Properties

Label 325.6.a.m.1.6
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 356 x^{13} + 802 x^{12} + 49252 x^{11} - 78702 x^{10} - 3324132 x^{9} + \cdots + 3541906480 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{7}\cdot 5^{6} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(4.30124\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.30124 q^{2} -24.0437 q^{3} -21.1018 q^{4} +79.3742 q^{6} +91.7264 q^{7} +175.302 q^{8} +335.101 q^{9} -45.5406 q^{11} +507.366 q^{12} -169.000 q^{13} -302.811 q^{14} +96.5440 q^{16} +745.700 q^{17} -1106.25 q^{18} +306.010 q^{19} -2205.45 q^{21} +150.340 q^{22} +704.422 q^{23} -4214.91 q^{24} +557.910 q^{26} -2214.45 q^{27} -1935.59 q^{28} -6802.33 q^{29} -7605.25 q^{31} -5928.38 q^{32} +1094.97 q^{33} -2461.74 q^{34} -7071.24 q^{36} -109.012 q^{37} -1010.21 q^{38} +4063.39 q^{39} -13355.2 q^{41} +7280.71 q^{42} +4474.54 q^{43} +960.988 q^{44} -2325.47 q^{46} +4860.59 q^{47} -2321.28 q^{48} -8393.26 q^{49} -17929.4 q^{51} +3566.21 q^{52} +40100.0 q^{53} +7310.45 q^{54} +16079.8 q^{56} -7357.62 q^{57} +22456.1 q^{58} -29655.8 q^{59} +51545.6 q^{61} +25106.8 q^{62} +30737.6 q^{63} +16481.6 q^{64} -3614.75 q^{66} -51877.6 q^{67} -15735.6 q^{68} -16936.9 q^{69} +42271.1 q^{71} +58743.9 q^{72} +45219.7 q^{73} +359.876 q^{74} -6457.36 q^{76} -4177.27 q^{77} -13414.2 q^{78} +62532.7 q^{79} -28185.8 q^{81} +44088.9 q^{82} -46913.1 q^{83} +46538.9 q^{84} -14771.5 q^{86} +163553. q^{87} -7983.35 q^{88} -63387.4 q^{89} -15501.8 q^{91} -14864.6 q^{92} +182859. q^{93} -16046.0 q^{94} +142540. q^{96} -132037. q^{97} +27708.2 q^{98} -15260.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + 12 q^{2} + 36 q^{3} + 250 q^{4} - 202 q^{6} + 306 q^{7} + 576 q^{8} + 963 q^{9} - 326 q^{11} + 2702 q^{12} - 2535 q^{13} + 1334 q^{14} + 6046 q^{16} + 2722 q^{17} + 2036 q^{18} - 2624 q^{19} + 3530 q^{21}+ \cdots - 260488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.30124 −0.583583 −0.291791 0.956482i \(-0.594251\pi\)
−0.291791 + 0.956482i \(0.594251\pi\)
\(3\) −24.0437 −1.54241 −0.771203 0.636589i \(-0.780345\pi\)
−0.771203 + 0.636589i \(0.780345\pi\)
\(4\) −21.1018 −0.659431
\(5\) 0 0
\(6\) 79.3742 0.900121
\(7\) 91.7264 0.707537 0.353769 0.935333i \(-0.384900\pi\)
0.353769 + 0.935333i \(0.384900\pi\)
\(8\) 175.302 0.968415
\(9\) 335.101 1.37902
\(10\) 0 0
\(11\) −45.5406 −0.113479 −0.0567397 0.998389i \(-0.518071\pi\)
−0.0567397 + 0.998389i \(0.518071\pi\)
\(12\) 507.366 1.01711
\(13\) −169.000 −0.277350
\(14\) −302.811 −0.412906
\(15\) 0 0
\(16\) 96.5440 0.0942812
\(17\) 745.700 0.625809 0.312905 0.949785i \(-0.398698\pi\)
0.312905 + 0.949785i \(0.398698\pi\)
\(18\) −1106.25 −0.804770
\(19\) 306.010 0.194469 0.0972347 0.995261i \(-0.469000\pi\)
0.0972347 + 0.995261i \(0.469000\pi\)
\(20\) 0 0
\(21\) −2205.45 −1.09131
\(22\) 150.340 0.0662246
\(23\) 704.422 0.277660 0.138830 0.990316i \(-0.455666\pi\)
0.138830 + 0.990316i \(0.455666\pi\)
\(24\) −4214.91 −1.49369
\(25\) 0 0
\(26\) 557.910 0.161857
\(27\) −2214.45 −0.584598
\(28\) −1935.59 −0.466572
\(29\) −6802.33 −1.50198 −0.750988 0.660316i \(-0.770422\pi\)
−0.750988 + 0.660316i \(0.770422\pi\)
\(30\) 0 0
\(31\) −7605.25 −1.42138 −0.710689 0.703507i \(-0.751616\pi\)
−0.710689 + 0.703507i \(0.751616\pi\)
\(32\) −5928.38 −1.02344
\(33\) 1094.97 0.175031
\(34\) −2461.74 −0.365211
\(35\) 0 0
\(36\) −7071.24 −0.909367
\(37\) −109.012 −0.0130909 −0.00654547 0.999979i \(-0.502084\pi\)
−0.00654547 + 0.999979i \(0.502084\pi\)
\(38\) −1010.21 −0.113489
\(39\) 4063.39 0.427787
\(40\) 0 0
\(41\) −13355.2 −1.24077 −0.620386 0.784296i \(-0.713024\pi\)
−0.620386 + 0.784296i \(0.713024\pi\)
\(42\) 7280.71 0.636869
\(43\) 4474.54 0.369044 0.184522 0.982828i \(-0.440926\pi\)
0.184522 + 0.982828i \(0.440926\pi\)
\(44\) 960.988 0.0748319
\(45\) 0 0
\(46\) −2325.47 −0.162038
