Properties

Label 2160.2.q.l.1441.1
Level $2160$
Weight $2$
Character 2160.1441
Analytic conductor $17.248$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(721,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.721");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.856615824.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 36x^{4} + 32x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1441.1
Root \(-2.06288i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1441
Dual form 2160.2.q.l.721.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{5} +(-2.28651 - 3.96035i) q^{7} +(2.29604 + 3.97686i) q^{11} +(1.83963 - 3.18633i) q^{13} +2.55395 q^{17} -4.76643 q^{19} +(1.28651 - 2.22830i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(0.956412 + 1.65655i) q^{29} +(1.73339 - 3.00231i) q^{31} -4.57301 q^{35} +5.46677 q^{37} +(3.32056 - 5.75139i) q^{41} +(-3.27698 - 5.67589i) q^{43} +(-5.01989 - 8.69471i) q^{47} +(-6.95623 + 12.0485i) q^{49} -4.03813 q^{53} +4.59208 q^{55} +(-6.13567 + 10.6273i) q^{59} +(-4.79604 - 8.30698i) q^{61} +(-1.83963 - 3.18633i) q^{65} +(-5.66972 + 9.82025i) q^{67} -1.67925 q^{71} +3.12530 q^{73} +(10.4998 - 18.1862i) q^{77} +(-6.64113 - 11.5028i) q^{79} +(-5.39275 - 9.34051i) q^{83} +(1.27698 - 2.21179i) q^{85} -4.04905 q^{89} -16.8253 q^{91} +(-2.38322 + 4.12785i) q^{95} +(-8.68962 - 15.0509i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} - q^{7} - q^{11} - 4 q^{13} - 10 q^{17} - 2 q^{19} - 7 q^{23} - 4 q^{25} + 7 q^{29} - 2 q^{31} - 2 q^{35} + 12 q^{37} + 12 q^{41} - 11 q^{43} - 7 q^{47} - 3 q^{49} - 24 q^{53} - 2 q^{55}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) −2.28651 3.96035i −0.864218 1.49687i −0.867821 0.496877i \(-0.834480\pi\)
0.00360263 0.999994i \(-0.498853\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.29604 + 3.97686i 0.692282 + 1.19907i 0.971088 + 0.238720i \(0.0767278\pi\)
−0.278807 + 0.960347i \(0.589939\pi\)
\(12\) 0 0
\(13\) 1.83963 3.18633i 0.510221 0.883728i −0.489709 0.871886i \(-0.662897\pi\)
0.999930 0.0118424i \(-0.00376965\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.55395 0.619424 0.309712 0.950830i \(-0.399767\pi\)
0.309712 + 0.950830i \(0.399767\pi\)
\(18\) 0 0
\(19\) −4.76643 −1.09349 −0.546747 0.837298i \(-0.684134\pi\)
−0.546747 + 0.837298i \(0.684134\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.28651 2.22830i 0.268255 0.464632i −0.700156 0.713990i \(-0.746886\pi\)
0.968411 + 0.249358i \(0.0802196\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.956412 + 1.65655i 0.177601 + 0.307614i 0.941058 0.338244i \(-0.109833\pi\)
−0.763457 + 0.645858i \(0.776500\pi\)
\(30\) 0 0
\(31\) 1.73339 3.00231i 0.311326 0.539232i −0.667324 0.744767i \(-0.732560\pi\)
0.978650 + 0.205536i \(0.0658937\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.57301 −0.772980
\(36\) 0 0
\(37\) 5.46677 0.898732 0.449366 0.893348i \(-0.351650\pi\)
0.449366 + 0.893348i \(0.351650\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.32056 5.75139i 0.518585 0.898215i −0.481182 0.876621i \(-0.659792\pi\)
0.999767 0.0215947i \(-0.00687434\pi\)
\(42\) 0 0
\(43\) −3.27698 5.67589i −0.499734 0.865565i 0.500266 0.865872i \(-0.333236\pi\)
−1.00000 0.000307033i \(0.999902\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.01989 8.69471i −0.732227 1.26825i −0.955929 0.293597i \(-0.905148\pi\)
0.223703 0.974657i \(-0.428186\pi\)
\(48\) 0 0
\(49\) −6.95623 + 12.0485i −0.993747 + 1.72122i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.03813 −0.554679 −0.277340 0.960772i \(-0.589453\pi\)
−0.277340 + 0.960772i \(0.589453\pi\)
\(54\) 0 0
\(55\) 4.59208 0.619196
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.13567 + 10.6273i −0.798796 + 1.38355i 0.121605 + 0.992579i \(0.461196\pi\)
−0.920401 + 0.390976i \(0.872137\pi\)
\(60\) 0 0
\(61\) −4.79604 8.30698i −0.614070 1.06360i −0.990547 0.137174i \(-0.956198\pi\)
0.376477 0.926426i \(-0.377135\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.83963 3.18633i −0.228178 0.395215i
\(66\) 0 0
\(67\) −5.66972 + 9.82025i −0.692667 + 1.19973i 0.278294 + 0.960496i \(0.410231\pi\)
−0.970961 + 0.239238i \(0.923102\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.67925 −0.199291 −0.0996454 0.995023i \(-0.531771\pi\)
−0.0996454 + 0.995023i \(0.531771\pi\)
\(72\) 0 0
\(73\) 3.12530 0.365789 0.182895 0.983133i \(-0.441453\pi\)
0.182895 + 0.983133i \(0.441453\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.4998 18.1862i 1.19657 2.07251i
\(78\) 0 0
\(79\) −6.64113 11.5028i −0.747185 1.29416i −0.949167 0.314773i \(-0.898071\pi\)
