.291223\pi\)
\(450\) 0 0
\(451\) 30.4966 1.43603
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −16.8253 −0.788781
\(456\) 0 0
\(457\) −35.3091 −1.65169 −0.825845 0.563897i \(-0.809301\pi\)
−0.825845 + 0.563897i \(0.809301\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.11883 0.145258 0.0726291 0.997359i \(-0.476861\pi\)
0.0726291 + 0.997359i \(0.476861\pi\)
\(462\) 0 0
\(463\) 3.17472 0.147542 0.0737708 0.997275i \(-0.476497\pi\)
0.0737708 + 0.997275i \(0.476497\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.2808 −0.938482 −0.469241 0.883070i \(-0.655472\pi\)
−0.469241 + 0.883070i \(0.655472\pi\)
\(468\) 0 0
\(469\) 51.8554 2.39446
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 30.0963 1.38383
\(474\) 0 0
\(475\) −4.76643 −0.218699
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.0763 0.460396 0.230198 0.973144i \(-0.426063\pi\)
0.230198 + 0.973144i \(0.426063\pi\)
\(480\) 0 0
\(481\) −20.1137 −0.917104
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.3792 0.789150
\(486\) 0 0
\(487\) 28.3589 1.28506 0.642532 0.766259i \(-0.277884\pi\)
0.642532 + 0.766259i \(0.277884\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −32.9121 −1.48530 −0.742651 0.669679i \(-0.766432\pi\)
−0.742651 + 0.669679i \(0.766432\pi\)
\(492\) 0 0
\(493\) −4.88526 −0.220021
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.67925 0.344462
\(498\) 0 0
\(499\) −5.01092 −0.224320 −0.112160 0.993690i \(-0.535777\pi\)
−0.112160 + 0.993690i \(0.535777\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −42.1916 −1.88123 −0.940615 0.339477i \(-0.889750\pi\)
−0.940615 + 0.339477i \(0.889750\pi\)
\(504\) 0 0
\(505\) 13.1460 0.584991
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.2332 −0.763848 −0.381924 0.924194i \(-0.624738\pi\)
−0.381924 + 0.924194i \(0.624738\pi\)
\(510\) 0 0
\(511\) 14.2921 0.632243
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.5049 0.506967
\(516\) 0 0
\(517\) −46.1035 −2.02763
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.42901 −0.237849 −0.118925 0.992903i \(-0.537945\pi\)
−0.118925 + 0.992903i \(0.537945\pi\)
\(522\) 0 0
\(523\) −6.68128 −0.292152 −0.146076 0.989273i \(-0.546664\pi\)
−0.146076 + 0.989273i \(0.546664\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.85397 0.385685
\(528\) 0 0
\(529\) −16.3796 −0.712156
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −24.4344 −1.05837
\(534\) 0 0
\(535\) −5.52396 −0.238822
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 63.8871 2.75181
\(540\) 0 0
\(541\) 35.3087 1.51804 0.759020 0.651067i \(-0.225678\pi\)
0.759020 + 0.651067i \(0.225678\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −16.7381 −0.716982
\(546\) 0 0
\(547\) −11.5621 −0.494359 −0.247180 0.968970i \(-0.579504\pi\)
−0.247180 + 0.968970i \(0.579504\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −9.11734 −0.388412
\(552\) 0 0
\(553\) 60.7399 2.58293
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.0415 −0.764441 −0.382220 0.924071i \(-0.624840\pi\)
−0.382220 + 0.924071i \(0.624840\pi\)
\(558\) 0 0
\(559\) −24.1137 −1.01990
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.56173 −0.107964 −0.0539820 0.998542i \(-0.517191\pi\)
−0.0539820 + 0.998542i \(0.517191\pi\)
\(564\) 0 0
\(565\) 3.78752 0.159342
