Properties

Label 65.6.b.a.14.19
Level $65$
Weight $6$
Character 65.14
Analytic conductor $10.425$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(14,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.14");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 14.19
Character \(\chi\) \(=\) 65.14
Dual form 65.6.b.a.14.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.30124i q^{2} -24.0437i q^{3} +21.1018 q^{4} +(52.5959 - 18.9386i) q^{5} +79.3742 q^{6} -91.7264i q^{7} +175.302i q^{8} -335.101 q^{9} +(62.5210 + 173.632i) q^{10} -45.5406 q^{11} -507.366i q^{12} -169.000i q^{13} +302.811 q^{14} +(-455.356 - 1264.60i) q^{15} +96.5440 q^{16} -745.700i q^{17} -1106.25i q^{18} -306.010 q^{19} +(1109.87 - 399.639i) q^{20} -2205.45 q^{21} -150.340i q^{22} +704.422i q^{23} +4214.91 q^{24} +(2407.66 - 1992.19i) q^{25} +557.910 q^{26} +2214.45i q^{27} -1935.59i q^{28} +6802.33 q^{29} +(4174.76 - 1503.24i) q^{30} -7605.25 q^{31} +5928.38i q^{32} +1094.97i q^{33} +2461.74 q^{34} +(-1737.17 - 4824.43i) q^{35} -7071.24 q^{36} +109.012i q^{37} -1010.21i q^{38} -4063.39 q^{39} +(3319.98 + 9220.16i) q^{40} -13355.2 q^{41} -7280.71i q^{42} +4474.54i q^{43} -960.988 q^{44} +(-17624.9 + 6346.36i) q^{45} -2325.47 q^{46} -4860.59i q^{47} -2321.28i q^{48} +8393.26 q^{49} +(6576.70 + 7948.25i) q^{50} -17929.4 q^{51} -3566.21i q^{52} +40100.0i q^{53} -7310.45 q^{54} +(-2395.25 + 862.477i) q^{55} +16079.8 q^{56} +7357.62i q^{57} +22456.1i q^{58} +29655.8 q^{59} +(-9608.82 - 26685.4i) q^{60} +51545.6 q^{61} -25106.8i q^{62} +30737.6i q^{63} -16481.6 q^{64} +(-3200.63 - 8888.71i) q^{65} -3614.75 q^{66} +51877.6i q^{67} -15735.6i q^{68} +16936.9 q^{69} +(15926.6 - 5734.83i) q^{70} +42271.1 q^{71} -58743.9i q^{72} +45219.7i q^{73} -359.876 q^{74} +(-47899.7 - 57889.0i) q^{75} -6457.36 q^{76} +4177.27i q^{77} -13414.2i q^{78} -62532.7 q^{79} +(5077.82 - 1828.41i) q^{80} -28185.8 q^{81} -44088.9i q^{82} -46913.1i q^{83} -46538.9 q^{84} +(-14122.5 - 39220.8i) q^{85} -14771.5 q^{86} -163553. i q^{87} -7983.35i q^{88} +63387.4 q^{89} +(-20950.9 - 58184.2i) q^{90} -15501.8 q^{91} +14864.6i q^{92} +182859. i q^{93} +16046.0 q^{94} +(-16094.9 + 5795.41i) q^{95} +142540. q^{96} +132037. i q^{97} +27708.2i q^{98} +15260.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 500 q^{4} + 80 q^{5} - 404 q^{6} - 1926 q^{9} + 322 q^{10} - 652 q^{11} - 2668 q^{14} - 2064 q^{15} + 12092 q^{16} + 5248 q^{19} - 3460 q^{20} + 7060 q^{21} - 5480 q^{24} - 1178 q^{25} - 4056 q^{26}+ \cdots + 520976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.30124i 0.583583i 0.956482 + 0.291791i \(0.0942513\pi\)
−0.956482 + 0.291791i \(0.905749\pi\)
\(3\) 24.0437i 1.54241i −0.636589 0.771203i \(-0.719655\pi\)
0.636589 0.771203i \(-0.280345\pi\)
\(4\) 21.1018 0.659431
\(5\) 52.5959 18.9386i 0.940864 0.338785i
\(6\) 79.3742 0.900121
\(7\) 91.7264i 0.707537i −0.935333 0.353769i \(-0.884900\pi\)
0.935333 0.353769i \(-0.115100\pi\)
\(8\) 175.302i 0.968415i
\(9\) −335.101 −1.37902
\(10\) 62.5210 + 173.632i 0.197709 + 0.549072i
\(11\) −45.5406 −0.113479 −0.0567397 0.998389i \(-0.518071\pi\)
−0.0567397 + 0.998389i \(0.518071\pi\)
\(12\) 507.366i 1.01711i
\(13\) 169.000i 0.277350i
\(14\) 302.811 0.412906
\(15\) −455.356 1264.60i −0.522544 1.45119i
\(16\) 96.5440 0.0942812
\(17\) 745.700i 0.625809i −0.949785 0.312905i \(-0.898698\pi\)
0.949785 0.312905i \(-0.101302\pi\)
\(18\) 1106.25i 0.804770i
\(19\) −306.010 −0.194469 −0.0972347 0.995261i \(-0.531000\pi\)
−0.0972347 + 0.995261i \(0.531000\pi\)
\(20\) 1109.87 399.639i 0.620435 0.223405i
\(21\) −2205.45 −1.09131
\(22\) 150.340i 0.0662246i
\(23\) 704.422i 0.277660i 0.990316 + 0.138830i \(0.0443342\pi\)
−0.990316 + 0.138830i \(0.955666\pi\)
\(24\) 4214.91 1.49369
\(25\) 2407.66 1992.19i 0.770450 0.637501i
\(26\) 557.910 0.161857
\(27\) 2214.45i 0.584598i
\(28\) 1935.59i 0.466572i
\(29\) 6802.33 1.50198 0.750988 0.660316i \(-0.229578\pi\)
0.750988 + 0.660316i \(0.229578\pi\)
\(30\) 4174.76 1503.24i 0.846892 0.304947i
\(31\) −7605.25 −1.42138 −0.710689 0.703507i \(-0.751616\pi\)
−0.710689 + 0.703507i \(0.751616\pi\)
\(32\) 5928.38i 1.02344i
\(33\) 1094.97i 0.175031i
\(34\) 2461.74 0.365211
\(35\) −1737.17 4824.43i −0.239703 0.665696i
\(36\) −7071.24 −0.909367
\(37\) 109.012i 0.0130909i 0.999979 + 0.00654547i \(0.00208350\pi\)
−0.999979 + 0.00654547i \(0.997916\pi\)
\(38\) 1010.21i 0.113489i
\(39\) −4063.39 −0.427787
\(40\) 3319.98 + 9220.16i 0.328084 + 0.911147i
\(41\) −13355.2 −1.24077 −0.620386 0.784296i \(-0.713024\pi\)
−0.620386 + 0.784296i \(0.713024\pi\)
\(42\) 7280.71i 0.636869i
\(43\) 4474.54i 0.369044i 0.982828 + 0.184522i \(0.0590736\pi\)
−0.982828 + 0.184522i \(0.940926\pi\)
\(44\) −960.988 −0.0748319
\(45\) −17624.9 + 6346.36i −1.29747 + 0.467190i
\(46\) −2325.47 −0.162038
\(47\) 4860.59i 0.320955i −0.987039 0.160478i \(-0.948697\pi\)
0.987039 0.160478i \(-0.0513035\pi\)
\(48\) 2321.28i 0.145420i
\(49\) 8393.26 0.499391
\(50\) 6576.70 + 7948.25i 0.372034 + 0.449621i
\(51\) −17929.4 −0.965252
\(52\) 3566.21i 0.182893i
\(53\) 40100.0i 1.96090i 0.196777 + 0.980448i \(0.436953\pi\)
−0.196777 + 0.980448i \(0.563047\pi\)
\(54\) −7310.45 −0.341161
\(55\) −2395.25 + 862.477i −0.106769 + 0.0384451i
\(56\) 16079.8 0.685190
\(57\) 7357.62i 0.299951i
\(58\) 22456.1i 0.876526i
\(59\) 29655.8 1.10912 0.554561 0.832143i \(-0.312886\pi\)
0.554561 + 0.832143i \(0.312886\pi\)
\(60\) −9608.82 26685.4i −0.344582 0.956963i
\(61\) 51545.6 1.77365 0.886823 0.462109i \(-0.152907\pi\)
0.886823 + 0.462109i \(0.152907\pi\)
\(62\) 25106.8i 0.829491i
\(63\) 30737.6i 0.975706i
\(64\) −16481.6 −0.502978
\(65\) −3200.63 8888.71i −0.0939620 0.260949i
\(66\) −3614.75 −0.102145
\(67\) 51877.6i 1.41186i 0.708280 + 0.705932i \(0.249472\pi\)
−0.708280 + 0.705932i \(0.750528\pi\)
\(68\) 15735.6i 0.412678i
\(69\) 16936.9 0.428265
\(70\) 15926.6 5734.83i 0.388489 0.139886i
\(71\) 42271.1 0.995171 0.497585 0.867415i \(-0.334220\pi\)