0.201982 0.979389i \(-0.435262\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.39275 9.34051i −0.591931 1.02525i −0.993972 0.109633i \(-0.965032\pi\)
0.402041 0.915622i \(-0.368301\pi\)
\(84\) 0 0
\(85\) 1.27698 2.21179i 0.138507 0.239902i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.04905 −0.429198 −0.214599 0.976702i \(-0.568845\pi\)
−0.214599 + 0.976702i \(0.568845\pi\)
\(90\) 0 0
\(91\) −16.8253 −1.76377
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.38322 + 4.12785i −0.244513 + 0.423509i
\(96\) 0 0
\(97\) −8.68962 15.0509i −0.882297 1.52818i −0.848781 0.528745i \(-0.822663\pi\)
−0.0335162 0.999438i \(-0.510671\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.57301 + 11.3848i 0.654039 + 1.13283i 0.982134 + 0.188184i \(0.0602603\pi\)
−0.328094 + 0.944645i \(0.606406\pi\)
\(102\) 0 0
\(103\) −5.75245 + 9.96354i −0.566806 + 0.981736i 0.430073 + 0.902794i \(0.358488\pi\)
−0.996879 + 0.0789425i \(0.974846\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.52396 0.534022 0.267011 0.963694i \(-0.413964\pi\)
0.267011 + 0.963694i \(0.413964\pi\)
\(108\) 0 0
\(109\) −16.7381 −1.60322 −0.801610 0.597847i \(-0.796023\pi\)
−0.801610 + 0.597847i \(0.796023\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.89376 3.28009i 0.178150 0.308565i −0.763097 0.646284i \(-0.776322\pi\)
0.941247 + 0.337719i \(0.109655\pi\)
\(114\) 0 0
\(115\) −1.28651 2.22830i −0.119967 0.207790i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.83963 10.1145i −0.535318 0.927198i
\(120\) 0 0
\(121\) −5.04359 + 8.73575i −0.458508 + 0.794159i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 11.1444 0.988903 0.494451 0.869205i \(-0.335369\pi\)
0.494451 + 0.869205i \(0.335369\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.9125 18.9009i 0.953426 1.65138i 0.215496 0.976505i \(-0.430863\pi\)
0.737930 0.674878i \(-0.235804\pi\)
\(132\) 0 0
\(133\) 10.8985 + 18.8767i 0.945018 + 1.63682i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.22284 3.85008i −0.189910 0.328934i 0.755310 0.655368i \(-0.227486\pi\)
−0.945220 + 0.326434i \(0.894153\pi\)
\(138\) 0 0
\(139\) 5.58338 9.67069i 0.473576 0.820257i −0.525967 0.850505i \(-0.676296\pi\)
0.999542 + 0.0302478i \(0.00962964\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 16.8954 1.41287
\(144\) 0 0
\(145\) 1.91282 0.158851
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.54341 + 11.3335i −0.536057 + 0.928478i 0.463055 + 0.886330i \(0.346753\pi\)
−0.999111 + 0.0421478i \(0.986580\pi\)
\(150\) 0 0
\(151\) −0.179436 0.310792i −0.0146023 0.0252919i 0.858632 0.512593i \(-0.171315\pi\)
−0.873234 + 0.487301i \(0.837982\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.73339 3.00231i −0.139229 0.241152i
\(156\) 0 0
\(157\) 6.53489 11.3188i 0.521541 0.903335i −0.478145 0.878281i \(-0.658691\pi\)
0.999686 0.0250544i \(-0.00797591\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −11.7664 −0.927325
\(162\) 0 0
\(163\) 18.7872 1.47152 0.735762 0.677240i \(-0.236824\pi\)
0.735762 + 0.677240i \(0.236824\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.12613 + 12.3428i −0.551437 + 0.955117i 0.446734 + 0.894667i \(0.352587\pi\)
−0.998171 + 0.0604500i \(0.980746\pi\)
\(168\) 0 0
\(169\) −0.268456 0.464980i −0.0206505 0.0357677i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.59208 7.95371i −0.349129 0.604710i 0.636966 0.770892i \(-0.280189\pi\)
−0.986095 + 0.166183i \(0.946856\pi\)
\(174\) 0 0
\(175\) −2.28651 + 3.96035i −0.172844 + 0.299374i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18.7872 1.40422 0.702109 0.712069i \(-0.252242\pi\)
0.702109 + 0.712069i \(0.252242\pi\)
\(180\) 0 0
\(181\) 11.9128 0.885473 0.442737 0.896652i \(-0.354008\pi\)
0.442737 + 0.896652i \(0.354008\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.73339 4.73437i 0.200963 0.348077i
\(186\) 0 0
\(187\) 5.86397 + 10.1567i 0.428816 + 0.742731i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.37285 4.10990i −0.171694 0.297382i 0.767318 0.641266i \(-0.221591\pi\)
−0.939012 + 0.343884i \(0.888257\pi\)
\(192\) 0 0
\(193\) −4.27698 + 7.40794i −0.307863 + 0.533235i −0.977895 0.209098i \(-0.932947\pi\)
0.670031 + 0.742333i \(0.266281\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.2539 0.873056 0.436528 0.899691i \(-0.356208\pi\)
0.436528 + 0.899691i \(0.356208\pi\)
\(198\) 0 0
\(199\) −1.71738 −0.121742 −0.0608710 0.998146i \(-0.519388\pi\)
−0.0608710 + 0.998146i \(0.519388\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.37368 7.57544i 0.306972 0.531692i
\(204\) 0 0