\(47\) 4860.59 0.320955 0.160478 0.987039i \(-0.448697\pi\)
0.160478 + 0.987039i \(0.448697\pi\)
\(48\) −2321.28 −0.145420
\(49\) −8393.26 −0.499391
\(50\) 0 0
\(51\) −17929.4 −0.965252
\(52\) 3566.21 0.182893
\(53\) 40100.0 1.96090 0.980448 0.196777i \(-0.0630473\pi\)
0.980448 + 0.196777i \(0.0630473\pi\)
\(54\) 7310.45 0.341161
\(55\) 0 0
\(56\) 16079.8 0.685190
\(57\) −7357.62 −0.299951
\(58\) 22456.1 0.876526
\(59\) −29655.8 −1.10912 −0.554561 0.832143i \(-0.687114\pi\)
−0.554561 + 0.832143i \(0.687114\pi\)
\(60\) 0 0
\(61\) 51545.6 1.77365 0.886823 0.462109i \(-0.152907\pi\)
0.886823 + 0.462109i \(0.152907\pi\)
\(62\) 25106.8 0.829491
\(63\) 30737.6 0.975706
\(64\) 16481.6 0.502978
\(65\) 0 0
\(66\) −3614.75 −0.102145
\(67\) −51877.6 −1.41186 −0.705932 0.708280i \(-0.749472\pi\)
−0.705932 + 0.708280i \(0.749472\pi\)
\(68\) −15735.6 −0.412678
\(69\) −16936.9 −0.428265
\(70\) 0 0
\(71\) 42271.1 0.995171 0.497585 0.867415i \(-0.334220\pi\)
0.497585 + 0.867415i \(0.334220\pi\)
\(72\) 58743.9 1.33546
\(73\) 45219.7 0.993162 0.496581 0.867990i \(-0.334588\pi\)
0.496581 + 0.867990i \(0.334588\pi\)
\(74\) 359.876 0.00763964
\(75\) 0 0
\(76\) −6457.36 −0.128239
\(77\) −4177.27 −0.0802909
\(78\) −13414.2 −0.249649
\(79\) 62532.7 1.12730 0.563650 0.826014i \(-0.309397\pi\)
0.563650 + 0.826014i \(0.309397\pi\)
\(80\) 0 0
\(81\) −28185.8 −0.477329
\(82\) 44088.9 0.724093
\(83\) −46913.1 −0.747479 −0.373740 0.927534i \(-0.621925\pi\)
−0.373740 + 0.927534i \(0.621925\pi\)
\(84\) 46538.9 0.719644
\(85\) 0 0
\(86\) −14771.5 −0.215367
\(87\) 163553. 2.31666
\(88\) −7983.35 −0.109895
\(89\) −63387.4 −0.848258 −0.424129 0.905602i \(-0.639420\pi\)
−0.424129 + 0.905602i \(0.639420\pi\)
\(90\) 0 0
\(91\) −15501.8 −0.196236
\(92\) −14864.6 −0.183098
\(93\) 182859. 2.19234
\(94\) −16046.0 −0.187304
\(95\) 0 0
\(96\) 142540. 1.57855
\(97\) −132037. −1.42484 −0.712421 0.701752i \(-0.752401\pi\)
−0.712421 + 0.701752i \(0.752401\pi\)
\(98\) 27708.2 0.291436
\(99\) −15260.7 −0.156490
\(100\) 0 0
\(101\) 174161. 1.69882 0.849408 0.527736i \(-0.176959\pi\)
0.849408 + 0.527736i \(0.176959\pi\)
\(102\) 59189.3 0.563304
\(103\) −41504.6 −0.385481 −0.192741 0.981250i \(-0.561738\pi\)
−0.192741 + 0.981250i \(0.561738\pi\)
\(104\) −29626.0 −0.268590
\(105\) 0 0
\(106\) −132380. −1.14435
\(107\) 7340.14 0.0619791 0.0309895 0.999520i \(-0.490134\pi\)
0.0309895 + 0.999520i \(0.490134\pi\)
\(108\) 46729.0 0.385502
\(109\) 51340.4 0.413898 0.206949 0.978352i \(-0.433647\pi\)
0.206949 + 0.978352i \(0.433647\pi\)
\(110\) 0 0
\(111\) 2621.06 0.0201915
\(112\) 8855.63 0.0667075
\(113\) −145027. −1.06845 −0.534223 0.845344i \(-0.679396\pi\)
−0.534223 + 0.845344i \(0.679396\pi\)
\(114\) 24289.3 0.175046
\(115\) 0 0
\(116\) 143541. 0.990450
\(117\) −56632.1 −0.382470
\(118\) 97900.9 0.647264
\(119\) 68400.4 0.442783
\(120\) 0 0
\(121\) −158977. −0.987122
\(122\) −170164. −1.03507
\(123\) 321110. 1.91378
\(124\) 160485. 0.937301
\(125\) 0 0
\(126\) −101472. −0.569405
\(127\) 69448.0 0.382077 0.191038 0.981583i \(-0.438814\pi\)
0.191038 + 0.981583i \(0.438814\pi\)
\(128\) 135298. 0.729907
\(129\) −107585. −0.569215
\(130\) 0 0
\(131\) −264141. −1.34480 −0.672400 0.740188i \(-0.734736\pi\)
−0.672400 + 0.740188i \(0.734736\pi\)
\(132\) −23105.8 −0.115421
\(133\) 28069.2 0.137594
\(134\) 171260. 0.823939
\(135\) 0 0
\(136\) 130723. 0.606043
\(137\) −48840.0 −0.222318 −0.111159 0.993803i \(-0.535456\pi\)
−0.111159 + 0.993803i \(0.535456\pi\)
\(138\) 55912.9 0.249928
\(139\) 193453. 0.849255 0.424627 0.905368i \(-0.360405\pi\)
0.424627 + 0.905368i \(0.360405\pi\)
\(140\) 0 0
\(141\) −116867. −0.495043
\(142\) −139547. −0.580764
\(143\) 7696.36 0.0314735
\(144\) 32352.0 0.130015
\(145\) 0 0
\(146\) −149281. −0.579592
\(147\) 201805. 0.770264
\(148\) 2300.35 0.00863258
\(149\) −133014. −0.490830 −0.245415 0.969418i \(-0.578924\pi\)