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.7003 −0.867804 −0.433902 0.900960i \(-0.642864\pi\)
−0.433902 + 0.900960i \(0.642864\pi\)
\(570\) 0 0
\(571\) 7.16675 0.299919 0.149960 0.988692i \(-0.452086\pi\)
0.149960 + 0.988692i \(0.452086\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.57301 0.107302
\(576\) 0 0
\(577\) −27.2463 −1.13428 −0.567140 0.823622i \(-0.691950\pi\)
−0.567140 + 0.823622i \(0.691950\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −49.3222 −2.04623
\(582\) 0 0
\(583\) 18.5434 0.767989
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.4949 −0.680818 −0.340409 0.940277i \(-0.610566\pi\)
−0.340409 + 0.940277i \(0.610566\pi\)
\(588\) 0 0
\(589\) 16.5241 0.680865
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14.2819 −0.586487 −0.293244 0.956038i \(-0.594735\pi\)
−0.293244 + 0.956038i \(0.594735\pi\)
\(594\) 0 0
\(595\) −11.6793 −0.478803
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −22.3902 −0.914837 −0.457419 0.889252i \(-0.651226\pi\)
−0.457419 + 0.889252i \(0.651226\pi\)
\(600\) 0 0
\(601\) −12.1003 −0.493582 −0.246791 0.969069i \(-0.579376\pi\)
−0.246791 + 0.969069i \(0.579376\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.0872 0.410102
\(606\) 0 0
\(607\) −20.3318 −0.825244 −0.412622 0.910902i \(-0.635387\pi\)
−0.412622 + 0.910902i \(0.635387\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36.9389 1.49439
\(612\) 0 0
\(613\) 24.8853 1.00511 0.502553 0.864546i \(-0.332394\pi\)
0.502553 + 0.864546i \(0.332394\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 45.3988 1.82769 0.913844 0.406065i \(-0.133099\pi\)
0.913844 + 0.406065i \(0.133099\pi\)
\(618\) 0 0
\(619\) −19.4275 −0.780858 −0.390429 0.920633i \(-0.627673\pi\)
−0.390429 + 0.920633i \(0.627673\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 18.5164 0.741842
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.9619 −0.556696
\(630\) 0 0
\(631\) −7.78752 −0.310016 −0.155008 0.987913i \(-0.549540\pi\)
−0.155008 + 0.987913i \(0.549540\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11.1444 0.442251
\(636\) 0 0
\(637\) −51.1875 −2.02812
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −29.3963 −1.16108 −0.580541 0.814231i \(-0.697159\pi\)
−0.580541 + 0.814231i \(0.697159\pi\)
\(642\) 0 0
\(643\) −9.30132 −0.366808 −0.183404 0.983038i \(-0.558712\pi\)
−0.183404 + 0.983038i \(0.558712\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 40.4647 1.59083 0.795417 0.606063i \(-0.207252\pi\)
0.795417 + 0.606063i \(0.207252\pi\)
\(648\) 0 0
\(649\) −56.3509 −2.21197
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.6509 −0.573335 −0.286668 0.958030i \(-0.592548\pi\)
−0.286668 + 0.958030i \(0.592548\pi\)
\(654\) 0 0
\(655\) 21.8249 0.852770
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.02760 0.195847 0.0979237 0.995194i \(-0.468780\pi\)
0.0979237 + 0.995194i \(0.468780\pi\)
\(660\) 0 0
\(661\) 31.8256 1.23787 0.618937 0.785441i \(-0.287564\pi\)
0.618937 + 0.785441i \(0.287564\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −21.7970 −0.845250
\(666\) 0 0
\(667\) 4.92172 0.190570
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 44.0476 1.70044
\(672\) 0 0
\(673\) 10.9015 0.420223 0.210112 0.977677i \(-0.432617\pi\)
0.210112 + 0.977677i \(0.432617\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −28.0094 −1.07649 −0.538245 0.842788i \(-0.680913\pi\)