0.497585 + 0.867415i \(0.334220\pi\)
\(72\) 58743.9i 1.33546i
\(73\) 45219.7i 0.993162i 0.867990 + 0.496581i \(0.165412\pi\)
−0.867990 + 0.496581i \(0.834588\pi\)
\(74\) −359.876 −0.00763964
\(75\) −47899.7 57889.0i −0.983285 1.18835i
\(76\) −6457.36 −0.128239
\(77\) 4177.27i 0.0802909i
\(78\) 13414.2i 0.249649i
\(79\) −62532.7 −1.12730 −0.563650 0.826014i \(-0.690603\pi\)
−0.563650 + 0.826014i \(0.690603\pi\)
\(80\) 5077.82 1828.41i 0.0887058 0.0319410i
\(81\) −28185.8 −0.477329
\(82\) 44088.9i 0.724093i
\(83\) 46913.1i 0.747479i −0.927534 0.373740i \(-0.878075\pi\)
0.927534 0.373740i \(-0.121925\pi\)
\(84\) −46538.9 −0.719644
\(85\) −14122.5 39220.8i −0.212015 0.588801i
\(86\) −14771.5 −0.215367
\(87\) 163553.i 2.31666i
\(88\) 7983.35i 0.109895i
\(89\) 63387.4 0.848258 0.424129 0.905602i \(-0.360580\pi\)
0.424129 + 0.905602i \(0.360580\pi\)
\(90\) −20950.9 58184.2i −0.272644 0.757179i
\(91\) −15501.8 −0.196236
\(92\) 14864.6i 0.183098i
\(93\) 182859.i 2.19234i
\(94\) 16046.0 0.187304
\(95\) −16094.9 + 5795.41i −0.182969 + 0.0658833i
\(96\) 142540. 1.57855
\(97\) 132037.i 1.42484i 0.701752 + 0.712421i \(0.252401\pi\)
−0.701752 + 0.712421i \(0.747599\pi\)
\(98\) 27708.2i 0.291436i
\(99\) 15260.7 0.156490
\(100\) 50805.9 42038.8i 0.508059 0.420388i
\(101\) 174161. 1.69882 0.849408 0.527736i \(-0.176959\pi\)
0.849408 + 0.527736i \(0.176959\pi\)
\(102\) 59189.3i 0.563304i
\(103\) 41504.6i 0.385481i −0.981250 0.192741i \(-0.938262\pi\)
0.981250 0.192741i \(-0.0617376\pi\)
\(104\) 29626.0 0.268590
\(105\) −115997. + 41768.1i −1.02677 + 0.369719i
\(106\) −132380. −1.14435
\(107\) 7340.14i 0.0619791i −0.999520 0.0309895i \(-0.990134\pi\)
0.999520 0.0309895i \(-0.00986586\pi\)
\(108\) 46729.0i 0.385502i
\(109\) −51340.4 −0.413898 −0.206949 0.978352i \(-0.566353\pi\)
−0.206949 + 0.978352i \(0.566353\pi\)
\(110\) −2847.24 7907.29i −0.0224359 0.0623083i
\(111\) 2621.06 0.0201915
\(112\) 8855.63i 0.0667075i
\(113\) 145027.i 1.06845i −0.845344 0.534223i \(-0.820604\pi\)
0.845344 0.534223i \(-0.179396\pi\)
\(114\) −24289.3 −0.175046
\(115\) 13340.8 + 37049.7i 0.0940669 + 0.261240i
\(116\) 143541. 0.990450
\(117\) 56632.1i 0.382470i
\(118\) 97900.9i 0.647264i
\(119\) −68400.4 −0.442783
\(120\) 221687. 79824.7i 1.40536 0.506039i
\(121\) −158977. −0.987122
\(122\) 170164.i 1.03507i
\(123\) 321110.i 1.91378i
\(124\) −160485. −0.937301
\(125\) 88903.5 150379.i 0.508913 0.860818i
\(126\) −101472. −0.569405
\(127\) 69448.0i 0.382077i −0.981583 0.191038i \(-0.938814\pi\)
0.981583 0.191038i \(-0.0611855\pi\)
\(128\) 135298.i 0.729907i
\(129\) 107585. 0.569215
\(130\) 29343.8 10566.1i 0.152285 0.0548346i
\(131\) −264141. −1.34480 −0.672400 0.740188i \(-0.734736\pi\)
−0.672400 + 0.740188i \(0.734736\pi\)
\(132\) 23105.8i 0.115421i
\(133\) 28069.2i 0.137594i
\(134\) −171260. −0.823939
\(135\) 41938.8 + 116471.i 0.198053 + 0.550027i
\(136\) 130723. 0.606043
\(137\) 48840.0i 0.222318i 0.993803 + 0.111159i \(0.0354563\pi\)
−0.993803 + 0.111159i \(0.964544\pi\)
\(138\) 55912.9i 0.249928i
\(139\) −193453. −0.849255 −0.424627 0.905368i \(-0.639595\pi\)
−0.424627 + 0.905368i \(0.639595\pi\)
\(140\) −36657.5 101804.i −0.158068 0.438981i
\(141\) −116867. −0.495043
\(142\) 139547.i 0.580764i
\(143\) 7696.36i 0.0314735i
\(144\) −32352.0 −0.130015
\(145\) 357775. 128827.i 1.41315 0.508846i
\(146\) −149281. −0.579592
\(147\) 201805.i 0.770264i
\(148\) 2300.35i 0.00863258i
\(149\) 133014. 0.490830 0.245415 0.969418i \(-0.421076\pi\)
0.245415 + 0.969418i \(0.421076\pi\)
\(150\) 191106. 158128.i 0.693498 0.573828i
\(151\) −310303. −1.10750 −0.553749 0.832684i \(-0.686803\pi\)
−0.553749 + 0.832684i \(0.686803\pi\)
\(152\) 53644.1i 0.188327i
\(153\) 249885.i 0.863002i
\(154\) −13790.2 −0.0468564
\(155\) −400005. + 144033.i −1.33732 + 0.481541i
\(156\) −85744.9 −0.282096
\(157\) 49697.8i 0.160912i 0.996758 + 0.0804559i \(0.0256376\pi\)
−0.996758 + 0.0804559i \(0.974362\pi\)
\(158\) 206436.i 0.657873i
\(159\) 964154. 3.02450
\(160\) 112275. + 311808.i 0.346724 + 0.962914i
\(161\) 64614.1 0.196455
\(162\) 93048.2i 0.278561i
\(163\) 658943.i 1.94258i 0.237899 + 0.971290i \(0.423541\pi\)
−0.237899 + 0.971290i \(0.576459\pi\)
\(164\) −281820. −0.818205
\(165\) 20737.2 + 57590.7i 0.0592979 + 0.164681i
\(166\) 154872. 0.436216
\(167\) 655469.i 1.81870i −0.416034 0.909349i \(-0.636580\pi\)
0.416034 0.909349i \(-0.363420\pi\)
\(168\) 386619.i 1.05684i
\(169\) −28561.0 −0.0769231
\(170\) 129477. 46621.9i 0.343614 0.123728i
\(171\) 102544. 0.268177
\(172\) 94420.9i 0.243359i
\(173\) 280036.i 0.711376i −0.934605 0.355688i \(-0.884247\pi\)
0.934605 0.355688i \(-0.115753\pi\)
\(174\) 539929. 1.35196
\(175\) −182736. 220846.i −0.451055 0.545122i
\(176\) −4396.67 −0.0106990
\(177\) 713036.i 1.71072i
\(178\) 209257.i 0.495028i
\(179\) −261227. −0.609377 −0.304689 0.952452i \(-0.598552\pi\)
−0.304689 + 0.952452i \(0.598552\pi\)
\(180\) −371918. + 133920.i −0.855591 + 0.308080i
\(181\) −112896. −0.256143 −0.128071 0.991765i \(-0.540879\pi\)
−0.128071 + 0.991765i \(0.540879\pi\)
\(182\) 51175.1i 0.114520i
\(183\) 1.23935e6i 2.73568i
\(184\) −123486. −0.268890
\(185\) 2064.54 + 5733.59i 0.00443501 + 0.0123168i
\(186\) −603660. −1.27941
\(187\) 33959.6i 0.0710164i
\(188\) 102567.i 0.211648i
\(189\) 203124. 0.413625
\(190\) −19132.0 53133.0i −0.0384483 0.106778i
\(191\) 790161. 1.56723 0.783614 0.621247i \(-0.213374\pi\)
0.783614 + 0.621247i \(0.213374\pi\)
\(192\) 396279.i 0.775797i
\(193\) 272267.i 0.526140i 0.964777 + 0.263070i \(0.0847351\pi\)
−0.964777 + 0.263070i \(0.915265\pi\)
\(194\) −435887. −0.831513
\(195\) −213718. + 76955.1i −0.402489 + 0.144928i
\(196\) 177113. 0.329314
\(197\) 304065.i 0.558215i 0.960260 + 0.279107i \(0.0900385\pi\)
−0.960260 + 0.279107i \(0.909961\pi\)
\(198\) 50379.3i 0.0913248i
\(199\) −291885. −0.522492 −0.261246 0.965272i \(-0.584133\pi\)
−0.261246 + 0.965272i \(0.584133\pi\)