\(205\) −3.32056 5.75139i −0.231918 0.401694i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.9439 18.9554i −0.757006 1.31117i
\(210\) 0 0
\(211\) 1.26661 2.19384i 0.0871972 0.151030i −0.819128 0.573611i \(-0.805542\pi\)
0.906325 + 0.422581i \(0.138876\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.55395 −0.446976
\(216\) 0 0
\(217\) −15.8536 −1.07621
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.69832 8.13772i 0.316043 0.547403i
\(222\) 0 0
\(223\) 11.1659 + 19.3399i 0.747725 + 1.29510i 0.948911 + 0.315545i \(0.102187\pi\)
−0.201185 + 0.979553i \(0.564479\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.20886 + 9.02201i 0.345724 + 0.598812i 0.985485 0.169762i \(-0.0542999\pi\)
−0.639761 + 0.768574i \(0.720967\pi\)
\(228\) 0 0
\(229\) 8.78169 15.2103i 0.580311 1.00513i −0.415132 0.909761i \(-0.636264\pi\)
0.995442 0.0953662i \(-0.0304022\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.2328 −1.25999 −0.629993 0.776601i \(-0.716942\pi\)
−0.629993 + 0.776601i \(0.716942\pi\)
\(234\) 0 0
\(235\) −10.0398 −0.654924
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.25227 9.09720i 0.339741 0.588449i −0.644643 0.764484i \(-0.722994\pi\)
0.984384 + 0.176035i \(0.0563272\pi\)
\(240\) 0 0
\(241\) −4.66037 8.07200i −0.300201 0.519963i 0.675980 0.736920i \(-0.263720\pi\)
−0.976181 + 0.216956i \(0.930387\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.95623 + 12.0485i 0.444417 + 0.769753i
\(246\) 0 0
\(247\) −8.76846 + 15.1874i −0.557924 + 0.966352i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.9125 1.25686 0.628432 0.777865i \(-0.283697\pi\)
0.628432 + 0.777865i \(0.283697\pi\)
\(252\) 0 0
\(253\) 11.8155 0.742833
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.70868 + 9.88772i −0.356098 + 0.616779i −0.987305 0.158835i \(-0.949226\pi\)
0.631207 + 0.775614i \(0.282560\pi\)
\(258\) 0 0
\(259\) −12.4998 21.6503i −0.776701 1.34529i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.28568 3.95891i −0.140941 0.244117i 0.786910 0.617067i \(-0.211679\pi\)
−0.927851 + 0.372951i \(0.878346\pi\)
\(264\) 0 0
\(265\) −2.01906 + 3.49712i −0.124030 + 0.214826i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −17.5954 −1.07281 −0.536405 0.843961i \(-0.680218\pi\)
−0.536405 + 0.843961i \(0.680218\pi\)
\(270\) 0 0
\(271\) 9.64113 0.585657 0.292828 0.956165i \(-0.405404\pi\)
0.292828 + 0.956165i \(0.405404\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.29604 3.97686i 0.138456 0.239813i
\(276\) 0 0
\(277\) −7.05211 12.2146i −0.423720 0.733905i 0.572580 0.819849i \(-0.305943\pi\)
−0.996300 + 0.0859443i \(0.972609\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.72793 + 2.99285i 0.103079 + 0.178539i 0.912952 0.408067i \(-0.133797\pi\)
−0.809873 + 0.586606i \(0.800464\pi\)
\(282\) 0 0
\(283\) 12.0911 20.9423i 0.718739 1.24489i −0.242760 0.970086i \(-0.578053\pi\)
0.961500 0.274807i \(-0.0886138\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −30.3700 −1.79268
\(288\) 0 0
\(289\) −10.4773 −0.616314
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.62715 + 4.55035i −0.153480 + 0.265834i −0.932504 0.361159i \(-0.882381\pi\)
0.779025 + 0.626993i \(0.215715\pi\)
\(294\) 0 0
\(295\) 6.13567 + 10.6273i 0.357232 + 0.618744i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.73339 8.19847i −0.273739 0.474130i
\(300\) 0 0
\(301\) −14.9857 + 25.9559i −0.863759 + 1.49607i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9.59208 −0.549241
\(306\) 0 0
\(307\) −1.31148 −0.0748503 −0.0374252 0.999299i \(-0.511916\pi\)
−0.0374252 + 0.999299i \(0.511916\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.43170 + 7.67594i −0.251299 + 0.435263i −0.963884 0.266324i \(-0.914191\pi\)
0.712585 + 0.701586i \(0.247524\pi\)
\(312\) 0 0
\(313\) −1.12169 1.94282i −0.0634014 0.109814i 0.832582 0.553901i \(-0.186862\pi\)
−0.895984 + 0.444087i \(0.853528\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.2873 + 17.8182i 0.577794 + 1.00077i 0.995732 + 0.0922935i \(0.0294198\pi\)
−0.417937 + 0.908476i \(0.637247\pi\)
\(318\) 0 0
\(319\) −4.39192 + 7.60702i −0.245900 + 0.425911i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −12.1732 −0.677337
\(324\) 0 0
\(325\) −3.67925 −0.204088
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −22.9560 + 39.7610i −1.26561 + 2.19210i
\(330\) 0 0
\(331\) 10.8938 + 18.8685i 0.598775 + 1.03711i 0.993002 + 0.118096i \(0.0376790\pi\)
−0.394227 + 0.919013i \(0.628988\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.66972 + 9.82025i 0.309770 + 0.536537i
\(336\) 0 0
\(337\) −6.22284 + 10.7783i −0.338980 + 0.587130i −0.984241 0.176832i \(-0.943415\pi\)
