L(s) = 1 | + 3.30i·2-s − 24.0i·3-s + 21.1·4-s + (52.5 − 18.9i)5-s + 79.3·6-s − 91.7i·7-s + 175. i·8-s − 335.·9-s + (62.5 + 173. i)10-s − 45.5·11-s − 507. i·12-s − 169i·13-s + 302.·14-s + (−455. − 1.26e3i)15-s + 96.5·16-s − 745. i·17-s + ⋯ |
L(s) = 1 | + 0.583i·2-s − 1.54i·3-s + 0.659·4-s + (0.940 − 0.338i)5-s + 0.900·6-s − 0.707i·7-s + 0.968i·8-s − 1.37·9-s + (0.197 + 0.549i)10-s − 0.113·11-s − 1.01i·12-s − 0.277i·13-s + 0.412·14-s + (−0.522 − 1.45i)15-s + 0.0942·16-s − 0.625i·17-s + ⋯ |
Λ(s)=(=(65s/2ΓC(s)L(s)(0.338+0.940i)Λ(6−s)
Λ(s)=(=(65s/2ΓC(s+5/2)L(s)(0.338+0.940i)Λ(1−s)
Degree: |
2 |
Conductor: |
65
= 5⋅13
|
Sign: |
0.338+0.940i
|
Analytic conductor: |
10.4249 |
Root analytic conductor: |
3.22876 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ65(14,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 65, ( :5/2), 0.338+0.940i)
|
Particular Values
L(3) |
≈ |
1.88070−1.32171i |
L(21) |
≈ |
1.88070−1.32171i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−52.5+18.9i)T |
| 13 | 1+169iT |
good | 2 | 1−3.30iT−32T2 |
| 3 | 1+24.0iT−243T2 |
| 7 | 1+91.7iT−1.68e4T2 |
| 11 | 1+45.5T+1.61e5T2 |
| 17 | 1+745.iT−1.41e6T2 |
| 19 | 1+306.T+2.47e6T2 |
| 23 | 1−704.iT−6.43e6T2 |
| 29 | 1−6.80e3T+2.05e7T2 |
| 31 | 1+7.60e3T+2.86e7T2 |
| 37 | 1−109.iT−6.93e7T2 |
| 41 | 1+1.33e4T+1.15e8T2 |
| 43 | 1−4.47e3iT−1.47e8T2 |
| 47 | 1+4.86e3iT−2.29e8T2 |
| 53 | 1−4.01e4iT−4.18e8T2 |
| 59 | 1−2.96e4T+7.14e8T2 |
| 61 | 1−5.15e4T+8.44e8T2 |
| 67 | 1−5.18e4iT−1.35e9T2 |
| 71 | 1−4.22e4T+1.80e9T2 |
| 73 | 1−4.52e4iT−2.07e9T2 |
| 79 | 1+6.25e4T+3.07e9T2 |
| 83 | 1+4.69e4iT−3.93e9T2 |
| 89 | 1−6.33e4T+5.58e9T2 |
| 97 | 1−1.32e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.67083131817975682056554933462, −12.78559432997700251349324086692, −11.67795533031609564678502539496, −10.31702123562856424697504309485, −8.530202437404375390155281737468, −7.35663243721989227896902237248, −6.60637804230525373608756842810, −5.45567447632637290041855342874, −2.44756341579527529343377150973, −1.12718699783522020152161732507,
2.18026151591968824343638954773, 3.53439030119662094281475554339, 5.25798585043833352305865618742, 6.54131517139774429621699003661, 8.784416684000949074671030315493, 9.911131026899539162507751133285, 10.51410751728417083166941049063, 11.51788205285818736904899502547, 12.82533289009337421349613624747, 14.41282767779183503389903759603