\(200\) 349234. + 422067.i 0.617365 + 0.746115i
\(201\) 1.24733e6 2.17767
\(202\) 574946.i 0.991400i
\(203\) 623953.i 1.06270i
\(204\) −378343. −0.636518
\(205\) −702431. + 252930.i −1.16740 + 0.420355i
\(206\) 137017. 0.224960
\(207\) 236053.i 0.382898i
\(208\) 16315.9i 0.0261489i
\(209\) 13935.9 0.0220683
\(210\) −137887. 382935.i −0.215762 0.599207i
\(211\) 447521. 0.692003 0.346001 0.938234i \(-0.387539\pi\)
0.346001 + 0.938234i \(0.387539\pi\)
\(212\) 846182.i 1.29308i
\(213\) 1.01635e6i 1.53496i
\(214\) 24231.6 0.0361699
\(215\) 84741.8 + 235343.i 0.125026 + 0.347220i
\(216\) −388198. −0.566134
\(217\) 697603.i 1.00568i
\(218\) 169487.i 0.241543i
\(219\) 1.08725e6 1.53186
\(220\) −50544.0 + 18199.8i −0.0704066 + 0.0253519i
\(221\) −126023. −0.173568
\(222\) 8652.75i 0.0117834i
\(223\) 158.327i 0.000213203i 1.00000 0.000106602i \(3.39323e-5\pi\)
−1.00000 0.000106602i \(0.999966\pi\)
\(224\) 543789. 0.724119
\(225\) −806808. + 667585.i −1.06246 + 0.879124i
\(226\) 478769. 0.623526
\(227\) 1.13950e6i 1.46774i −0.679290 0.733870i \(-0.737712\pi\)
0.679290 0.733870i \(-0.262288\pi\)
\(228\) 155259.i 0.197797i
\(229\) −693287. −0.873624 −0.436812 0.899553i \(-0.643892\pi\)
−0.436812 + 0.899553i \(0.643892\pi\)
\(230\) −122310. + 44041.2i −0.152455 + 0.0548958i
\(231\) 100437. 0.123841
\(232\) 1.19246e6i 1.45454i
\(233\) 399786.i 0.482434i −0.970471 0.241217i \(-0.922453\pi\)
0.970471 0.241217i \(-0.0775466\pi\)
\(234\) −186956. −0.223203
\(235\) −92053.0 255647.i −0.108735 0.301975i
\(236\) 625791. 0.731390
\(237\) 1.50352e6i 1.73876i
\(238\) 225806.i 0.258401i
\(239\) −445444. −0.504427 −0.252213 0.967672i \(-0.581158\pi\)
−0.252213 + 0.967672i \(0.581158\pi\)
\(240\) −43961.8 122090.i −0.0492660 0.136820i
\(241\) −1.23166e6 −1.36600 −0.682999 0.730420i \(-0.739324\pi\)
−0.682999 + 0.730420i \(0.739324\pi\)
\(242\) 524822.i 0.576067i
\(243\) 1.21580e6i 1.32083i
\(244\) 1.08771e6 1.16960
\(245\) 441451. 158957.i 0.469859 0.169186i
\(246\) −1.06006e6 −1.11685
\(247\) 51715.7i 0.0539361i
\(248\) 1.33321e6i 1.37648i
\(249\) −1.12797e6 −1.15292
\(250\) 496436. + 293492.i 0.502358 + 0.296993i
\(251\) 615483. 0.616640 0.308320 0.951283i \(-0.400233\pi\)
0.308320 + 0.951283i \(0.400233\pi\)
\(252\) 648619.i 0.643411i
\(253\) 32079.8i 0.0315087i
\(254\) 229265. 0.222973
\(255\) −943014. + 339559.i −0.908171 + 0.327013i
\(256\) −974063. −0.928939
\(257\) 844218.i 0.797300i 0.917103 + 0.398650i \(0.130521\pi\)
−0.917103 + 0.398650i \(0.869479\pi\)
\(258\) 355163.i 0.332184i
\(259\) 9999.30 0.00926233
\(260\) −67539.1 187568.i −0.0619615 0.172078i
\(261\) −2.27947e6 −2.07125
\(262\) 871993.i 0.784802i
\(263\) 586640.i 0.522976i 0.965207 + 0.261488i \(0.0842132\pi\)
−0.965207 + 0.261488i \(0.915787\pi\)
\(264\) −191950. −0.169503
\(265\) 759439. + 2.10910e6i 0.664322 + 1.84494i
\(266\) −92663.2 −0.0802977
\(267\) 1.52407e6i 1.30836i
\(268\) 1.09471e6i 0.931027i
\(269\) −2.07403e6 −1.74757 −0.873786 0.486310i \(-0.838343\pi\)
−0.873786 + 0.486310i \(0.838343\pi\)
\(270\) −384500. + 138450.i −0.320986 + 0.115580i
\(271\) 1.92221e6 1.58993 0.794963 0.606658i \(-0.207490\pi\)
0.794963 + 0.606658i \(0.207490\pi\)
\(272\) 71992.9i 0.0590021i
\(273\) 372720.i 0.302675i
\(274\) −161233. −0.129741
\(275\) −109646. + 90725.4i −0.0874302 + 0.0723431i
\(276\) 357400. 0.282411
\(277\) 1.70508e6i 1.33520i −0.744521 0.667599i \(-0.767322\pi\)
0.744521 0.667599i \(-0.232678\pi\)
\(278\) 638634.i 0.495610i
\(279\) 2.54853e6 1.96010
\(280\) 845732. 304530.i 0.644670 0.232132i
\(281\) −961277. −0.726244 −0.363122 0.931742i \(-0.618289\pi\)
−0.363122 + 0.931742i \(0.618289\pi\)
\(282\) 385805.i 0.288899i
\(283\) 1.84545e6i 1.36973i −0.728668 0.684867i \(-0.759860\pi\)
0.728668 0.684867i \(-0.240140\pi\)
\(284\) 891996. 0.656247
\(285\) 139343. + 386981.i 0.101619 + 0.282213i
\(286\) −25407.5 −0.0183674
\(287\) 1.22503e6i 0.877893i
\(288\) 1.98661e6i 1.41134i
\(289\) 863788. 0.608363
\(290\) 425289. + 1.18110e6i 0.296954 + 0.824692i
\(291\) 3.17467e6 2.19769
\(292\) 954217.i 0.654923i
\(293\) 425094.i 0.289278i 0.989484 + 0.144639i \(0.0462021\pi\)
−0.989484 + 0.144639i \(0.953798\pi\)
\(294\) 666208. 0.449512
\(295\) 1.55977e6 561640.i 1.04353 0.375754i
\(296\) −19110.0 −0.0126775
\(297\) 100848.i 0.0663398i
\(298\) 439111.i 0.286440i
\(299\) 119047. 0.0770090
\(300\) −1.01077e6 1.22156e6i −0.648409 0.783633i
\(301\) 410434. 0.261112
\(302\) 1.02438e6i 0.646317i
\(303\) 4.18747e6i 2.62027i
\(304\) −29543.4 −0.0183348
\(305\) 2.71109e6 976204.i 1.66876 0.600884i
\(306\) −824931. −0.503633
\(307\) 669386.i 0.405351i 0.979246 + 0.202675i \(0.0649636\pi\)
−0.979246 + 0.202675i \(0.935036\pi\)
\(308\) 88148.0i 0.0529463i
\(309\) −997926. −0.594569
\(310\) −475488. 1.32051e6i −0.281019 0.780438i
\(311\) −1.10103e6 −0.645506 −0.322753 0.946483i \(-0.604608\pi\)
−0.322753 + 0.946483i \(0.604608\pi\)
\(312\) 712320.i 0.414275i
\(313\) 698228.i 0.402844i 0.979505 + 0.201422i \(0.0645562\pi\)
−0.979505 + 0.201422i \(0.935444\pi\)
\(314\) −164064. −0.0939053
\(315\) 582129. + 1.61667e6i 0.330554 + 0.918007i
\(316\) −1.31955e6 −0.743377
\(317\) 1.25102e6i 0.699226i 0.936894 + 0.349613i \(0.113687\pi\)
−0.936894 + 0.349613i \(0.886313\pi\)
\(318\) 3.18290e6i 1.76504i
\(319\) −309782. −0.170443
\(320\) −866864. + 312139.i −0.473234 + 0.170401i
\(321\) −176484. −0.0955969
\(322\) 213307.i 0.114648i
\(323\) 228192.i 0.121701i
\(324\) −594771. −0.314766
\(325\) −336680. 406894.i −0.176811 0.213684i
\(326\) −2.17533e6 −1.13366
\(327\) 1.23441e6i 0.638398i
\(328\) 2.34120e6i 1.20158i
\(329\) −445845. −0.227088
\(330\) −190121. + 68458.4i −0.0961047 + 0.0346052i
\(331\) −2.38101e6 −1.19452 −0.597258 0.802049i \(-0.703743\pi\)
−0.597258 + 0.802049i \(0.703743\pi\)
\(332\) 989952.i 0.492911i
\(333\) 36530.1i 0.0180526i
\(334\) 2.16386e6 1.06136
\(335\) 982491. + 2.72855e6i 0.478318 + 1.32837i
\(336\) −212923. −0.102890