0.645261 + 0.763962i \(0.276749\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 15.9197 0.862100
\(342\) 0 0
\(343\) 31.6108 1.70682
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.59736 + 14.8911i −0.461530 + 0.799394i −0.999037 0.0438652i \(-0.986033\pi\)
0.537507 + 0.843259i \(0.319366\pi\)
\(348\) 0 0
\(349\) −4.74191 8.21322i −0.253828 0.439644i 0.710748 0.703446i \(-0.248357\pi\)
−0.964577 + 0.263803i \(0.915023\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.70868 + 11.6198i 0.357067 + 0.618458i 0.987469 0.157810i \(-0.0504434\pi\)
−0.630402 + 0.776268i \(0.717110\pi\)
\(354\) 0 0
\(355\) −0.839627 + 1.45428i −0.0445628 + 0.0771850i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.3970 0.654289 0.327144 0.944974i \(-0.393914\pi\)
0.327144 + 0.944974i \(0.393914\pi\)
\(360\) 0 0
\(361\) 3.71887 0.195730
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.56265 2.70659i 0.0817929 0.141670i
\(366\) 0 0
\(367\) −10.2857 17.8153i −0.536908 0.929952i −0.999068 0.0431555i \(-0.986259\pi\)
0.462160 0.886796i \(-0.347074\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.23321 + 15.9924i 0.479364 + 0.830283i
\(372\) 0 0
\(373\) 2.23154 3.86515i 0.115545 0.200130i −0.802453 0.596716i \(-0.796472\pi\)
0.917997 + 0.396586i \(0.129805\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.03776 0.362463
\(378\) 0 0
\(379\) 8.77660 0.450823 0.225412 0.974264i \(-0.427627\pi\)
0.225412 + 0.974264i \(0.427627\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.60606 2.78177i 0.0820658 0.142142i −0.822071 0.569384i \(-0.807182\pi\)
0.904137 + 0.427242i \(0.140515\pi\)
\(384\) 0 0
\(385\) −10.4998 18.1862i −0.535120 0.926856i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.7957 + 22.1628i 0.648766 + 1.12370i 0.983418 + 0.181354i \(0.0580481\pi\)
−0.334651 + 0.942342i \(0.608619\pi\)
\(390\) 0 0
\(391\) 3.28568 5.69096i 0.166164 0.287804i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −13.2823 −0.668303
\(396\) 0 0
\(397\) 14.3902 0.722221 0.361111 0.932523i \(-0.382398\pi\)
0.361111 + 0.932523i \(0.382398\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.0692 22.6365i 0.652645 1.13042i −0.329833 0.944039i \(-0.606992\pi\)
0.982479 0.186376i \(-0.0596742\pi\)
\(402\) 0 0
\(403\) −6.37757 11.0463i −0.317689 0.550254i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.5519 + 21.7406i 0.622176 + 1.07764i
\(408\) 0 0
\(409\) −3.29096 + 5.70010i −0.162727 + 0.281852i −0.935846 0.352410i \(-0.885362\pi\)
0.773119 + 0.634262i \(0.218696\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 56.1170 2.76134
\(414\) 0 0
\(415\) −10.7855 −0.529439
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.37451 + 11.0410i −0.311415 + 0.539387i −0.978669 0.205443i \(-0.934136\pi\)
0.667254 + 0.744831i \(0.267470\pi\)
\(420\) 0 0
\(421\) 0.641128 + 1.11047i 0.0312467 + 0.0541208i 0.881226 0.472695i \(-0.156719\pi\)
−0.849979 + 0.526816i \(0.823386\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.27698 2.21179i −0.0619424 0.107287i
\(426\) 0 0
\(427\) −21.9324 + 37.9880i −1.06138 + 1.83837i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.89137 0.331946 0.165973 0.986130i \(-0.446924\pi\)
0.165973 + 0.986130i \(0.446924\pi\)
\(432\) 0 0
\(433\) 30.4551 1.46358 0.731790 0.681530i \(-0.238685\pi\)
0.731790 + 0.681530i \(0.238685\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.13205 + 10.6210i −0.293336 + 0.508072i
\(438\) 0 0
\(439\) −14.8654 25.7477i −0.709488 1.22887i −0.965047 0.262077i \(-0.915593\pi\)
0.255559 0.966794i \(-0.417741\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.16482 + 5.48163i 0.150365 + 0.260440i 0.931362 0.364095i \(-0.118622\pi\)
−0.780997 + 0.624535i \(0.785288\pi\)
\(444\) 0 0
\(445\) −2.02453 + 3.50658i −0.0959717 + 0.166228i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −25.8456 −1.21973 −0.609866 0.792505i \(-0.708777\pi\)
−0.609866 + 0.792505i \(0.708777\pi\)
\(450\) 0 0
\(451\) 30.4966 1.43603
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.41264 + 14.5711i −0.394391 + 0.683105i
\(456\) 0 0
\(457\) 17.6545 + 30.5786i 0.825845 + 1.43041i 0.901272 + 0.433254i \(0.142635\pi\)
−0.0754270 + 0.997151i \(0.524032\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.55941 + 2.70098i 0.0726291 + 0.125797i 0.900053 0.435781i \(-0.143528\pi\)
−0.827424 + 0.561578i \(0.810194\pi\)
\(462\) 0 0
\(463\) −1.58736 + 2.74939i −0.0737708 + 0.127775i −0.900551 0.434750i \(-0.856837\pi\)
0.826780 + 0.562525i \(0.190170\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.2808 0.938482 0.469241 0.883070i \(-0.344528\pi\)