−0.245415 + 0.969418i \(0.578924\pi\)
\(150\) 0 0
\(151\) −310303. −1.10750 −0.553749 0.832684i \(-0.686803\pi\)
−0.553749 + 0.832684i \(0.686803\pi\)
\(152\) 53644.1 0.188327
\(153\) 249885. 0.863002
\(154\) 13790.2 0.0468564
\(155\) 0 0
\(156\) −85744.9 −0.282096
\(157\) −49697.8 −0.160912 −0.0804559 0.996758i \(-0.525638\pi\)
−0.0804559 + 0.996758i \(0.525638\pi\)
\(158\) −206436. −0.657873
\(159\) −964154. −3.02450
\(160\) 0 0
\(161\) 64614.1 0.196455
\(162\) 93048.2 0.278561
\(163\) 658943. 1.94258 0.971290 0.237899i \(-0.0764588\pi\)
0.971290 + 0.237899i \(0.0764588\pi\)
\(164\) 281820. 0.818205
\(165\) 0 0
\(166\) 154872. 0.436216
\(167\) 655469. 1.81870 0.909349 0.416034i \(-0.136580\pi\)
0.909349 + 0.416034i \(0.136580\pi\)
\(168\) −386619. −1.05684
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 102544. 0.268177
\(172\) −94420.9 −0.243359
\(173\) −280036. −0.711376 −0.355688 0.934605i \(-0.615753\pi\)
−0.355688 + 0.934605i \(0.615753\pi\)
\(174\) −539929. −1.35196
\(175\) 0 0
\(176\) −4396.67 −0.0106990
\(177\) 713036. 1.71072
\(178\) 209257. 0.495028
\(179\) 261227. 0.609377 0.304689 0.952452i \(-0.401448\pi\)
0.304689 + 0.952452i \(0.401448\pi\)
\(180\) 0 0
\(181\) −112896. −0.256143 −0.128071 0.991765i \(-0.540879\pi\)
−0.128071 + 0.991765i \(0.540879\pi\)
\(182\) 51175.1 0.114520
\(183\) −1.23935e6 −2.73568
\(184\) 123486. 0.268890
\(185\) 0 0
\(186\) −603660. −1.27941
\(187\) −33959.6 −0.0710164
\(188\) −102567. −0.211648
\(189\) −203124. −0.413625
\(190\) 0 0
\(191\) 790161. 1.56723 0.783614 0.621247i \(-0.213374\pi\)
0.783614 + 0.621247i \(0.213374\pi\)
\(192\) −396279. −0.775797
\(193\) 272267. 0.526140 0.263070 0.964777i \(-0.415265\pi\)
0.263070 + 0.964777i \(0.415265\pi\)
\(194\) 435887. 0.831513
\(195\) 0 0
\(196\) 177113. 0.329314
\(197\) −304065. −0.558215 −0.279107 0.960260i \(-0.590039\pi\)
−0.279107 + 0.960260i \(0.590039\pi\)
\(198\) 50379.3 0.0913248
\(199\) 291885. 0.522492 0.261246 0.965272i \(-0.415867\pi\)
0.261246 + 0.965272i \(0.415867\pi\)
\(200\) 0 0
\(201\) 1.24733e6 2.17767
\(202\) −574946. −0.991400
\(203\) −623953. −1.06270
\(204\) 378343. 0.636518
\(205\) 0 0
\(206\) 137017. 0.224960
\(207\) 236053. 0.382898
\(208\) −16315.9 −0.0261489
\(209\) −13935.9 −0.0220683
\(210\) 0 0
\(211\) 447521. 0.692003 0.346001 0.938234i \(-0.387539\pi\)
0.346001 + 0.938234i \(0.387539\pi\)
\(212\) −846182. −1.29308
\(213\) −1.01635e6 −1.53496
\(214\) −24231.6 −0.0361699
\(215\) 0 0
\(216\) −388198. −0.566134
\(217\) −697603. −1.00568
\(218\) −169487. −0.241543
\(219\) −1.08725e6 −1.53186
\(220\) 0 0
\(221\) −126023. −0.173568
\(222\) −8652.75 −0.0117834
\(223\) 158.327 0.000213203 0 0.000106602 1.00000i \(-0.499966\pi\)
0.000106602 1.00000i \(0.499966\pi\)
\(224\) −543789. −0.724119
\(225\) 0 0
\(226\) 478769. 0.623526
\(227\) 1.13950e6 1.46774 0.733870 0.679290i \(-0.237712\pi\)
0.733870 + 0.679290i \(0.237712\pi\)
\(228\) 155259. 0.197797
\(229\) 693287. 0.873624 0.436812 0.899553i \(-0.356108\pi\)
0.436812 + 0.899553i \(0.356108\pi\)
\(230\) 0 0
\(231\) 100437. 0.123841
\(232\) −1.19246e6 −1.45454
\(233\) −399786. −0.482434 −0.241217 0.970471i \(-0.577547\pi\)
−0.241217 + 0.970471i \(0.577547\pi\)
\(234\) 186956. 0.223203
\(235\) 0 0
\(236\) 625791. 0.731390
\(237\) −1.50352e6 −1.73876
\(238\) −225806. −0.258401
\(239\) 445444. 0.504427 0.252213 0.967672i \(-0.418842\pi\)
0.252213 + 0.967672i \(0.418842\pi\)
\(240\) 0 0
\(241\) −1.23166e6 −1.36600 −0.682999 0.730420i \(-0.739324\pi\)
−0.682999 + 0.730420i \(0.739324\pi\)
\(242\) 524822. 0.576067
\(243\) 1.21580e6 1.32083
\(244\) −1.08771e6 −1.16960
\(245\) 0 0
\(246\) −1.06006e6 −1.11685
\(247\) −51715.7 −0.0539361
\(248\) −1.33321e6 −1.37648
\(249\) 1.12797e6 1.15292
\(250\) 0 0
\(251\) 615483. 0.616640 0.308320 0.951283i \(-0.400233\pi\)