\(337\) 2.38010e6i 1.14161i −0.821084 0.570807i \(-0.806630\pi\)
0.821084 0.570807i \(-0.193370\pi\)
\(338\) 94286.8i 0.0448910i
\(339\) −3.48699e6 −1.64798
\(340\) −298011. 827629.i −0.139809 0.388274i
\(341\) 346348. 0.161297
\(342\) 338523.i 0.156503i
\(343\) 2.31153e6i 1.06088i
\(344\) −784396. −0.357387
\(345\) 890813. 320762.i 0.402939 0.145089i
\(346\) 924468. 0.415147
\(347\) 3.45043e6i 1.53833i −0.639049 0.769166i \(-0.720672\pi\)
0.639049 0.769166i \(-0.279328\pi\)
\(348\) 3.45127e6i 1.52768i
\(349\) −3.27121e6 −1.43762 −0.718811 0.695206i \(-0.755313\pi\)
−0.718811 + 0.695206i \(0.755313\pi\)
\(350\) 729065. 603257.i 0.318124 0.263228i
\(351\) 374243. 0.162138
\(352\) 269982.i 0.116139i
\(353\) 4.08960e6i 1.74680i 0.487001 + 0.873401i \(0.338091\pi\)
−0.487001 + 0.873401i \(0.661909\pi\)
\(354\) 2.35390e6 0.998345
\(355\) 2.22329e6 800557.i 0.936320 0.337149i
\(356\) 1.33759e6 0.559368
\(357\) 1.64460e6i 0.682952i
\(358\) 862375.i 0.355622i
\(359\) −2.45540e6 −1.00551 −0.502754 0.864430i \(-0.667680\pi\)
−0.502754 + 0.864430i \(0.667680\pi\)
\(360\) −1.11253e6 3.08969e6i −0.452434 1.25649i
\(361\) −2.38246e6 −0.962182
\(362\) 372697.i 0.149480i
\(363\) 3.82240e6i 1.52254i
\(364\) −327115. −0.129404
\(365\) 856399. + 2.37837e6i 0.336468 + 0.934431i
\(366\) 4.09139e6 1.59650
\(367\) 328555.i 0.127333i 0.997971 + 0.0636667i \(0.0202795\pi\)
−0.997971 + 0.0636667i \(0.979721\pi\)
\(368\) 68007.7i 0.0261781i
\(369\) 4.47536e6 1.71105
\(370\) −18928.0 + 6815.55i −0.00718787 + 0.00258819i
\(371\) 3.67823e6 1.38741
\(372\) 3.85865e6i 1.44570i
\(373\) 5.17656e6i 1.92650i 0.268606 + 0.963250i \(0.413437\pi\)
−0.268606 + 0.963250i \(0.586563\pi\)
\(374\) −112109. −0.0414439
\(375\) −3.61567e6 2.13757e6i −1.32773 0.784951i
\(376\) 852071. 0.310818
\(377\) 1.14959e6i 0.416573i
\(378\) 670561.i 0.241384i
\(379\) −3.24314e6 −1.15976 −0.579880 0.814702i \(-0.696900\pi\)
−0.579880 + 0.814702i \(0.696900\pi\)
\(380\) −339631. + 122294.i −0.120656 + 0.0434455i
\(381\) −1.66979e6 −0.589318
\(382\) 2.60851e6i 0.914607i
\(383\) 4.53434e6i 1.57949i 0.613435 + 0.789745i \(0.289787\pi\)
−0.613435 + 0.789745i \(0.710213\pi\)
\(384\) 3.25308e6 1.12581
\(385\) 79111.9 + 219707.i 0.0272013 + 0.0755428i
\(386\) −898819. −0.307046
\(387\) 1.49942e6i 0.508917i
\(388\) 2.78622e6i 0.939586i
\(389\) −1.77865e6 −0.595958 −0.297979 0.954572i \(-0.596313\pi\)
−0.297979 + 0.954572i \(0.596313\pi\)
\(390\) −254047. 705534.i −0.0845772 0.234885i
\(391\) 525288. 0.173762
\(392\) 1.47135e6i 0.483618i
\(393\) 6.35094e6i 2.07423i
\(394\) −1.00379e6 −0.325764
\(395\) −3.28897e6 + 1.18428e6i −1.06064 + 0.381912i
\(396\) 322028. 0.103194
\(397\) 5.19763e6i 1.65512i −0.561378 0.827560i \(-0.689729\pi\)
0.561378 0.827560i \(-0.310271\pi\)
\(398\) 963583.i 0.304917i
\(399\) 674888. 0.212226
\(400\) 232445. 192334.i 0.0726390 0.0601043i
\(401\) 4.03901e6 1.25434 0.627168 0.778884i \(-0.284214\pi\)
0.627168 + 0.778884i \(0.284214\pi\)
\(402\) 4.11774e6i 1.27085i
\(403\) 1.28529e6i 0.394219i
\(404\) 3.67510e6 1.12025
\(405\) −1.48246e6 + 533801.i −0.449102 + 0.161712i
\(406\) 2.05982e6 0.620175
\(407\) 4964.48i 0.00148555i
\(408\) 3.14306e6i 0.934765i
\(409\) 2.23547e6 0.660787 0.330393 0.943843i \(-0.392819\pi\)
0.330393 + 0.943843i \(0.392819\pi\)
\(410\) −834984. 2.31890e6i −0.245312 0.681273i
\(411\) 1.17430e6 0.342904
\(412\) 875823.i 0.254199i
\(413\) 2.72022e6i 0.784746i
\(414\) 779267. 0.223452
\(415\) −888471. 2.46744e6i −0.253234 0.703276i
\(416\) 1.00190e6 0.283850
\(417\) 4.65133e6i 1.30990i
\(418\) 46005.7i 0.0128787i
\(419\) −1.52835e6 −0.425291 −0.212646 0.977129i \(-0.568208\pi\)
−0.212646 + 0.977129i \(0.568208\pi\)
\(420\) −2.44775e6 + 881383.i −0.677087 + 0.243804i
\(421\) −2.80885e6 −0.772367 −0.386183 0.922422i \(-0.626207\pi\)
−0.386183 + 0.922422i \(0.626207\pi\)
\(422\) 1.47738e6i 0.403841i
\(423\) 1.62879e6i 0.442603i
\(424\) −7.02961e6 −1.89896
\(425\) −1.48558e6 1.79539e6i −0.398954 0.482155i
\(426\) 3.35523e6 0.895774
\(427\) 4.72809e6i 1.25492i
\(428\) 154890.i 0.0408710i
\(429\) 185049. 0.0485449
\(430\) −776923. + 279753.i −0.202631 + 0.0729632i
\(431\) −2.64484e6 −0.685813 −0.342906 0.939370i \(-0.611411\pi\)
−0.342906 + 0.939370i \(0.611411\pi\)
\(432\) 213792.i 0.0551166i
\(433\) 6.38548e6i 1.63672i −0.574708 0.818359i \(-0.694884\pi\)
0.574708 0.818359i \(-0.305116\pi\)
\(434\) −2.30295e6 −0.586896
\(435\) −3.09748e6 8.60224e6i −0.784847 2.17966i
\(436\) −1.08337e6 −0.272937
\(437\) 215560.i 0.0539964i
\(438\) 3.58927e6i 0.893967i
\(439\) 1.84296e6 0.456409 0.228205 0.973613i \(-0.426714\pi\)
0.228205 + 0.973613i \(0.426714\pi\)
\(440\) −151194. 419891.i −0.0372308 0.103396i
\(441\) −2.81259e6 −0.688669
\(442\) 416033.i 0.101291i
\(443\) 610862.i 0.147888i 0.997262 + 0.0739442i \(0.0235587\pi\)
−0.997262 + 0.0739442i \(0.976441\pi\)
\(444\) 55309.1 0.0133149
\(445\) 3.33392e6 1.20047e6i 0.798095 0.287377i
\(446\) −522.676 −0.000124422
\(447\) 3.19815e6i 0.757059i
\(448\) 1.51180e6i 0.355876i
\(449\) 1.32831e6 0.310945 0.155473 0.987840i \(-0.450310\pi\)
0.155473 + 0.987840i \(0.450310\pi\)
\(450\) −2.20386e6 2.66347e6i −0.513041 0.620035i
\(451\) 608206. 0.140802
\(452\) 3.06033e6i 0.704567i
\(453\) 7.46083e6i 1.70821i
\(454\) 3.76176e6 0.856547
\(455\) −815329. + 293582.i −0.184631 + 0.0664816i
\(456\) −1.28980e6 −0.290477
\(457\) 1.05715e6i 0.236780i 0.992967 + 0.118390i \(0.0377733\pi\)
−0.992967 + 0.118390i \(0.962227\pi\)
\(458\) 2.28871e6i 0.509832i
\(459\) 1.65132e6 0.365847
\(460\) 281515. + 781816.i 0.0620307 + 0.172270i
\(461\) −88191.8 −0.0193275 −0.00966376 0.999953i \(-0.503076\pi\)
−0.00966376 + 0.999953i \(0.503076\pi\)
\(462\) 331568.i 0.0722715i
\(463\) 5.10298e6i 1.10630i −0.833083 0.553148i \(-0.813427\pi\)
0.833083 0.553148i \(-0.186573\pi\)
\(464\) 656724. 0.141608
\(465\) 3.46309e6 + 9.61761e6i 0.742731 + 2.06269i
\(466\) 1.31979e6 0.281540
\(467\) 4.32926e6i 0.918590i −0.888284 0.459295i \(-0.848102\pi\)