0.469241 + 0.883070i \(0.344528\pi\)
\(468\) 0 0
\(469\) 51.8554 2.39446
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15.0481 26.0641i 0.691914 1.19843i
\(474\) 0 0
\(475\) 2.38322 + 4.12785i 0.109349 + 0.189399i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.03813 + 8.72629i 0.230198 + 0.398714i 0.957866 0.287215i \(-0.0927293\pi\)
−0.727668 + 0.685929i \(0.759396\pi\)
\(480\) 0 0
\(481\) 10.0568 17.4189i 0.458552 0.794235i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.3792 −0.789150
\(486\) 0 0
\(487\) 28.3589 1.28506 0.642532 0.766259i \(-0.277884\pi\)
0.642532 + 0.766259i \(0.277884\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −16.4560 + 28.5027i −0.742651 + 1.28631i 0.208633 + 0.977994i \(0.433099\pi\)
−0.951284 + 0.308315i \(0.900235\pi\)
\(492\) 0 0
\(493\) 2.44263 + 4.23076i 0.110010 + 0.190544i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.83963 + 6.65043i 0.172231 + 0.298313i
\(498\) 0 0
\(499\) 2.50546 4.33959i 0.112160 0.194267i −0.804481 0.593978i \(-0.797556\pi\)
0.916641 + 0.399712i \(0.130890\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 42.1916 1.88123 0.940615 0.339477i \(-0.110250\pi\)
0.940615 + 0.339477i \(0.110250\pi\)
\(504\) 0 0
\(505\) 13.1460 0.584991
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.61660 + 14.9244i −0.381924 + 0.661512i −0.991337 0.131341i \(-0.958072\pi\)
0.609413 + 0.792853i \(0.291405\pi\)
\(510\) 0 0
\(511\) −7.14603 12.3773i −0.316122 0.547539i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.75245 + 9.96354i 0.253483 + 0.439046i
\(516\) 0 0
\(517\) 23.0517 39.9268i 1.01381 1.75598i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.42901 0.237849 0.118925 0.992903i \(-0.462055\pi\)
0.118925 + 0.992903i \(0.462055\pi\)
\(522\) 0 0
\(523\) −6.68128 −0.292152 −0.146076 0.989273i \(-0.546664\pi\)
−0.146076 + 0.989273i \(0.546664\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.42699 7.66776i 0.192843 0.334013i
\(528\) 0 0
\(529\) 8.18980 + 14.1851i 0.356078 + 0.616746i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.2172 21.1608i −0.529186 0.916576i
\(534\) 0 0
\(535\) 2.76198 4.78389i 0.119411 0.206826i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −63.8871 −2.75181
\(540\) 0 0
\(541\) 35.3087 1.51804 0.759020 0.651067i \(-0.225678\pi\)
0.759020 + 0.651067i \(0.225678\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.36905 + 14.4956i −0.358491 + 0.620924i
\(546\) 0 0
\(547\) 5.78105 + 10.0131i 0.247180 + 0.428128i 0.962742 0.270421i \(-0.0871629\pi\)
−0.715563 + 0.698549i \(0.753830\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.55867 7.89585i −0.194206 0.336374i
\(552\) 0 0
\(553\) −30.3700 + 52.6023i −1.29146 + 2.23688i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.0415 0.764441 0.382220 0.924071i \(-0.375160\pi\)
0.382220 + 0.924071i \(0.375160\pi\)
\(558\) 0 0
\(559\) −24.1137 −1.01990
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.28086 + 2.21852i −0.0539820 + 0.0934995i −0.891754 0.452521i \(-0.850525\pi\)
0.837772 + 0.546021i \(0.183858\pi\)
\(564\) 0 0
\(565\) −1.89376 3.28009i −0.0796711 0.137994i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.3502 17.9270i −0.433902 0.751540i 0.563304 0.826250i \(-0.309530\pi\)
−0.997205 + 0.0747101i \(0.976197\pi\)
\(570\) 0 0
\(571\) −3.58338 + 6.20659i −0.149960 + 0.259738i −0.931212 0.364477i \(-0.881248\pi\)
0.781253 + 0.624215i \(0.214581\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.57301 −0.107302
\(576\) 0 0
\(577\) −27.2463 −1.13428 −0.567140 0.823622i \(-0.691950\pi\)
−0.567140 + 0.823622i \(0.691950\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −24.6611 + 42.7143i −1.02312 + 1.77209i
\(582\) 0 0
\(583\) −9.27170 16.0590i −0.383994 0.665098i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.24746 14.2850i −0.340409 0.589606i 0.644100 0.764942i \(-0.277232\pi\)
−0.984509 + 0.175336i \(0.943899\pi\)
\(588\) 0 0
\(589\) −8.26207 + 14.3103i −0.340433 + 0.589647i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.2819 0.586487 0.293244 0.956038i \(-0.405265\pi\)
0.293244 + 0.956038i \(0.405265\pi\)
\(594\) 0 0
\(595\) −11.6793 −0.478803
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.1951 + 19.3904i −0.457419 + 0.792272i −0.998824 0.0484897i \(-0.984559\pi\)
0.541405 + 0.840762i \(0.317893\pi\)
\(600\) 0 0
\(601\) 6.05015 + 10.4792i 0.246791 + 0.427454i 0.962634 0.270807i \(-0.0872906\pi\)
−0.715843 + 0.698262i \(0.753957\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.04359 + 8.73575i 0.205051 + 0.355159i
\(606\) 0 0
\(607\) 10.1659 17.6079i 0.412622 0.714682i −0.582554 0.812792i \(-0.697946\pi\)