0.308320 + 0.951283i \(0.400233\pi\)
\(252\) −648619. −0.643411
\(253\) −32079.8 −0.0315087
\(254\) −229265. −0.222973
\(255\) 0 0
\(256\) −974063. −0.928939
\(257\) −844218. −0.797300 −0.398650 0.917103i \(-0.630521\pi\)
−0.398650 + 0.917103i \(0.630521\pi\)
\(258\) 355163. 0.332184
\(259\) −9999.30 −0.00926233
\(260\) 0 0
\(261\) −2.27947e6 −2.07125
\(262\) 871993. 0.784802
\(263\) 586640. 0.522976 0.261488 0.965207i \(-0.415787\pi\)
0.261488 + 0.965207i \(0.415787\pi\)
\(264\) 191950. 0.169503
\(265\) 0 0
\(266\) −92663.2 −0.0802977
\(267\) 1.52407e6 1.30836
\(268\) 1.09471e6 0.931027
\(269\) 2.07403e6 1.74757 0.873786 0.486310i \(-0.161657\pi\)
0.873786 + 0.486310i \(0.161657\pi\)
\(270\) 0 0
\(271\) 1.92221e6 1.58993 0.794963 0.606658i \(-0.207490\pi\)
0.794963 + 0.606658i \(0.207490\pi\)
\(272\) 71992.9 0.0590021
\(273\) 372720. 0.302675
\(274\) 161233. 0.129741
\(275\) 0 0
\(276\) 357400. 0.282411
\(277\) 1.70508e6 1.33520 0.667599 0.744521i \(-0.267322\pi\)
0.667599 + 0.744521i \(0.267322\pi\)
\(278\) −638634. −0.495610
\(279\) −2.54853e6 −1.96010
\(280\) 0 0
\(281\) −961277. −0.726244 −0.363122 0.931742i \(-0.618289\pi\)
−0.363122 + 0.931742i \(0.618289\pi\)
\(282\) 385805. 0.288899
\(283\) −1.84545e6 −1.36973 −0.684867 0.728668i \(-0.740140\pi\)
−0.684867 + 0.728668i \(0.740140\pi\)
\(284\) −891996. −0.656247
\(285\) 0 0
\(286\) −25407.5 −0.0183674
\(287\) −1.22503e6 −0.877893
\(288\) −1.98661e6 −1.41134
\(289\) −863788. −0.608363
\(290\) 0 0
\(291\) 3.17467e6 2.19769
\(292\) −954217. −0.654923
\(293\) 425094. 0.289278 0.144639 0.989484i \(-0.453798\pi\)
0.144639 + 0.989484i \(0.453798\pi\)
\(294\) −666208. −0.449512
\(295\) 0 0
\(296\) −19110.0 −0.0126775
\(297\) 100848. 0.0663398
\(298\) 439111. 0.286440
\(299\) −119047. −0.0770090
\(300\) 0 0
\(301\) 410434. 0.261112
\(302\) 1.02438e6 0.646317
\(303\) −4.18747e6 −2.62027
\(304\) 29543.4 0.0183348
\(305\) 0 0
\(306\) −824931. −0.503633
\(307\) −669386. −0.405351 −0.202675 0.979246i \(-0.564964\pi\)
−0.202675 + 0.979246i \(0.564964\pi\)
\(308\) 88148.0 0.0529463
\(309\) 997926. 0.594569
\(310\) 0 0
\(311\) −1.10103e6 −0.645506 −0.322753 0.946483i \(-0.604608\pi\)
−0.322753 + 0.946483i \(0.604608\pi\)
\(312\) 712320. 0.414275
\(313\) 698228. 0.402844 0.201422 0.979505i \(-0.435444\pi\)
0.201422 + 0.979505i \(0.435444\pi\)
\(314\) 164064. 0.0939053
\(315\) 0 0
\(316\) −1.31955e6 −0.743377
\(317\) −1.25102e6 −0.699226 −0.349613 0.936894i \(-0.613687\pi\)
−0.349613 + 0.936894i \(0.613687\pi\)
\(318\) 3.18290e6 1.76504
\(319\) 309782. 0.170443
\(320\) 0 0
\(321\) −176484. −0.0955969
\(322\) −213307. −0.114648
\(323\) 228192. 0.121701
\(324\) 594771. 0.314766
\(325\) 0 0
\(326\) −2.17533e6 −1.13366
\(327\) −1.23441e6 −0.638398
\(328\) −2.34120e6 −1.20158
\(329\) 445845. 0.227088
\(330\) 0 0
\(331\) −2.38101e6 −1.19452 −0.597258 0.802049i \(-0.703743\pi\)
−0.597258 + 0.802049i \(0.703743\pi\)
\(332\) 989952. 0.492911
\(333\) −36530.1 −0.0180526
\(334\) −2.16386e6 −1.06136
\(335\) 0 0
\(336\) −212923. −0.102890
\(337\) 2.38010e6 1.14161 0.570807 0.821084i \(-0.306630\pi\)
0.570807 + 0.821084i \(0.306630\pi\)
\(338\) −94286.8 −0.0448910
\(339\) 3.48699e6 1.64798
\(340\) 0 0
\(341\) 346348. 0.161297
\(342\) −338523. −0.156503
\(343\) −2.31153e6 −1.06088
\(344\) 784396. 0.357387
\(345\) 0 0
\(346\) 924468. 0.415147
\(347\) 3.45043e6 1.53833 0.769166 0.639049i \(-0.220672\pi\)
0.769166 + 0.639049i \(0.220672\pi\)
\(348\) −3.45127e6 −1.52768
\(349\) 3.27121e6 1.43762 0.718811 0.695206i \(-0.244687\pi\)
0.718811 + 0.695206i \(0.244687\pi\)
\(350\) 0 0
\(351\) 374243. 0.162138
\(352\) 269982. 0.116139
\(353\) 4.08960e6 1.74680 0.873401 0.487001i \(-0.161909\pi\)
0.873401 + 0.487001i \(0.161909\pi\)
\(354\) −2.35390e6 −0.998345
\(355\) 0 0
\(356\) 1.33759e6 0.559368
\(357\) −1.64460e6 −0.682952
\(358\) −862375. −0.355622