0.888284 0.459295i \(-0.151898\pi\)
\(468\) 1.19504e6i 0.252213i
\(469\) 4.75855e6 0.998946
\(470\) 843953. 303889.i 0.176228 0.0634557i
\(471\) 1.19492e6 0.248191
\(472\) 5.19872e6i 1.07409i
\(473\) 203773.i 0.0418788i
\(474\) −4.96348e6 −1.01471
\(475\) −736766. + 609629.i −0.149829 + 0.123974i
\(476\) −1.44337e6 −0.291985
\(477\) 1.34376e7i 2.70411i
\(478\) 1.47052e6i 0.294375i
\(479\) −2.88997e6 −0.575513 −0.287756 0.957704i \(-0.592909\pi\)
−0.287756 + 0.957704i \(0.592909\pi\)
\(480\) 7.49703e6 2.69952e6i 1.48520 0.534790i
\(481\) 18423.1 0.00363077
\(482\) 4.06602e6i 0.797172i
\(483\) 1.55356e6i 0.303013i
\(484\) −3.35470e6 −0.650940
\(485\) 2.50060e6 + 6.94461e6i 0.482715 + 1.34058i
\(486\) −4.01366e6 −0.770815
\(487\) 3.37347e6i 0.644546i −0.946647 0.322273i \(-0.895553\pi\)
0.946647 0.322273i \(-0.104447\pi\)
\(488\) 9.03604e6i 1.71763i
\(489\) 1.58434e7 2.99625
\(490\) 524755. + 1.45734e6i 0.0987340 + 0.274201i
\(491\) 5.24844e6 0.982486 0.491243 0.871023i \(-0.336543\pi\)
0.491243 + 0.871023i \(0.336543\pi\)
\(492\) 6.77600e6i 1.26200i
\(493\) 5.07250e6i 0.939950i
\(494\) −170726. −0.0314762
\(495\) 802650. 289017.i 0.147236 0.0530164i
\(496\) −734241. −0.134009
\(497\) 3.87738e6i 0.704120i
\(498\) 3.72369e6i 0.672822i
\(499\) 3.51772e6 0.632427 0.316213 0.948688i \(-0.397588\pi\)
0.316213 + 0.948688i \(0.397588\pi\)
\(500\) 1.87602e6 3.17326e6i 0.335593 0.567650i
\(501\) −1.57599e7 −2.80517
\(502\) 2.03186e6i 0.359860i
\(503\) 8.97569e6i 1.58179i 0.611954 + 0.790893i \(0.290384\pi\)
−0.611954 + 0.790893i \(0.709616\pi\)
\(504\) −5.38836e6 −0.944889
\(505\) 9.16013e6 3.29836e6i 1.59836 0.575533i
\(506\) 105903. 0.0183879
\(507\) 686713.i 0.118647i
\(508\) 1.46548e6i 0.251953i
\(509\) 9.09941e6 1.55675 0.778375 0.627800i \(-0.216045\pi\)
0.778375 + 0.627800i \(0.216045\pi\)
\(510\) −1.12097e6 3.11312e6i −0.190839 0.529993i
\(511\) 4.14784e6 0.702700
\(512\) 1.11393e6i 0.187794i
\(513\) 677645.i 0.113686i
\(514\) −2.78697e6 −0.465290
\(515\) −786041. 2.18297e6i −0.130595 0.362686i
\(516\) 2.27023e6 0.375358
\(517\) 221354.i 0.0364218i
\(518\) 33010.1i 0.00540533i
\(519\) −6.73312e6 −1.09723
\(520\) 1.55821e6 561076.i 0.252707 0.0909942i
\(521\) 5.26898e6 0.850418 0.425209 0.905095i \(-0.360201\pi\)
0.425209 + 0.905095i \(0.360201\pi\)
\(522\) 7.52508e6i 1.20874i
\(523\) 4.16491e6i 0.665811i −0.942960 0.332906i \(-0.891971\pi\)
0.942960 0.332906i \(-0.108029\pi\)
\(524\) −5.57385e6 −0.886803
\(525\) −5.30995e6 + 4.39366e6i −0.840800 + 0.695711i
\(526\) −1.93664e6 −0.305200
\(527\) 5.67124e6i 0.889511i
\(528\) 105712.i 0.0165022i
\(529\) 5.94013e6 0.922905
\(530\) −6.96263e6 + 2.50709e6i −1.07667 + 0.387687i
\(531\) −9.93769e6 −1.52950
\(532\) 592311.i 0.0907341i
\(533\) 2.25704e6i 0.344129i
\(534\) 5.03132e6 0.763535
\(535\) −139012. 386061.i −0.0209976 0.0583139i
\(536\) −9.09424e6 −1.36727
\(537\) 6.28088e6i 0.939907i
\(538\) 6.84689e6i 1.01985i
\(539\) −382234. −0.0566706
\(540\) 884984. + 2.45775e6i 0.130602 + 0.362705i
\(541\) −3.03221e6 −0.445416 −0.222708 0.974885i \(-0.571490\pi\)
−0.222708 + 0.974885i \(0.571490\pi\)
\(542\) 6.34567e6i 0.927853i
\(543\) 2.71444e6i 0.395076i
\(544\) 4.42079e6 0.640476
\(545\) −2.70029e6 + 972317.i −0.389421 + 0.140222i
\(546\) −1.23044e6 −0.176636
\(547\) 3.32454e6i 0.475076i 0.971378 + 0.237538i \(0.0763404\pi\)
−0.971378 + 0.237538i \(0.923660\pi\)
\(548\) 1.03061e6i 0.146603i
\(549\) −1.72730e7 −2.44589
\(550\) −299507. 361968.i −0.0422182 0.0510227i
\(551\) −2.08158e6 −0.292088
\(552\) 2.96908e6i 0.414738i
\(553\) 5.73590e6i 0.797607i
\(554\) 5.62888e6 0.779198
\(555\) 137857. 49639.3i 0.0189975 0.00684059i
\(556\) −4.08220e6 −0.560025
\(557\) 7.78685e6i 1.06347i −0.846912 0.531733i \(-0.821541\pi\)
0.846912 0.531733i \(-0.178459\pi\)
\(558\) 8.41331e6i 1.14388i
\(559\) 756198. 0.102354
\(560\) −167714. 465770.i −0.0225995 0.0627627i
\(561\) 816516. 0.109536
\(562\) 3.17341e6i 0.423824i
\(563\) 4.68638e6i 0.623112i 0.950228 + 0.311556i \(0.100850\pi\)
−0.950228 + 0.311556i \(0.899150\pi\)
\(564\) −2.46610e6 −0.326447
\(565\) −2.74661e6 7.62782e6i −0.361973 1.00526i
\(566\) 6.09227e6 0.799353
\(567\) 2.58538e6i 0.337728i
\(568\) 7.41020e6i 0.963738i
\(569\) 2.10415e6 0.272456 0.136228 0.990678i \(-0.456502\pi\)
0.136228 + 0.990678i \(0.456502\pi\)
\(570\) −1.27752e6 + 460006.i −0.164695 + 0.0593029i
\(571\) 1.20728e7 1.54959 0.774796 0.632211i \(-0.217852\pi\)
0.774796 + 0.632211i \(0.217852\pi\)
\(572\) 162407.i 0.0207546i
\(573\) 1.89984e7i 2.41730i
\(574\) −4.04412e6 −0.512323
\(575\) 1.40334e6 + 1.69601e6i 0.177008 + 0.213923i
\(576\) 5.52300e6 0.693615
\(577\) 1.02267e7i 1.27878i 0.768883 + 0.639390i \(0.220813\pi\)
−0.768883 + 0.639390i \(0.779187\pi\)
\(578\) 2.85157e6i 0.355030i
\(579\) 6.54631e6 0.811522
\(580\) 7.54969e6 2.71848e6i 0.931878 0.335549i
\(581\) −4.30317e6 −0.528869
\(582\) 1.04803e7i 1.28253i
\(583\) 1.82618e6i 0.222521i
\(584\) −7.92709e6 −0.961794
\(585\) 1.07253e6 + 2.97862e6i 0.129575 + 0.359853i
\(586\) −1.40334e6 −0.168818
\(587\) 2.24352e6i 0.268741i 0.990931 + 0.134371i \(0.0429013\pi\)
−0.990931 + 0.134371i \(0.957099\pi\)
\(588\) 4.25846e6i 0.507936i
\(589\) 2.32728e6 0.276414
\(590\) 1.85411e6 + 5.14919e6i 0.219283 + 0.608988i
\(591\) 7.31086e6 0.860994
\(592\) 10524.5i 0.00123423i
\(593\) 590374.i 0.0689430i 0.999406 + 0.0344715i \(0.0109748\pi\)
−0.999406 + 0.0344715i \(0.989025\pi\)
\(594\) 332922. 0.0387148
\(595\) −3.59758e6 + 1.29541e6i −0.416599 + 0.150008i
\(596\) 2.80683e6 0.323669
\(597\) 7.01801e6i 0.805894i
\(598\) 393004.i 0.0449411i
\(599\) −2.71185e6 −0.308815 −0.154407 0.988007i \(-0.549347\pi\)
−0.154407 + 0.988007i \(0.549347\pi\)
\(600\) 1.01481e7 8.39690e6i 1.15081 0.952228i
\(601\) −9.99011e6 −1.12820 −0.564098 0.825708i \(-0.690776\pi\)
−0.564098 + 0.825708i \(0.690776\pi\)
\(602\) 1.35494e6i 0.152380i
\(603\) 1.73842e7i 1.94698i