0.995176 + 0.0981100i \(0.0312797\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −36.9389 −1.49439
\(612\) 0 0
\(613\) 24.8853 1.00511 0.502553 0.864546i \(-0.332394\pi\)
0.502553 + 0.864546i \(0.332394\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.6994 39.3165i 0.913844 1.58282i 0.105259 0.994445i \(-0.466433\pi\)
0.808585 0.588380i \(-0.200234\pi\)
\(618\) 0 0
\(619\) 9.71376 + 16.8247i 0.390429 + 0.676243i 0.992506 0.122195i \(-0.0389933\pi\)
−0.602077 + 0.798438i \(0.705660\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.25818 + 16.0356i 0.370921 + 0.642454i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.9619 0.556696
\(630\) 0 0
\(631\) −7.78752 −0.310016 −0.155008 0.987913i \(-0.549540\pi\)
−0.155008 + 0.987913i \(0.549540\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.57218 9.65130i 0.221125 0.383000i
\(636\) 0 0
\(637\) 25.5937 + 44.3297i 1.01406 + 1.75640i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.6981 25.4579i −0.580541 1.00553i −0.995415 0.0956483i \(-0.969508\pi\)
0.414874 0.909879i \(-0.363826\pi\)
\(642\) 0 0
\(643\) 4.65066 8.05518i 0.183404 0.317665i −0.759633 0.650351i \(-0.774622\pi\)
0.943038 + 0.332686i \(0.107955\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −40.4647 −1.59083 −0.795417 0.606063i \(-0.792748\pi\)
−0.795417 + 0.606063i \(0.792748\pi\)
\(648\) 0 0
\(649\) −56.3509 −2.21197
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.32546 + 12.6881i −0.286668 + 0.496523i −0.973012 0.230754i \(-0.925881\pi\)
0.686345 + 0.727276i \(0.259214\pi\)
\(654\) 0 0
\(655\) −10.9125 18.9009i −0.426385 0.738521i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.51380 + 4.35403i 0.0979237 + 0.169609i 0.910825 0.412793i \(-0.135447\pi\)
−0.812901 + 0.582401i \(0.802113\pi\)
\(660\) 0 0
\(661\) −15.9128 + 27.5618i −0.618937 + 1.07203i 0.370743 + 0.928736i \(0.379103\pi\)
−0.989680 + 0.143295i \(0.954230\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 21.7970 0.845250
\(666\) 0 0
\(667\) 4.92172 0.190570
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 22.0238 38.1463i 0.850219 1.47262i
\(672\) 0 0
\(673\) −5.45077 9.44101i −0.210112 0.363924i 0.741638 0.670801i \(-0.234049\pi\)
−0.951749 + 0.306877i \(0.900716\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.0047 24.2569i −0.538245 0.932268i −0.998999 0.0447397i \(-0.985754\pi\)
0.460754 0.887528i \(-0.347579\pi\)
\(678\) 0 0
\(679\) −39.7377 + 68.8278i −1.52499 + 2.64137i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.19544 −0.275326 −0.137663 0.990479i \(-0.543959\pi\)
−0.137663 + 0.990479i \(0.543959\pi\)
\(684\) 0 0
\(685\) −4.44569 −0.169861
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.42865 + 12.8668i −0.283009 + 0.490186i
\(690\) 0 0
\(691\) 11.2713 + 19.5225i 0.428782 + 0.742672i 0.996765 0.0803682i \(-0.0256096\pi\)
−0.567984 + 0.823040i \(0.692276\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.58338 9.67069i −0.211790 0.366830i
\(696\) 0 0
\(697\) 8.48056 14.6888i 0.321224 0.556376i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 19.7098 0.744428 0.372214 0.928147i \(-0.378599\pi\)
0.372214 + 0.928147i \(0.378599\pi\)
\(702\) 0 0
\(703\) −26.0570 −0.982758
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 30.0585 52.0628i 1.13047 1.95802i
\(708\) 0 0
\(709\) −12.0643 20.8960i −0.453085 0.784766i 0.545491 0.838117i \(-0.316343\pi\)
−0.998576 + 0.0533508i \(0.983010\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.46003 7.72500i −0.167029 0.289303i
\(714\) 0 0
\(715\) 8.44771 14.6319i 0.315926 0.547201i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.79732 0.328085 0.164042 0.986453i \(-0.447547\pi\)
0.164042 + 0.986453i \(0.447547\pi\)
\(720\) 0 0
\(721\) 52.6121 1.95938
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.956412 1.65655i 0.0355202 0.0615229i
\(726\) 0 0
\(727\) −2.62123 4.54011i −0.0972162 0.168383i 0.813315 0.581823i \(-0.197660\pi\)
−0.910531 + 0.413440i \(0.864327\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.36923 14.4959i −0.309547 0.536152i
\(732\) 0 0
\(733\) 17.0589 29.5468i 0.630083 1.09134i −0.357451 0.933932i \(-0.616354\pi\)
0.987534 0.157404i \(-0.0503125\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −52.0716 −1.91808
\(738\) 0 0
\(739\) 5.53174 0.203488 0.101744 0.994811i \(-0.467558\pi\)
0.101744 + 0.994811i \(0.467558\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.77234 13.4621i 0.285140 0.493876i −0.687503 0.726181i \(-0.741293\pi\)
0.972643 + 0.232305i \(0.0746267\pi\)
\(744\) 0 0