−0.538245 + 0.842788i \(0.680913\pi\)
\(678\) 0 0
\(679\) 79.4755 3.04999
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.19544 0.275326 0.137663 0.990479i \(-0.456041\pi\)
0.137663 + 0.990479i \(0.456041\pi\)
\(684\) 0 0
\(685\) −4.44569 −0.169861
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.8573 −0.566018
\(690\) 0 0
\(691\) −22.5427 −0.857563 −0.428782 0.903408i \(-0.641057\pi\)
−0.428782 + 0.903408i \(0.641057\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.1668 −0.423579
\(696\) 0 0
\(697\) −16.9611 −0.642448
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19.7098 −0.744428 −0.372214 0.928147i \(-0.621401\pi\)
−0.372214 + 0.928147i \(0.621401\pi\)
\(702\) 0 0
\(703\) −26.0570 −0.982758
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 60.1170 2.26093
\(708\) 0 0
\(709\) 24.1286 0.906170 0.453085 0.891467i \(-0.350323\pi\)
0.453085 + 0.891467i \(0.350323\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.92006 −0.334059
\(714\) 0 0
\(715\) −16.8954 −0.631853
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.79732 −0.328085 −0.164042 0.986453i \(-0.552453\pi\)
−0.164042 + 0.986453i \(0.552453\pi\)
\(720\) 0 0
\(721\) 52.6121 1.95938
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.91282 0.0710405
\(726\) 0 0
\(727\) 5.24247 0.194432 0.0972162 0.995263i \(-0.469006\pi\)
0.0972162 + 0.995263i \(0.469006\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.7385 −0.619095
\(732\) 0 0
\(733\) −34.1177 −1.26017 −0.630083 0.776528i \(-0.716979\pi\)
−0.630083 + 0.776528i \(0.716979\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 52.0716 1.91808
\(738\) 0 0
\(739\) 5.53174 0.203488 0.101744 0.994811i \(-0.467558\pi\)
0.101744 + 0.994811i \(0.467558\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.5447 0.570279 0.285140 0.958486i \(-0.407960\pi\)
0.285140 + 0.958486i \(0.407960\pi\)
\(744\) 0 0
\(745\) −13.0868 −0.479464
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −25.2612 −0.923023
\(750\) 0 0
\(751\) −22.4944 −0.820831 −0.410416 0.911899i \(-0.634616\pi\)
−0.410416 + 0.911899i \(0.634616\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.358872 0.0130607
\(756\) 0 0
\(757\) −14.5714 −0.529605 −0.264802 0.964303i \(-0.585307\pi\)
−0.264802 + 0.964303i \(0.585307\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.8147 −0.500783 −0.250392 0.968145i \(-0.580559\pi\)
−0.250392 + 0.968145i \(0.580559\pi\)
\(762\) 0 0
\(763\) −76.5436 −2.77106
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 45.1494 1.63025
\(768\) 0 0
\(769\) −0.128627 −0.00463841 −0.00231921 0.999997i \(-0.500738\pi\)
−0.00231921 + 0.999997i \(0.500738\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −44.5427 −1.60209 −0.801044 0.598605i \(-0.795722\pi\)
−0.801044 + 0.598605i \(0.795722\pi\)
\(774\) 0 0
\(775\) −3.46677 −0.124530
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −31.6545 −1.13414
\(780\) 0 0
\(781\) 7.71127 0.275931
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −13.0698 −0.466480
\(786\) 0 0
\(787\) −32.7864 −1.16871 −0.584355 0.811498i \(-0.698652\pi\)
−0.584355 + 0.811498i \(0.698652\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 17.3204 0.615842
\(792\) 0 0
\(793\) −35.2917 −1.25324