\(604\) −6.54795e6 −0.730319
\(605\) −8.36154e6 + 3.01081e6i −0.928748 + 0.334422i
\(606\) 1.38239e7 1.52914
\(607\) 4.27804e6i 0.471273i 0.971841 + 0.235637i \(0.0757175\pi\)
−0.971841 + 0.235637i \(0.924282\pi\)
\(608\) 1.81414e6i 0.199027i
\(609\) −1.50022e7 −1.63912
\(610\) 3.22268e6 + 8.94995e6i 0.350666 + 0.973859i
\(611\) −821440. −0.0890170
\(612\) 5.27302e6i 0.569090i
\(613\) 645645.i 0.0693973i −0.999398 0.0346986i \(-0.988953\pi\)
0.999398 0.0346986i \(-0.0110471\pi\)
\(614\) −2.20981e6 −0.236556
\(615\) 6.08139e6 + 1.68891e7i 0.648358 + 1.80060i
\(616\) −732284. −0.0777549
\(617\) 2.65549e6i 0.280822i −0.990093 0.140411i \(-0.955158\pi\)
0.990093 0.140411i \(-0.0448424\pi\)
\(618\) 3.29440e6i 0.346980i
\(619\) 1.11716e7 1.17190 0.585948 0.810349i \(-0.300722\pi\)
0.585948 + 0.810349i \(0.300722\pi\)
\(620\) −8.44083e6 + 3.03936e6i −0.881873 + 0.317543i
\(621\) −1.55991e6 −0.162320
\(622\) 3.63478e6i 0.376706i
\(623\) 5.81430e6i 0.600174i
\(624\) −392296. −0.0403322
\(625\) 1.82799e6 9.59301e6i 0.187186 0.982324i
\(626\) −2.30502e6 −0.235092
\(627\) 335070.i 0.0340382i
\(628\) 1.04871e6i 0.106110i
\(629\) 81290.4 0.00819243
\(630\) −5.33703e6 + 1.92175e6i −0.535733 + 0.192906i
\(631\) −1.49550e6 −0.149525 −0.0747624 0.997201i \(-0.523820\pi\)
−0.0747624 + 0.997201i \(0.523820\pi\)
\(632\) 1.09621e7i 1.09169i
\(633\) 1.07601e7i 1.06735i
\(634\) −4.12993e6 −0.408056
\(635\) −1.31525e6 3.65268e6i −0.129442 0.359482i
\(636\) 2.03454e7 1.99445
\(637\) 1.41846e6i 0.138506i
\(638\) 1.02267e6i 0.0994676i
\(639\) −1.41651e7 −1.37236
\(640\) 2.56237e6 + 7.11613e6i 0.247281 + 0.686743i
\(641\) 9.23788e6 0.888030 0.444015 0.896019i \(-0.353554\pi\)
0.444015 + 0.896019i \(0.353554\pi\)
\(642\) 582618.i 0.0557887i
\(643\) 3.69634e6i 0.352569i −0.984339 0.176285i \(-0.943592\pi\)
0.984339 0.176285i \(-0.0564079\pi\)
\(644\) 1.36347e6 0.129548
\(645\) 5.65852e6 2.03751e6i 0.535554 0.192841i
\(646\) −753316. −0.0710225
\(647\) 1.94037e7i 1.82232i −0.412055 0.911159i \(-0.635189\pi\)
0.412055 0.911159i \(-0.364811\pi\)
\(648\) 4.94103e6i 0.462253i
\(649\) −1.35054e6 −0.125862
\(650\) 1.34325e6 1.11146e6i 0.124702 0.103184i
\(651\) 1.67730e7 1.55116
\(652\) 1.39049e7i 1.28100i
\(653\) 6.16635e6i 0.565907i −0.959134 0.282953i \(-0.908686\pi\)
0.959134 0.282953i \(-0.0913142\pi\)
\(654\) −4.07510e6 −0.372558
\(655\) −1.38927e7 + 5.00247e6i −1.26527 + 0.455598i
\(656\) −1.28937e6 −0.116982
\(657\) 1.51532e7i 1.36959i
\(658\) 1.47184e6i 0.132525i
\(659\) −6.87190e6 −0.616401 −0.308200 0.951321i \(-0.599727\pi\)
−0.308200 + 0.951321i \(0.599727\pi\)
\(660\) 437591. + 1.21527e6i 0.0391029 + 0.108596i
\(661\) −3.87812e6 −0.345237 −0.172618 0.984989i \(-0.555223\pi\)
−0.172618 + 0.984989i \(0.555223\pi\)
\(662\) 7.86030e6i 0.697099i
\(663\) 3.03007e6i 0.267713i
\(664\) 8.22396e6 0.723870
\(665\) 531592. + 1.47632e6i 0.0466149 + 0.129458i
\(666\) 120595. 0.0105352
\(667\) 4.79171e6i 0.417038i
\(668\) 1.38316e7i 1.19931i
\(669\) 3806.78 0.000328846
\(670\) −9.00760e6 + 3.24344e6i −0.775214 + 0.279138i
\(671\) −2.34742e6 −0.201272
\(672\) 1.30747e7i 1.11689i
\(673\) 6.95400e6i 0.591830i −0.955214 0.295915i \(-0.904375\pi\)
0.955214 0.295915i \(-0.0956246\pi\)
\(674\) 7.85727e6 0.666227
\(675\) 4.41161e6 + 5.33165e6i 0.372682 + 0.450404i
\(676\) −602689. −0.0507255
\(677\) 1.45095e7i 1.21669i 0.793672 + 0.608345i \(0.208166\pi\)
−0.793672 + 0.608345i \(0.791834\pi\)
\(678\) 1.15114e7i 0.961731i
\(679\) 1.21113e7 1.00813
\(680\) 6.87547e6 2.47571e6i 0.570204 0.205318i
\(681\) −2.73978e7 −2.26385
\(682\) 1.14338e6i 0.0941301i
\(683\) 1.77058e7i 1.45232i 0.687524 + 0.726162i \(0.258698\pi\)
−0.687524 + 0.726162i \(0.741302\pi\)
\(684\) 2.16387e6 0.176844
\(685\) 924963. + 2.56878e6i 0.0753179 + 0.209171i
\(686\) 7.63092e6 0.619108
\(687\) 1.66692e7i 1.34748i
\(688\) 431990.i 0.0347939i
\(689\) 6.77690e6 0.543855
\(690\) 1.05891e6 + 2.94079e6i 0.0846717 + 0.235148i
\(691\) −8.82763e6 −0.703313 −0.351657 0.936129i \(-0.614382\pi\)
−0.351657 + 0.936129i \(0.614382\pi\)
\(692\) 5.90927e6i 0.469104i
\(693\) 1.39981e6i 0.110722i
\(694\) 1.13907e7 0.897744
\(695\) −1.01748e7 + 3.66373e6i −0.799033 + 0.287714i
\(696\) 2.86712e7 2.24348
\(697\) 9.95901e6i 0.776487i
\(698\) 1.07990e7i 0.838971i
\(699\) −9.61236e6 −0.744110
\(700\) −3.85607e6 4.66024e6i −0.297440 0.359471i
\(701\) 1.38056e7 1.06111 0.530553 0.847652i \(-0.321984\pi\)
0.530553 + 0.847652i \(0.321984\pi\)
\(702\) 1.23547e6i 0.0946211i
\(703\) 33358.8i 0.00254579i
\(704\) 750581. 0.0570776
\(705\) −6.14671e6 + 2.21330e6i −0.465769 + 0.167713i
\(706\) −1.35007e7 −1.01940
\(707\) 1.59751e7i 1.20198i
\(708\) 1.50463e7i 1.12810i
\(709\) −2.05869e6 −0.153806 −0.0769032 0.997039i \(-0.524503\pi\)
−0.0769032 + 0.997039i \(0.524503\pi\)
\(710\) 2.64283e6 + 7.33960e6i 0.196754 + 0.546420i
\(711\) 2.09548e7 1.55457
\(712\) 1.11119e7i 0.821466i
\(713\) 5.35731e6i 0.394660i
\(714\) −5.42923e6 −0.398559
\(715\) 145759. + 404797.i 0.0106627 + 0.0296123i
\(716\) −5.51237e6 −0.401842
\(717\) 1.07101e7i 0.778031i
\(718\) 8.10585e6i 0.586797i
\(719\) 7.96314e6 0.574463 0.287232 0.957861i \(-0.407265\pi\)
0.287232 + 0.957861i \(0.407265\pi\)
\(720\) −1.70158e6 + 612703.i −0.122327 + 0.0440472i
\(721\) −3.80707e6 −0.272743
\(722\) 7.86507e6i 0.561512i
\(723\) 2.96138e7i 2.10692i
\(724\) −2.38231e6 −0.168909
\(725\) 1.63777e7 1.35515e7i 1.15720 0.957510i
\(726\) −1.26187e7 −0.888530
\(727\) 3.82952e6i 0.268725i 0.990932 + 0.134363i \(0.0428987\pi\)
−0.990932 + 0.134363i \(0.957101\pi\)
\(728\) 2.71749e6i 0.190037i
\(729\) 2.23833e7 1.55993
\(730\) −7.85157e6 + 2.82718e6i −0.545317 + 0.196357i
\(731\) 3.33667e6 0.230951
\(732\) 2.61525e7i 1.80400i
\(733\) 1.45934e7i 1.00322i 0.865093 + 0.501611i \(0.167259\pi\)
−0.865093 + 0.501611i \(0.832741\pi\)
\(734\) −1.08464e6 −0.0743096
\(735\) −3.82192e6 1.06141e7i −0.260954 0.724713i
\(736\) −4.17608e6 −0.284167
\(737\) 2.36254e6i 0.160217i