\(359\) 2.45540e6 1.00551 0.502754 0.864430i \(-0.332320\pi\)
0.502754 + 0.864430i \(0.332320\pi\)
\(360\) 0 0
\(361\) −2.38246e6 −0.962182
\(362\) 372697. 0.149480
\(363\) 3.82240e6 1.52254
\(364\) 327115. 0.129404
\(365\) 0 0
\(366\) 4.09139e6 1.59650
\(367\) −328555. −0.127333 −0.0636667 0.997971i \(-0.520279\pi\)
−0.0636667 + 0.997971i \(0.520279\pi\)
\(368\) 68007.7 0.0261781
\(369\) −4.47536e6 −1.71105
\(370\) 0 0
\(371\) 3.67823e6 1.38741
\(372\) −3.85865e6 −1.44570
\(373\) 5.17656e6 1.92650 0.963250 0.268606i \(-0.0865630\pi\)
0.963250 + 0.268606i \(0.0865630\pi\)
\(374\) 112109. 0.0414439
\(375\) 0 0
\(376\) 852071. 0.310818
\(377\) 1.14959e6 0.416573
\(378\) 670561. 0.241384
\(379\) 3.24314e6 1.15976 0.579880 0.814702i \(-0.303100\pi\)
0.579880 + 0.814702i \(0.303100\pi\)
\(380\) 0 0
\(381\) −1.66979e6 −0.589318
\(382\) −2.60851e6 −0.914607
\(383\) 4.53434e6 1.57949 0.789745 0.613435i \(-0.210213\pi\)
0.789745 + 0.613435i \(0.210213\pi\)
\(384\) −3.25308e6 −1.12581
\(385\) 0 0
\(386\) −898819. −0.307046
\(387\) 1.49942e6 0.508917
\(388\) 2.78622e6 0.939586
\(389\) 1.77865e6 0.595958 0.297979 0.954572i \(-0.403687\pi\)
0.297979 + 0.954572i \(0.403687\pi\)
\(390\) 0 0
\(391\) 525288. 0.173762
\(392\) −1.47135e6 −0.483618
\(393\) 6.35094e6 2.07423
\(394\) 1.00379e6 0.325764
\(395\) 0 0
\(396\) 322028. 0.103194
\(397\) 5.19763e6 1.65512 0.827560 0.561378i \(-0.189729\pi\)
0.827560 + 0.561378i \(0.189729\pi\)
\(398\) −963583. −0.304917
\(399\) −674888. −0.212226
\(400\) 0 0
\(401\) 4.03901e6 1.25434 0.627168 0.778884i \(-0.284214\pi\)
0.627168 + 0.778884i \(0.284214\pi\)
\(402\) −4.11774e6 −1.27085
\(403\) 1.28529e6 0.394219
\(404\) −3.67510e6 −1.12025
\(405\) 0 0
\(406\) 2.05982e6 0.620175
\(407\) 4964.48 0.00148555
\(408\) −3.14306e6 −0.934765
\(409\) −2.23547e6 −0.660787 −0.330393 0.943843i \(-0.607181\pi\)
−0.330393 + 0.943843i \(0.607181\pi\)
\(410\) 0 0
\(411\) 1.17430e6 0.342904
\(412\) 875823. 0.254199
\(413\) −2.72022e6 −0.784746
\(414\) −779267. −0.223452
\(415\) 0 0
\(416\) 1.00190e6 0.283850
\(417\) −4.65133e6 −1.30990
\(418\) 46005.7 0.0128787
\(419\) 1.52835e6 0.425291 0.212646 0.977129i \(-0.431792\pi\)
0.212646 + 0.977129i \(0.431792\pi\)
\(420\) 0 0
\(421\) −2.80885e6 −0.772367 −0.386183 0.922422i \(-0.626207\pi\)
−0.386183 + 0.922422i \(0.626207\pi\)
\(422\) −1.47738e6 −0.403841
\(423\) 1.62879e6 0.442603
\(424\) 7.02961e6 1.89896
\(425\) 0 0
\(426\) 3.35523e6 0.895774
\(427\) 4.72809e6 1.25492
\(428\) −154890. −0.0408710
\(429\) −185049. −0.0485449
\(430\) 0 0
\(431\) −2.64484e6 −0.685813 −0.342906 0.939370i \(-0.611411\pi\)
−0.342906 + 0.939370i \(0.611411\pi\)
\(432\) −213792. −0.0551166
\(433\) −6.38548e6 −1.63672 −0.818359 0.574708i \(-0.805116\pi\)
−0.818359 + 0.574708i \(0.805116\pi\)
\(434\) 2.30295e6 0.586896
\(435\) 0 0
\(436\) −1.08337e6 −0.272937
\(437\) 215560. 0.0539964
\(438\) 3.58927e6 0.893967
\(439\) −1.84296e6 −0.456409 −0.228205 0.973613i \(-0.573286\pi\)
−0.228205 + 0.973613i \(0.573286\pi\)
\(440\) 0 0
\(441\) −2.81259e6 −0.688669
\(442\) 416033. 0.101291
\(443\) 610862. 0.147888 0.0739442 0.997262i \(-0.476441\pi\)
0.0739442 + 0.997262i \(0.476441\pi\)
\(444\) −55309.1 −0.0133149
\(445\) 0 0
\(446\) −522.676 −0.000124422 0
\(447\) 3.19815e6 0.757059
\(448\) 1.51180e6 0.355876
\(449\) −1.32831e6 −0.310945 −0.155473 0.987840i \(-0.549690\pi\)
−0.155473 + 0.987840i \(0.549690\pi\)
\(450\) 0 0
\(451\) 608206. 0.140802
\(452\) 3.06033e6 0.704567
\(453\) 7.46083e6 1.70821
\(454\) −3.76176e6 −0.856547
\(455\) 0 0
\(456\) −1.28980e6 −0.290477
\(457\) −1.05715e6 −0.236780 −0.118390 0.992967i \(-0.537773\pi\)
−0.118390 + 0.992967i \(0.537773\pi\)
\(458\) −2.28871e6 −0.509832
\(459\) −1.65132e6 −0.365847
\(460\) 0 0
\(461\) −88191.8 −0.0193275 −0.00966376 0.999953i \(-0.503076\pi\)
−0.00966376 + 0.999953i \(0.503076\pi\)