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 53.8765 1.90840 0.954202 0.299162i \(-0.0967070\pi\)
0.954202 + 0.299162i \(0.0967070\pi\)
\(798\) 0 0
\(799\) 25.6411 0.907118
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 14.3516 0.506458
\(804\) 0 0
\(805\) 11.7664 0.414712
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −44.3890 −1.56064 −0.780318 0.625383i \(-0.784943\pi\)
−0.780318 + 0.625383i \(0.784943\pi\)
\(810\) 0 0
\(811\) −23.6339 −0.829898 −0.414949 0.909845i \(-0.636201\pi\)
−0.414949 + 0.909845i \(0.636201\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18.7872 0.658085
\(816\) 0 0
\(817\) −31.2390 −1.09291
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.81841 −0.237964 −0.118982 0.992896i \(-0.537963\pi\)
−0.118982 + 0.992896i \(0.537963\pi\)
\(822\) 0 0
\(823\) 42.3311 1.47557 0.737785 0.675036i \(-0.235872\pi\)
0.737785 + 0.675036i \(0.235872\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.3700 1.05607 0.528034 0.849223i \(-0.322929\pi\)
0.528034 + 0.849223i \(0.322929\pi\)
\(828\) 0 0
\(829\) −45.8420 −1.59216 −0.796078 0.605193i \(-0.793096\pi\)
−0.796078 + 0.605193i \(0.793096\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −35.5317 −1.23110
\(834\) 0 0
\(835\) −14.2523 −0.493220
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 11.2502 0.388402 0.194201 0.980962i \(-0.437789\pi\)
0.194201 + 0.980962i \(0.437789\pi\)
\(840\) 0 0
\(841\) −25.3411 −0.873831
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.536913 0.0184704
\(846\) 0 0
\(847\) 46.1288 1.58500
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 14.0661 0.482179
\(852\) 0 0
\(853\) 5.34834 0.183124 0.0915619 0.995799i \(-0.470814\pi\)
0.0915619 + 0.995799i \(0.470814\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 51.9291 1.77387 0.886933 0.461899i \(-0.152832\pi\)
0.886933 + 0.461899i \(0.152832\pi\)
\(858\) 0 0
\(859\) −29.4235 −1.00392 −0.501958 0.864892i \(-0.667387\pi\)
−0.501958 + 0.864892i \(0.667387\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −15.9635 −0.543405 −0.271703 0.962381i \(-0.587587\pi\)
−0.271703 + 0.962381i \(0.587587\pi\)
\(864\) 0 0
\(865\) −9.18416 −0.312271
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 60.9931 2.06905
\(870\) 0 0
\(871\) −41.7207 −1.41365
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.57301 0.154596
\(876\) 0 0
\(877\) 5.42865 0.183312 0.0916562 0.995791i \(-0.470784\pi\)
0.0916562 + 0.995791i \(0.470784\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10.2676 0.345926 0.172963 0.984928i \(-0.444666\pi\)
0.172963 + 0.984928i \(0.444666\pi\)
\(882\) 0 0
\(883\) −12.6184 −0.424642 −0.212321 0.977200i \(-0.568102\pi\)
−0.212321 + 0.977200i \(0.568102\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37.6030 1.26259 0.631293 0.775545i \(-0.282525\pi\)
0.631293 + 0.775545i \(0.282525\pi\)
\(888\) 0 0
\(889\) 50.9633 1.70926
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 47.8540 1.60137
\(894\) 0 0
\(895\) −18.7872 −0.627985
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.63133 −0.221167
\(900\) 0 0
\(901\) −10.3132 −0.343582
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.9128 0.395996
\(906\) 0 0
\(907\) 28.3111 0.940055 0.470028 0.882652i \(-0.344244\pi\)
0.470028 + 0.882652i \(0.344244\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.61317 0.252235 0.126118 0.992015i \(-0.459748\pi\)