\(738\) 1.47742e7i 0.998537i
\(739\) −1.03685e7 −0.698403 −0.349202 0.937048i \(-0.613547\pi\)
−0.349202 + 0.937048i \(0.613547\pi\)
\(740\) 43565.6 + 120989.i 0.00292458 + 0.00812208i
\(741\) 1.24344e6 0.0831914
\(742\) 1.21427e7i 0.809667i
\(743\) 5.40170e6i 0.358970i 0.983761 + 0.179485i \(0.0574432\pi\)
−0.983761 + 0.179485i \(0.942557\pi\)
\(744\) −3.20555e7 −2.12310
\(745\) 6.99598e6 2.51910e6i 0.461804 0.166286i
\(746\) −1.70891e7 −1.12427
\(747\) 1.57206e7i 1.03079i
\(748\) 716609.i 0.0468305i
\(749\) −673285. −0.0438525
\(750\) 7.05664e6 1.19362e7i 0.458084 0.774841i
\(751\) −5.29620e6 −0.342661 −0.171330 0.985214i \(-0.554807\pi\)
−0.171330 + 0.985214i \(0.554807\pi\)
\(752\) 469261.i 0.0302601i
\(753\) 1.47985e7i 0.951109i
\(754\) 3.79509e6 0.243105
\(755\) −1.63206e7 + 5.87671e6i −1.04201 + 0.375203i
\(756\) 4.28628e6 0.272757
\(757\) 8.87136e6i 0.562665i 0.959610 + 0.281333i \(0.0907765\pi\)
−0.959610 + 0.281333i \(0.909224\pi\)
\(758\) 1.07064e7i 0.676815i
\(759\) −771318. −0.0485992
\(760\) −1.01595e6 2.82146e6i −0.0638024 0.177190i
\(761\) −2.06961e7 −1.29547 −0.647734 0.761867i \(-0.724283\pi\)
−0.647734 + 0.761867i \(0.724283\pi\)
\(762\) 5.51238e6i 0.343916i
\(763\) 4.70927e6i 0.292848i
\(764\) 1.66738e7 1.03348
\(765\) 4.73248e6 + 1.31429e7i 0.292372 + 0.811967i
\(766\) −1.49689e7 −0.921763
\(767\) 5.01183e6i 0.307615i
\(768\) 2.34201e7i 1.43280i
\(769\) −5.78756e6 −0.352923 −0.176461 0.984308i \(-0.556465\pi\)
−0.176461 + 0.984308i \(0.556465\pi\)
\(770\) −725307. + 261167.i −0.0440855 + 0.0158742i
\(771\) 2.02981e7 1.22976
\(772\) 5.74532e6i 0.346953i
\(773\) 1.74975e7i 1.05324i 0.850101 + 0.526619i \(0.176541\pi\)
−0.850101 + 0.526619i \(0.823459\pi\)
\(774\) 4.94996e6 0.296995
\(775\) −1.83108e7 + 1.51511e7i −1.09510 + 0.906129i
\(776\) −2.31464e7 −1.37984
\(777\) 240420.i 0.0142863i
\(778\) 5.87175e6i 0.347791i
\(779\) 4.08684e6 0.241292
\(780\) −4.50983e6 + 1.62389e6i −0.265414 + 0.0955698i
\(781\) −1.92505e6 −0.112931
\(782\) 1.73410e6i 0.101405i
\(783\) 1.50635e7i 0.878052i
\(784\) 810319. 0.0470832
\(785\) 941208. + 2.61390e6i 0.0545144 + 0.151396i
\(786\) −2.09660e7 −1.21048
\(787\) 1.50075e7i 0.863719i −0.901941 0.431860i \(-0.857858\pi\)
0.901941 0.431860i \(-0.142142\pi\)
\(788\) 6.41633e6i 0.368104i
\(789\) 1.41050e7 0.806642
\(790\) −3.90961e6 1.08577e7i −0.222877 0.618969i
\(791\) −1.33028e7 −0.755965
\(792\) 2.67523e6i 0.151547i
\(793\) 8.71121e6i 0.491921i
\(794\) 1.71586e7 0.965899
\(795\) 5.07105e7 1.82598e7i 2.84564 1.02465i
\(796\) −6.15930e6 −0.344547
\(797\) 2.52578e7i 1.40848i −0.709962 0.704240i \(-0.751288\pi\)
0.709962 0.704240i \(-0.248712\pi\)
\(798\) 2.22797e6i 0.123852i
\(799\) −3.62455e6 −0.200857
\(800\) 1.18104e7 + 1.42735e7i 0.652441 + 0.788506i
\(801\) −2.12412e7 −1.16976
\(802\) 1.33337e7i 0.732008i
\(803\) 2.05933e6i 0.112703i
\(804\) 2.63209e7 1.43602
\(805\) 3.39844e6 1.22370e6i 0.184837 0.0665559i
\(806\) −4.24304e6 −0.230059
\(807\) 4.98675e7i 2.69547i
\(808\) 3.05307e7i 1.64516i
\(809\) −4.92229e6 −0.264421 −0.132210 0.991222i \(-0.542207\pi\)
−0.132210 + 0.991222i \(0.542207\pi\)
\(810\) −1.76221e6 4.89395e6i −0.0943722 0.262088i
\(811\) 9.00480e6 0.480753 0.240376 0.970680i \(-0.422729\pi\)
0.240376 + 0.970680i \(0.422729\pi\)
\(812\) 1.31665e7i 0.700780i
\(813\) 4.62170e7i 2.45231i
\(814\) 16388.9 0.000866942
\(815\) 1.24795e7 + 3.46577e7i 0.658116 + 1.82770i
\(816\) −1.73098e6 −0.0910052
\(817\) 1.36925e6i 0.0717677i
\(818\) 7.37984e6i 0.385624i
\(819\) 5.19466e6 0.270612
\(820\) −1.48226e7 + 5.33728e6i −0.769819 + 0.277195i
\(821\) 2.32720e7 1.20497 0.602486 0.798130i \(-0.294177\pi\)
0.602486 + 0.798130i \(0.294177\pi\)
\(822\) 3.87663e6i 0.200113i
\(823\) 2.00591e7i 1.03232i 0.856493 + 0.516158i \(0.172638\pi\)
−0.856493 + 0.516158i \(0.827362\pi\)
\(824\) 7.27584e6 0.373306
\(825\) 2.18138e6 + 2.63630e6i 0.111583 + 0.134853i
\(826\) 8.98010e6 0.457964
\(827\) 9.70394e6i 0.493383i 0.969094 + 0.246692i \(0.0793435\pi\)
−0.969094 + 0.246692i \(0.920657\pi\)
\(828\) 4.98114e6i 0.252495i
\(829\) 2.31044e7 1.16764 0.583819 0.811884i \(-0.301558\pi\)
0.583819 + 0.811884i \(0.301558\pi\)
\(830\) 8.14561e6 2.93306e6i 0.410420 0.147783i
\(831\) −4.09965e7 −2.05942
\(832\) 2.78539e6i 0.139501i
\(833\) 6.25886e6i 0.312523i
\(834\) −1.53552e7 −0.764432
\(835\) −1.24137e7 3.44750e7i −0.616147 1.71115i
\(836\) 294072. 0.0145525
\(837\) 1.68415e7i 0.830934i
\(838\) 5.04544e6i 0.248193i
\(839\) −2.47020e6 −0.121151 −0.0605755 0.998164i \(-0.519294\pi\)
−0.0605755 + 0.998164i \(0.519294\pi\)
\(840\) −7.32203e6 2.03346e7i −0.358042 0.994344i
\(841\) 2.57605e7 1.25593
\(842\) 9.27270e6i 0.450740i
\(843\) 2.31127e7i 1.12016i
\(844\) 9.44351e6 0.456328
\(845\) −1.50219e6 + 540906.i −0.0723741 + 0.0260604i
\(846\) −5.37703e6 −0.258295
\(847\) 1.45824e7i 0.698426i
\(848\) 3.87141e6i 0.184876i
\(849\) −4.43715e7 −2.11269
\(850\) 5.92701e6 4.90424e6i 0.281377 0.232822i
\(851\) −76790.6 −0.00363483
\(852\) 2.14469e7i 1.01220i
\(853\) 2.26066e7i 1.06381i −0.846805 0.531903i \(-0.821477\pi\)
0.846805 0.531903i \(-0.178523\pi\)
\(854\) 1.56086e7 0.732350
\(855\) 5.39341e6 1.94205e6i 0.252318 0.0908541i
\(856\) 1.28674e6 0.0600215
\(857\) 352440.i 0.0163920i 0.999966 + 0.00819602i \(0.00260890\pi\)
−0.999966 + 0.00819602i \(0.997391\pi\)
\(858\) 610892.i 0.0283300i
\(859\) −8.16362e6 −0.377485 −0.188743 0.982027i \(-0.560441\pi\)
−0.188743 + 0.982027i \(0.560441\pi\)
\(860\) 1.78820e6 + 4.96615e6i 0.0824463 + 0.228968i
\(861\) 2.94543e7 1.35407
\(862\) 8.73124e6i 0.400228i
\(863\) 2.20483e7i 1.00774i 0.863780 + 0.503869i \(0.168090\pi\)
−0.863780 + 0.503869i \(0.831910\pi\)
\(864\) −1.31281e7 −0.598299
\(865\) −5.30351e6 1.47288e7i −0.241003 0.669308i
\(866\) 2.10800e7 0.955160
\(867\) 2.07687e7i 0.938343i
\(868\) 1.47207e7i 0.663175i
\(869\) 2.84778e6 0.127925
\(870\) 2.83981e7 1.02255e7i 1.27201 0.458023i
\(871\) 8.76731e6 0.391581