\(745\) 6.54341 + 11.3335i 0.239732 + 0.415228i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12.6306 21.8768i −0.461511 0.799361i
\(750\) 0 0
\(751\) 11.2472 19.4807i 0.410416 0.710861i −0.584519 0.811380i \(-0.698717\pi\)
0.994935 + 0.100519i \(0.0320503\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.358872 −0.0130607
\(756\) 0 0
\(757\) −14.5714 −0.529605 −0.264802 0.964303i \(-0.585307\pi\)
−0.264802 + 0.964303i \(0.585307\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.90736 + 11.9639i −0.250392 + 0.433691i −0.963634 0.267227i \(-0.913893\pi\)
0.713242 + 0.700918i \(0.247226\pi\)
\(762\) 0 0
\(763\) 38.2718 + 66.2887i 1.38553 + 2.39981i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.5747 + 39.1005i 0.815124 + 1.41184i
\(768\) 0 0
\(769\) 0.0643136 0.111394i 0.00231921 0.00401698i −0.864863 0.502007i \(-0.832595\pi\)
0.867183 + 0.497990i \(0.165928\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 44.5427 1.60209 0.801044 0.598605i \(-0.204278\pi\)
0.801044 + 0.598605i \(0.204278\pi\)
\(774\) 0 0
\(775\) −3.46677 −0.124530
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −15.8272 + 27.4136i −0.567070 + 0.982194i
\(780\) 0 0
\(781\) −3.85563 6.67815i −0.137965 0.238963i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.53489 11.3188i −0.233240 0.403984i
\(786\) 0 0
\(787\) 16.3932 28.3939i 0.584355 1.01213i −0.410601 0.911815i \(-0.634681\pi\)
0.994956 0.100317i \(-0.0319858\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −17.3204 −0.615842
\(792\) 0 0
\(793\) −35.2917 −1.25324
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26.9383 46.6584i 0.954202 1.65273i 0.218019 0.975944i \(-0.430040\pi\)
0.736183 0.676783i \(-0.236626\pi\)
\(798\) 0 0
\(799\) −12.8206 22.2059i −0.453559 0.785587i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.17582 + 12.4289i 0.253229 + 0.438606i
\(804\) 0 0
\(805\) −5.88322 + 10.1900i −0.207356 + 0.359151i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 44.3890 1.56064 0.780318 0.625383i \(-0.215057\pi\)
0.780318 + 0.625383i \(0.215057\pi\)
\(810\) 0 0
\(811\) −23.6339 −0.829898 −0.414949 0.909845i \(-0.636201\pi\)
−0.414949 + 0.909845i \(0.636201\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.39358 16.2702i 0.329043 0.569919i
\(816\) 0 0
\(817\) 15.6195 + 27.0537i 0.546456 + 0.946490i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.40921 5.90492i −0.118982 0.206083i 0.800382 0.599490i \(-0.204630\pi\)
−0.919365 + 0.393407i \(0.871296\pi\)
\(822\) 0 0
\(823\) −21.1656 + 36.6598i −0.737785 + 1.27788i 0.215706 + 0.976458i \(0.430795\pi\)
−0.953491 + 0.301423i \(0.902538\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30.3700 −1.05607 −0.528034 0.849223i \(-0.677071\pi\)
−0.528034 + 0.849223i \(0.677071\pi\)
\(828\) 0 0
\(829\) −45.8420 −1.59216 −0.796078 0.605193i \(-0.793096\pi\)
−0.796078 + 0.605193i \(0.793096\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −17.7659 + 30.7714i −0.615551 + 1.06617i
\(834\) 0 0
\(835\) 7.12613 + 12.3428i 0.246610 + 0.427141i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.62512 + 9.74300i 0.194201 + 0.336366i 0.946638 0.322298i \(-0.104455\pi\)
−0.752437 + 0.658664i \(0.771122\pi\)
\(840\) 0 0
\(841\) 12.6706 21.9460i 0.436916 0.756760i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.536913 −0.0184704
\(846\) 0 0
\(847\) 46.1288 1.58500
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7.03304 12.1816i 0.241090 0.417580i
\(852\) 0 0
\(853\) −2.67417 4.63180i −0.0915619 0.158590i 0.816607 0.577195i \(-0.195853\pi\)
−0.908169 + 0.418605i \(0.862519\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25.9646 + 44.9719i 0.886933 + 1.53621i 0.843482 + 0.537157i \(0.180502\pi\)
0.0434504 + 0.999056i \(0.486165\pi\)
\(858\) 0 0
\(859\) 14.7117 25.4815i 0.501958 0.869417i −0.498039 0.867154i \(-0.665947\pi\)
0.999997 0.00226239i \(-0.000720142\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 15.9635 0.543405 0.271703 0.962381i \(-0.412413\pi\)
0.271703 + 0.962381i \(0.412413\pi\)
\(864\) 0 0
\(865\) −9.18416 −0.312271
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 30.4966 52.8216i 1.03453 1.79185i
\(870\) 0 0
\(871\) 20.8604 + 36.1312i 0.706826 + 1.22426i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.28651 + 3.96035i 0.0772980 + 0.133884i
\(876\) 0 0
\(877\) −2.71432 + 4.70135i −0.0916562 + 0.158753i −0.908208 0.418519i \(-0.862549\pi\)
0.816552 + 0.577272i \(0.195883\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −10.2676 −0.345926 −0.172963 0.984928i \(-0.555334\pi\)
−0.172963 + 0.984928i \(0.555334\pi\)
\(882\) 0 0