0.126118 + 0.992015i \(0.459748\pi\)
\(912\) 0 0
\(913\) −49.5278 −1.63913
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 99.8057 3.29587
\(918\) 0 0
\(919\) 41.2182 1.35966 0.679832 0.733368i \(-0.262053\pi\)
0.679832 + 0.733368i \(0.262053\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.17840 −0.203365
\(924\) 0 0
\(925\) 5.46677 0.179746
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 35.2256 1.15571 0.577857 0.816138i \(-0.303889\pi\)
0.577857 + 0.816138i \(0.303889\pi\)
\(930\) 0 0
\(931\) −66.3128 −2.17331
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −11.7279 −0.383545
\(936\) 0 0
\(937\) −15.7113 −0.513265 −0.256632 0.966509i \(-0.582613\pi\)
−0.256632 + 0.966509i \(0.582613\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −40.5188 −1.32087 −0.660437 0.750881i \(-0.729629\pi\)
−0.660437 + 0.750881i \(0.729629\pi\)
\(942\) 0 0
\(943\) 17.0877 0.556453
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −26.0531 −0.846613 −0.423307 0.905986i \(-0.639131\pi\)
−0.423307 + 0.905986i \(0.639131\pi\)
\(948\) 0 0
\(949\) −11.4988 −0.373266
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 8.24264 0.267005 0.133503 0.991048i \(-0.457378\pi\)
0.133503 + 0.991048i \(0.457378\pi\)
\(954\) 0 0
\(955\) −4.74571 −0.153567
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −20.3302 −0.656496
\(960\) 0 0
\(961\) −18.9815 −0.612306
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.55395 0.275361
\(966\) 0 0
\(967\) −12.5164 −0.402499 −0.201250 0.979540i \(-0.564500\pi\)
−0.201250 + 0.979540i \(0.564500\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −34.5180 −1.10774 −0.553868 0.832604i \(-0.686849\pi\)
−0.553868 + 0.832604i \(0.686849\pi\)
\(972\) 0 0
\(973\) −51.0657 −1.63709
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −52.6328 −1.68387 −0.841936 0.539577i \(-0.818584\pi\)
−0.841936 + 0.539577i \(0.818584\pi\)
\(978\) 0 0
\(979\) 18.5936 0.594253
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −35.8164 −1.14237 −0.571183 0.820823i \(-0.693515\pi\)
−0.571183 + 0.820823i \(0.693515\pi\)
\(984\) 0 0
\(985\) −12.2539 −0.390443
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.8634 0.536225
\(990\) 0 0
\(991\) −42.7203 −1.35706 −0.678528 0.734574i \(-0.737382\pi\)
−0.678528 + 0.734574i \(0.737382\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.71738 −0.0544446
\(996\) 0 0
\(997\) 46.9143 1.48579 0.742895 0.669408i \(-0.233452\pi\)
0.742895 + 0.669408i \(0.233452\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.cb.1.4 4
3.2 odd 2 6480.2.a.bz.1.4 4
4.3 odd 2 3240.2.a.u.1.1 4
9.2 odd 6 2160.2.q.l.1441.1 8
9.4 even 3 720.2.q.l.241.3 8
9.5 odd 6 2160.2.q.l.721.1 8
9.7 even 3 720.2.q.l.481.3 8
12.11 even 2 3240.2.a.s.1.1 4
36.7 odd 6 360.2.q.e.121.2 8
36.11 even 6 1080.2.q.e.361.4 8
36.23 even 6 1080.2.q.e.721.4 8
36.31 odd 6 360.2.q.e.241.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.e.121.2 8 36.7 odd 6
360.2.q.e.241.2 yes 8 36.31 odd 6
720.2.q.l.241.3 8 9.4 even 3
720.2.q.l.481.3 8 9.7 even 3
1080.2.q.e.361.4 8 36.11 even 6
1080.2.q.e.721.4 8 36.23 even 6
2160.2.q.l.721.1 8 9.5 odd 6
2160.2.q.l.1441.1 8 9.2 odd 6
3240.2.a.s.1.1 4 12.11 even 2
3240.2.a.u.1.1 4 4.3 odd 2
6480.2.a.bz.1.4 4 3.2 odd 2
6480.2.a.cb.1.4 4 1.1 even 1 trivial