\(872\) 9.00007e6i 0.400825i
\(873\) 4.42458e7i 1.96488i
\(874\) 711616. 0.0315113
\(875\) −1.37937e7 8.15480e6i −0.609061 0.360075i
\(876\) 2.29429e7 1.01016
\(877\) 3.29930e7i 1.44852i 0.689529 + 0.724258i \(0.257818\pi\)
−0.689529 + 0.724258i \(0.742182\pi\)
\(878\) 6.08405e6i 0.266352i
\(879\) 1.02208e7 0.446185
\(880\) −231247. + 83266.9i −0.0100663 + 0.00362465i
\(881\) −2.33438e7 −1.01328 −0.506642 0.862156i \(-0.669114\pi\)
−0.506642 + 0.862156i \(0.669114\pi\)
\(882\) 9.28504e6i 0.401895i
\(883\) 3.71832e6i 0.160489i 0.996775 + 0.0802444i \(0.0255701\pi\)
−0.996775 + 0.0802444i \(0.974430\pi\)
\(884\) −2.65932e6 −0.114456
\(885\) −1.35039e7 3.75028e7i −0.579565 1.60955i
\(886\) −2.01660e6 −0.0863051
\(887\) 5.38193e6i 0.229683i −0.993384 0.114841i \(-0.963364\pi\)
0.993384 0.114841i \(-0.0366360\pi\)
\(888\) 459477.i 0.0195538i
\(889\) −6.37022e6 −0.270334
\(890\) 3.96304e6 + 1.10061e7i 0.167708 + 0.465754i
\(891\) 1.28360e6 0.0541670
\(892\) 3340.99i 0.000140593i
\(893\) 1.48739e6i 0.0624160i
\(894\) 1.05579e7 0.441807
\(895\) −1.37395e7 + 4.94729e6i −0.573341 + 0.206448i
\(896\) 1.24104e7 0.516436
\(897\) 2.86234e6i 0.118779i
\(898\) 4.38507e6i 0.181462i
\(899\) −5.17334e7 −2.13487
\(900\) −1.70251e7 + 1.40872e7i −0.700622 + 0.579722i
\(901\) 2.99026e7 1.22715
\(902\) 2.00783e6i 0.0821697i
\(903\) 9.86836e6i 0.402741i
\(904\) 2.54235e7 1.03470
\(905\) −5.93786e6 + 2.13810e6i −0.240995 + 0.0867772i
\(906\) −2.46300e7 −0.996883
\(907\) 2.68436e7i 1.08348i −0.840545 0.541742i \(-0.817765\pi\)
0.840545 0.541742i \(-0.182235\pi\)
\(908\) 2.40455e7i 0.967873i
\(909\) −5.83614e7 −2.34270
\(910\) −969186. 2.69160e6i −0.0387975 0.107747i
\(911\) 1.10032e7 0.439260 0.219630 0.975583i \(-0.429515\pi\)
0.219630 + 0.975583i \(0.429515\pi\)
\(912\) 710334.i 0.0282797i
\(913\) 2.13645e6i 0.0848235i
\(914\) −3.48990e6 −0.138181
\(915\) −2.34716e7 6.51847e7i −0.926808 2.57391i
\(916\) −1.46296e7 −0.576095
\(917\) 2.42287e7i 0.951496i
\(918\) 5.45140e6i 0.213502i
\(919\) −4.98823e7 −1.94831 −0.974153 0.225887i \(-0.927472\pi\)
−0.974153 + 0.225887i \(0.927472\pi\)
\(920\) −6.49488e6 + 2.33867e6i −0.252989 + 0.0910959i
\(921\) 1.60945e7 0.625215
\(922\) 291143.i 0.0112792i
\(923\) 7.14381e6i 0.276011i
\(924\) 2.11941e6 0.0816647
\(925\) 217173. + 262464.i 0.00834548 + 0.0100859i
\(926\) 1.68462e7 0.645615
\(927\) 1.39082e7i 0.531585i
\(928\) 4.03268e7i 1.53718i
\(929\) 4.09032e7 1.55495 0.777477 0.628911i \(-0.216499\pi\)
0.777477 + 0.628911i \(0.216499\pi\)
\(930\) −3.17501e7 + 1.14325e7i −1.20375 + 0.433445i
\(931\) −2.56842e6 −0.0971163
\(932\) 8.43622e6i 0.318132i
\(933\) 2.64730e7i 0.995632i
\(934\) 1.42919e7 0.536073
\(935\) 643149. + 1.78614e6i 0.0240593 + 0.0668168i
\(936\) −9.92771e6 −0.370390
\(937\) 4.44775e7i 1.65498i −0.561483 0.827488i \(-0.689769\pi\)
0.561483 0.827488i \(-0.310231\pi\)
\(938\) 1.57091e7i 0.582968i
\(939\) 1.67880e7 0.621348
\(940\) −1.94248e6 5.39462e6i −0.0717031 0.199132i
\(941\) 8.18280e6 0.301251 0.150625 0.988591i \(-0.451871\pi\)
0.150625 + 0.988591i \(0.451871\pi\)
\(942\) 3.94472e6i 0.144840i
\(943\) 9.40773e6i 0.344513i
\(944\) 2.86309e6 0.104569
\(945\) 1.06835e7 3.84689e6i 0.389165 0.140130i
\(946\) 672705. 0.0244397
\(947\) 3.72825e7i 1.35092i −0.737396 0.675461i \(-0.763945\pi\)
0.737396 0.675461i \(-0.236055\pi\)
\(948\) 3.17270e7i 1.14659i
\(949\) 7.64213e6 0.275454
\(950\) −2.01253e6 2.43224e6i −0.0723493 0.0874376i
\(951\) 3.00793e7 1.07849
\(952\) 1.19907e7i 0.428798i
\(953\) 4.11870e7i 1.46902i 0.678597 + 0.734511i \(0.262588\pi\)
−0.678597 + 0.734511i \(0.737412\pi\)
\(954\) 4.43606e7 1.57807
\(955\) 4.15592e7 1.49646e7i 1.47455 0.530953i
\(956\) −9.39967e6 −0.332635
\(957\) 7.44832e6i 0.262893i
\(958\) 9.54050e6i 0.335859i
\(959\) 4.47992e6 0.157298
\(960\) 7.50498e6 + 2.08426e7i 0.262828 + 0.729919i
\(961\) 2.92107e7 1.02031
\(962\) 60819.0i 0.00211886i
\(963\) 2.45969e6i 0.0854702i
\(964\) −2.59903e7 −0.900781
\(965\) 5.15636e6 + 1.43201e7i 0.178248 + 0.495027i
\(966\) 5.12869e6 0.176833
\(967\) 2.42760e7i 0.834856i −0.908710 0.417428i \(-0.862932\pi\)
0.908710 0.417428i \(-0.137068\pi\)
\(968\) 2.78690e7i 0.955944i
\(969\) 5.48658e6 0.187712
\(970\) −2.29258e7 + 8.25510e6i −0.782341 + 0.281704i
\(971\) −2.85115e6 −0.0970446 −0.0485223 0.998822i \(-0.515451\pi\)
−0.0485223 + 0.998822i \(0.515451\pi\)
\(972\) 2.56557e7i 0.870999i
\(973\) 1.77447e7i 0.600879i
\(974\) 1.11366e7 0.376146
\(975\) −9.78325e6 + 8.09504e6i −0.329588 + 0.272714i
\(976\) 4.97642e6 0.167222
\(977\) 3.23237e7i 1.08339i −0.840575 0.541695i \(-0.817783\pi\)
0.840575 0.541695i \(-0.182217\pi\)
\(978\) 5.23031e7i 1.74856i
\(979\) −2.88670e6 −0.0962597
\(980\) 9.31542e6 3.35428e6i 0.309840 0.111567i
\(981\) 1.72042e7 0.570772
\(982\) 1.73264e7i 0.573362i
\(983\) 1.56769e7i 0.517461i 0.965950 + 0.258731i \(0.0833042\pi\)
−0.965950 + 0.258731i \(0.916696\pi\)
\(984\) −5.62912e7 −1.85333
\(985\) 5.75858e6 + 1.59926e7i 0.189115 + 0.525204i
\(986\) 1.67455e7 0.548538
\(987\) 1.07198e7i 0.350262i
\(988\) 1.09129e6i 0.0355672i
\(989\) −3.15197e6 −0.102469
\(990\) 954114. + 2.64974e6i 0.0309394 + 0.0859242i
\(991\) 5.10915e7 1.65259 0.826294 0.563239i \(-0.190445\pi\)
0.826294 + 0.563239i \(0.190445\pi\)
\(992\) 4.50868e7i 1.45469i
\(993\) 5.72485e7i 1.84243i
\(994\) 1.28002e7 0.410912
\(995\) −1.53520e7 + 5.52791e6i −0.491593 + 0.177012i
\(996\) −2.38021e7 −0.760269
\(997\) 5.33407e7i 1.69950i 0.527188 + 0.849749i \(0.323247\pi\)
−0.527188 + 0.849749i \(0.676753\pi\)
\(998\) 1.16129e7i 0.369073i
\(999\) −241403. −0.00765294
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.b.a.14.19 yes 30
5.2 odd 4 325.6.a.m.1.6 15
5.3 odd 4 325.6.a.l.1.10 15
5.4 even 2 inner 65.6.b.a.14.12 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.b.a.14.12 30 5.4 even 2 inner
65.6.b.a.14.19 yes 30 1.1 even 1 trivial
325.6.a.l.1.10 15 5.3 odd 4
325.6.a.m.1.6 15 5.2 odd 4