\(462\) −331568. −0.0722715
\(463\) −5.10298e6 −1.10630 −0.553148 0.833083i \(-0.686573\pi\)
−0.553148 + 0.833083i \(0.686573\pi\)
\(464\) −656724. −0.141608
\(465\) 0 0
\(466\) 1.31979e6 0.281540
\(467\) 4.32926e6 0.918590 0.459295 0.888284i \(-0.348102\pi\)
0.459295 + 0.888284i \(0.348102\pi\)
\(468\) 1.19504e6 0.252213
\(469\) −4.75855e6 −0.998946
\(470\) 0 0
\(471\) 1.19492e6 0.248191
\(472\) −5.19872e6 −1.07409
\(473\) −203773. −0.0418788
\(474\) 4.96348e6 1.01471
\(475\) 0 0
\(476\) −1.44337e6 −0.291985
\(477\) 1.34376e7 2.70411
\(478\) −1.47052e6 −0.294375
\(479\) 2.88997e6 0.575513 0.287756 0.957704i \(-0.407091\pi\)
0.287756 + 0.957704i \(0.407091\pi\)
\(480\) 0 0
\(481\) 18423.1 0.00363077
\(482\) 4.06602e6 0.797172
\(483\) −1.55356e6 −0.303013
\(484\) 3.35470e6 0.650940
\(485\) 0 0
\(486\) −4.01366e6 −0.770815
\(487\) 3.37347e6 0.644546 0.322273 0.946647i \(-0.395553\pi\)
0.322273 + 0.946647i \(0.395553\pi\)
\(488\) 9.03604e6 1.71763
\(489\) −1.58434e7 −2.99625
\(490\) 0 0
\(491\) 5.24844e6 0.982486 0.491243 0.871023i \(-0.336543\pi\)
0.491243 + 0.871023i \(0.336543\pi\)
\(492\) −6.77600e6 −1.26200
\(493\) −5.07250e6 −0.939950
\(494\) 170726. 0.0314762
\(495\) 0 0
\(496\) −734241. −0.134009
\(497\) 3.87738e6 0.704120
\(498\) −3.72369e6 −0.672822
\(499\) −3.51772e6 −0.632427 −0.316213 0.948688i \(-0.602412\pi\)
−0.316213 + 0.948688i \(0.602412\pi\)
\(500\) 0 0
\(501\) −1.57599e7 −2.80517
\(502\) −2.03186e6 −0.359860
\(503\) 8.97569e6 1.58179 0.790893 0.611954i \(-0.209616\pi\)
0.790893 + 0.611954i \(0.209616\pi\)
\(504\) 5.38836e6 0.944889
\(505\) 0 0
\(506\) 105903. 0.0183879
\(507\) −686713. −0.118647
\(508\) −1.46548e6 −0.251953
\(509\) −9.09941e6 −1.55675 −0.778375 0.627800i \(-0.783955\pi\)
−0.778375 + 0.627800i \(0.783955\pi\)
\(510\) 0 0
\(511\) 4.14784e6 0.702700
\(512\) −1.11393e6 −0.187794
\(513\) −677645. −0.113686
\(514\) 2.78697e6 0.465290
\(515\) 0 0
\(516\) 2.27023e6 0.375358
\(517\) −221354. −0.0364218
\(518\) 33010.1 0.00540533
\(519\) 6.73312e6 1.09723
\(520\) 0 0
\(521\) 5.26898e6 0.850418 0.425209 0.905095i \(-0.360201\pi\)
0.425209 + 0.905095i \(0.360201\pi\)
\(522\) 7.52508e6 1.20874
\(523\) −4.16491e6 −0.665811 −0.332906 0.942960i \(-0.608029\pi\)
−0.332906 + 0.942960i \(0.608029\pi\)
\(524\) 5.57385e6 0.886803
\(525\) 0 0
\(526\) −1.93664e6 −0.305200
\(527\) −5.67124e6 −0.889511
\(528\) 105712. 0.0165022
\(529\) −5.94013e6 −0.922905
\(530\) 0 0
\(531\) −9.93769e6 −1.52950
\(532\) −592311. −0.0907341
\(533\) 2.25704e6 0.344129
\(534\) −5.03132e6 −0.763535
\(535\) 0 0
\(536\) −9.09424e6 −1.36727
\(537\) −6.28088e6 −0.939907
\(538\) −6.84689e6 −1.01985
\(539\) 382234. 0.0566706
\(540\) 0 0
\(541\) −3.03221e6 −0.445416 −0.222708 0.974885i \(-0.571490\pi\)
−0.222708 + 0.974885i \(0.571490\pi\)
\(542\) −6.34567e6 −0.927853
\(543\) 2.71444e6 0.395076
\(544\) −4.42079e6 −0.640476
\(545\) 0 0
\(546\) −1.23044e6 −0.176636
\(547\) −3.32454e6 −0.475076 −0.237538 0.971378i \(-0.576340\pi\)
−0.237538 + 0.971378i \(0.576340\pi\)
\(548\) 1.03061e6 0.146603
\(549\) 1.72730e7 2.44589
\(550\) 0 0
\(551\) −2.08158e6 −0.292088
\(552\) −2.96908e6 −0.414738
\(553\) 5.73590e6 0.797607
\(554\) −5.62888e6 −0.779198
\(555\) 0 0
\(556\) −4.08220e6 −0.560025
\(557\) 7.78685e6 1.06347 0.531733 0.846912i \(-0.321541\pi\)
0.531733 + 0.846912i \(0.321541\pi\)
\(558\) 8.41331e6 1.14388
\(559\) −756198. −0.102354
\(560\) 0 0
\(561\) 816516. 0.109536
\(562\) 3.17341e6 0.423824
\(563\) 4.68638e6 0.623112 0.311556 0.950228i \(-0.399150\pi\)
0.311556 + 0.950228i \(0.399150\pi\)
\(564\) 2.46610e6 0.326447
\(565\) 0 0
\(566\) 6.09227e6 0.799353
\(567\) −2.58538e6 −0.337728
\(568\) 7.41020e6 0.963738
\(569\) −2.10415e6 −0.272456 −0.136228 0.990678i \(-0.543498\pi\)
−0.136228 + 0.990678i \(0.543498\pi\)
\(570\) 0 0
\(571\) 1.20728e7 1.54959 0.774796 0.632211i \(-0.217852\pi\)