\(883\) −12.6184 −0.424642 −0.212321 0.977200i \(-0.568102\pi\)
−0.212321 + 0.977200i \(0.568102\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.8015 32.5652i 0.631293 1.09343i −0.355995 0.934488i \(-0.615858\pi\)
0.987288 0.158943i \(-0.0508086\pi\)
\(888\) 0 0
\(889\) −25.4817 44.1356i −0.854628 1.48026i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 23.9270 + 41.4427i 0.800686 + 1.38683i
\(894\) 0 0
\(895\) 9.39358 16.2702i 0.313993 0.543851i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.63133 0.221167
\(900\) 0 0
\(901\) −10.3132 −0.343582
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.95641 10.3168i 0.197998 0.342942i
\(906\) 0 0
\(907\) −14.1556 24.5181i −0.470028 0.814112i 0.529385 0.848382i \(-0.322423\pi\)
−0.999413 + 0.0342699i \(0.989089\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.80658 + 6.59320i 0.126118 + 0.218442i 0.922169 0.386786i \(-0.126415\pi\)
−0.796052 + 0.605229i \(0.793082\pi\)
\(912\) 0 0
\(913\) 24.7639 42.8924i 0.819566 1.41953i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −99.8057 −3.29587
\(918\) 0 0
\(919\) 41.2182 1.35966 0.679832 0.733368i \(-0.262053\pi\)
0.679832 + 0.733368i \(0.262053\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.08920 + 5.35065i −0.101682 + 0.176119i
\(924\) 0 0
\(925\) −2.73339 4.73437i −0.0898732 0.155665i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.6128 + 30.5063i 0.577857 + 1.00088i 0.995725 + 0.0923702i \(0.0294443\pi\)
−0.417867 + 0.908508i \(0.637222\pi\)
\(930\) 0 0
\(931\) 33.1564 57.4286i 1.08666 1.88214i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 11.7279 0.383545
\(936\) 0 0
\(937\) −15.7113 −0.513265 −0.256632 0.966509i \(-0.582613\pi\)
−0.256632 + 0.966509i \(0.582613\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20.2594 + 35.0903i −0.660437 + 1.14391i 0.320064 + 0.947396i \(0.396296\pi\)
−0.980501 + 0.196515i \(0.937038\pi\)
\(942\) 0 0
\(943\) −8.54386 14.7984i −0.278226 0.481902i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.0266 22.5627i −0.423307 0.733189i 0.572954 0.819588i \(-0.305797\pi\)
−0.996261 + 0.0863989i \(0.972464\pi\)
\(948\) 0 0
\(949\) 5.74939 9.95824i 0.186633 0.323258i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −8.24264 −0.267005 −0.133503 0.991048i \(-0.542622\pi\)
−0.133503 + 0.991048i \(0.542622\pi\)
\(954\) 0 0
\(955\) −4.74571 −0.153567
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.1651 + 17.6065i −0.328248 + 0.568542i
\(960\) 0 0
\(961\) 9.49074 + 16.4384i 0.306153 + 0.530272i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.27698 + 7.40794i 0.137681 + 0.238470i
\(966\) 0 0
\(967\) 6.25818 10.8395i 0.201250 0.348574i −0.747682 0.664057i \(-0.768833\pi\)
0.948931 + 0.315483i \(0.102166\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 34.5180 1.10774 0.553868 0.832604i \(-0.313151\pi\)
0.553868 + 0.832604i \(0.313151\pi\)
\(972\) 0 0
\(973\) −51.0657 −1.63709
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26.3164 + 45.5813i −0.841936 + 1.45828i 0.0463193 + 0.998927i \(0.485251\pi\)
−0.888256 + 0.459350i \(0.848082\pi\)
\(978\) 0 0
\(979\) −9.29678 16.1025i −0.297126 0.514638i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.9082 31.0179i −0.571183 0.989318i −0.996445 0.0842478i \(-0.973151\pi\)
0.425262 0.905070i \(-0.360182\pi\)
\(984\) 0 0
\(985\) 6.12697 10.6122i 0.195221 0.338133i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.8634 −0.536225
\(990\) 0 0
\(991\) −42.7203 −1.35706 −0.678528 0.734574i \(-0.737382\pi\)
−0.678528 + 0.734574i \(0.737382\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.858691 + 1.48730i −0.0272223 + 0.0471504i
\(996\) 0 0
\(997\) −23.4571 40.6290i −0.742895 1.28673i −0.951172 0.308662i \(-0.900119\pi\)
0.208276 0.978070i \(-0.433215\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.q.l.1441.1 8
3.2 odd 2 720.2.q.l.481.3 8
4.3 odd 2 1080.2.q.e.361.4 8
9.2 odd 6 720.2.q.l.241.3 8
9.4 even 3 6480.2.a.bz.1.4 4
9.5 odd 6 6480.2.a.cb.1.4 4
9.7 even 3 inner 2160.2.q.l.721.1 8
12.11 even 2 360.2.q.e.121.2 8
36.7 odd 6 1080.2.q.e.721.4 8
36.11 even 6 360.2.q.e.241.2 yes 8
36.23 even 6 3240.2.a.u.1.1 4
36.31 odd 6 3240.2.a.s.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.e.121.2 8 12.11 even 2
360.2.q.e.241.2 yes 8 36.11 even 6
720.2.q.l.241.3 8 9.2 odd 6
720.2.q.l.481.3 8 3.2 odd 2
1080.2.q.e.361.4 8 4.3 odd 2
1080.2.q.e.721.4 8 36.7 odd 6
2160.2.q.l.721.1 8 9.7 even 3 inner
2160.2.q.l.1441.1 8 1.1 even 1 trivial
3240.2.a.s.1.1 4 36.31 odd 6
3240.2.a.u.1.1 4 36.23 even 6
6480.2.a.bz.1.4 4 9.4 even 3
6480.2.a.cb.1.4 4 9.5 odd 6