0.774796 + 0.632211i \(0.217852\pi\)
\(572\) −162407. −0.0207546
\(573\) −1.89984e7 −2.41730
\(574\) 4.04412e6 0.512323
\(575\) 0 0
\(576\) 5.52300e6 0.693615
\(577\) −1.02267e7 −1.27878 −0.639390 0.768883i \(-0.720813\pi\)
−0.639390 + 0.768883i \(0.720813\pi\)
\(578\) 2.85157e6 0.355030
\(579\) −6.54631e6 −0.811522
\(580\) 0 0
\(581\) −4.30317e6 −0.528869
\(582\) −1.04803e7 −1.28253
\(583\) −1.82618e6 −0.222521
\(584\) 7.92709e6 0.961794
\(585\) 0 0
\(586\) −1.40334e6 −0.168818
\(587\) −2.24352e6 −0.268741 −0.134371 0.990931i \(-0.542901\pi\)
−0.134371 + 0.990931i \(0.542901\pi\)
\(588\) −4.25846e6 −0.507936
\(589\) −2.32728e6 −0.276414
\(590\) 0 0
\(591\) 7.31086e6 0.860994
\(592\) −10524.5 −0.00123423
\(593\) 590374. 0.0689430 0.0344715 0.999406i \(-0.489025\pi\)
0.0344715 + 0.999406i \(0.489025\pi\)
\(594\) −332922. −0.0387148
\(595\) 0 0
\(596\) 2.80683e6 0.323669
\(597\) −7.01801e6 −0.805894
\(598\) 393004. 0.0449411
\(599\) 2.71185e6 0.308815 0.154407 0.988007i \(-0.450653\pi\)
0.154407 + 0.988007i \(0.450653\pi\)
\(600\) 0 0
\(601\) −9.99011e6 −1.12820 −0.564098 0.825708i \(-0.690776\pi\)
−0.564098 + 0.825708i \(0.690776\pi\)
\(602\) −1.35494e6 −0.152380
\(603\) −1.73842e7 −1.94698
\(604\) 6.54795e6 0.730319
\(605\) 0 0
\(606\) 1.38239e7 1.52914
\(607\) −4.27804e6 −0.471273 −0.235637 0.971841i \(-0.575718\pi\)
−0.235637 + 0.971841i \(0.575718\pi\)
\(608\) −1.81414e6 −0.199027
\(609\) 1.50022e7 1.63912
\(610\) 0 0
\(611\) −821440. −0.0890170
\(612\) −5.27302e6 −0.569090
\(613\) −645645. −0.0693973 −0.0346986 0.999398i \(-0.511047\pi\)
−0.0346986 + 0.999398i \(0.511047\pi\)
\(614\) 2.20981e6 0.236556
\(615\) 0 0
\(616\) −732284. −0.0777549
\(617\) 2.65549e6 0.280822 0.140411 0.990093i \(-0.455158\pi\)
0.140411 + 0.990093i \(0.455158\pi\)
\(618\) −3.29440e6 −0.346980
\(619\) −1.11716e7 −1.17190 −0.585948 0.810349i \(-0.699278\pi\)
−0.585948 + 0.810349i \(0.699278\pi\)
\(620\) 0 0
\(621\) −1.55991e6 −0.162320
\(622\) 3.63478e6 0.376706
\(623\) −5.81430e6 −0.600174
\(624\) 392296. 0.0403322
\(625\) 0 0
\(626\) −2.30502e6 −0.235092
\(627\) 335070. 0.0340382
\(628\) 1.04871e6 0.106110
\(629\) −81290.4 −0.00819243
\(630\) 0 0
\(631\) −1.49550e6 −0.149525 −0.0747624 0.997201i \(-0.523820\pi\)
−0.0747624 + 0.997201i \(0.523820\pi\)
\(632\) 1.09621e7 1.09169
\(633\) −1.07601e7 −1.06735
\(634\) 4.12993e6 0.408056
\(635\) 0 0
\(636\) 2.03454e7 1.99445
\(637\) 1.41846e6 0.138506
\(638\) −1.02267e6 −0.0994676
\(639\) 1.41651e7 1.37236
\(640\) 0 0
\(641\) 9.23788e6 0.888030 0.444015 0.896019i \(-0.353554\pi\)
0.444015 + 0.896019i \(0.353554\pi\)
\(642\) 582618. 0.0557887
\(643\) −3.69634e6 −0.352569 −0.176285 0.984339i \(-0.556408\pi\)
−0.176285 + 0.984339i \(0.556408\pi\)
\(644\) −1.36347e6 −0.129548
\(645\) 0 0
\(646\) −753316. −0.0710225
\(647\) 1.94037e7 1.82232 0.911159 0.412055i \(-0.135189\pi\)
0.911159 + 0.412055i \(0.135189\pi\)
\(648\) −4.94103e6 −0.462253
\(649\) 1.35054e6 0.125862
\(650\) 0 0
\(651\) 1.67730e7 1.55116
\(652\) −1.39049e7 −1.28100
\(653\) −6.16635e6 −0.565907 −0.282953 0.959134i \(-0.591314\pi\)
−0.282953 + 0.959134i \(0.591314\pi\)
\(654\) 4.07510e6 0.372558
\(655\) 0 0
\(656\) −1.28937e6 −0.116982
\(657\) 1.51532e7 1.36959
\(658\) −1.47184e6 −0.132525
\(659\) 6.87190e6 0.616401 0.308200 0.951321i \(-0.400273\pi\)
0.308200 + 0.951321i \(0.400273\pi\)
\(660\) 0 0
\(661\) −3.87812e6 −0.345237 −0.172618 0.984989i \(-0.555223\pi\)
−0.172618 + 0.984989i \(0.555223\pi\)
\(662\) 7.86030e6 0.697099
\(663\) 3.03007e6 0.267713
\(664\) −8.22396e6 −0.723870
\(665\) 0 0
\(666\) 120595. 0.0105352
\(667\) −4.79171e6 −0.417038
\(668\) −1.38316e7 −1.19931
\(669\) −3806.78 −0.000328846 0
\(670\) 0 0
\(671\) −2.34742e6 −0.201272
\(672\) 1.30747e7 1.11689
\(673\) −6.95400e6 −0.591830 −0.295915 0.955214i \(-0.595625\pi\)
−0.295915 + 0.955214i \(0.595625\pi\)
\(674\) −7.85727e6 −0.666227
\(675\) 0 0
\(676\) −602689. −0.0507255
\(677\) −1.45095e7 −1.21669 −0.608345 0.793672i \(-0.708166\pi\)
−0.608345 + 0.793672i \(0.708166\pi\)
\(678\) −1.15114e7 −0.961731
\(679\) −1.21113e7 −1.00813
\(680\) 0 0
\(681\) −2.73978e7 −2.26385
\(682\) −1.14338e6 −0.0941301
\(683\) 1.77058e7 1.45232 0.726162 0.687524i \(-0.241302\pi\)
0.726162 + 0.687524i \(0.241302\pi\)
\(684\) −2.16387e6 −0.176844
\(685\) 0 0
\(686\) 7.63092e6 0.619108
\(687\) −1.66692e7 −1.34748
\(688\) 431990. 0.0347939
\(689\) −6.77690e6 −0.543855
\(690\) 0 0
\(691\) −8.82763e6 −0.703313 −0.351657 0.936129i \(-0.614382\pi\)
−0.351657 + 0.936129i \(0.614382\pi\)
\(692\) 5.90927e6 0.469104
\(693\) −1.39981e6 −0.110722
\(694\) −1.13907e7 −0.897744
\(695\) 0 0
\(696\) 2.86712e7 2.24348
\(697\) −9.95901e6 −0.776487
\(698\) −1.07990e7 −0.838971
\(699\) 9.61236e6 0.744110
\(700\) 0 0
\(701\) 1.38056e7 1.06111 0.530553 0.847652i \(-0.321984\pi\)
0.530553 + 0.847652i \(0.321984\pi\)
\(702\) −1.23547e6 −0.0946211
\(703\) −33358.8 −0.00254579
\(704\) −750581. −0.0570776
\(705\) 0 0
\(706\) −1.35007e7 −1.01940
\(707\) 1.59751e7 1.20198
\(708\) −1.50463e7 −1.12810
\(709\) 2.05869e6 0.153806 0.0769032 0.997039i \(-0.475497\pi\)
0.0769032 + 0.997039i \(0.475497\pi\)
\(710\) 0 0
\(711\) 2.09548e7 1.55457
\(712\) −1.11119e7 −0.821466
\(713\) −5.35731e6 −0.394660
\(714\) 5.42923e6 0.398559
\(715\) 0 0
\(716\) −5.51237e6 −0.401842
\(717\) −1.07101e7 −0.778031
\(718\) −8.10585e6 −0.586797
\(719\) −7.96314e6 −0.574463 −0.287232 0.957861i \(-0.592735\pi\)
−0.287232 + 0.957861i \(0.592735\pi\)
\(720\) 0 0
\(721\) −3.80707e6 −0.272743
\(722\) 7.86507e6 0.561512
\(723\) 2.96138e7 2.10692
\(724\) 2.38231e6 0.168909
\(725\) 0 0
\(726\) −1.26187e7 −0.888530
\(727\) −3.82952e6 −0.268725 −0.134363 0.990932i \(-0.542899\pi\)
−0.134363 + 0.990932i \(0.542899\pi\)
\(728\) −2.71749e6 −0.190037
\(729\) −2.23833e7 −1.55993
\(730\) 0 0
\(731\) 3.33667e6 0.230951
\(732\) 2.61525e7 1.80400
\(733\) 1.45934e7 1.00322 0.501611 0.865093i \(-0.332741\pi\)
0.501611 + 0.865093i \(0.332741\pi\)
\(734\) 1.08464e6 0.0743096
\(735\) 0 0
\(736\) −4.17608e6 −0.284167
\(737\) 2.36254e6 0.160217
\(738\) 1.47742e7 0.998537
\(739\) 1.03685e7 0.698403 0.349202 0.937048i \(-0.386453\pi\)
0.349202 + 0.937048i \(0.386453\pi\)
\(740\) 0 0
\(741\) 1.24344e6 0.0831914
\(742\) −1.21427e7 −0.809667
\(743\) 5.40170e6 0.358970 0.179485 0.983761i \(-0.442557\pi\)
0.179485 + 0.983761i \(0.442557\pi\)
\(744\) 3.20555e7 2.12310
\(745\) 0 0
\(746\) −1.70891e7 −1.12427
\(747\) −1.57206e7 −1.03079
\(748\) 716609. 0.0468305
\(749\) 673285. 0.0438525
\(750\) 0 0
\(751\) −5.29620e6 −0.342661 −0.171330 0.985214i \(-0.554807\pi\)
−0.171330 + 0.985214i \(0.554807\pi\)
\(752\) 469261. 0.0302601
\(753\) −1.47985e7 −0.951109
\(754\) −3.79509e6 −0.243105
\(755\) 0 0
\(756\) 4.28628e6 0.272757
\(757\) −8.87136e6 −0.562665 −0.281333 0.959610i \(-0.590776\pi\)
−0.281333 + 0.959610i \(0.590776\pi\)
\(758\) −1.07064e7 −0.676815
\(759\) 771318. 0.0485992
\(760\) 0 0
\(761\) −2.06961e7 −1.29547 −0.647734 0.761867i \(-0.724283\pi\)
−0.647734 + 0.761867i \(0.724283\pi\)
\(762\) 5.51238e6 0.343916
\(763\) 4.70927e6 0.292848
\(764\) −1.66738e7 −1.03348
\(765\) 0 0
\(766\) −1.49689e7 −0.921763
\(767\) 5.01183e6 0.307615
\(768\) 2.34201e7 1.43280
\(769\) 5.78756e6 0.352923 0.176461 0.984308i \(-0.443535\pi\)
0.176461 + 0.984308i \(0.443535\pi\)
\(770\) 0 0
\(771\) 2.02981e7 1.22976
\(772\) −5.74532e6 −0.346953
\(773\) 1.74975e7 1.05324 0.526619 0.850101i \(-0.323459\pi\)
0.526619 + 0.850101i \(0.323459\pi\)
\(774\) −4.94996e6 −0.296995
\(775\) 0 0
\(776\) −2.31464e7 −1.37984
\(777\) 240420. 0.0142863
\(778\) −5.87175e6 −0.347791
\(779\) −4.08684e6 −0.241292
\(780\) 0 0
\(781\) −1.92505e6 −0.112931
\(782\) −1.73410e6 −0.101405
\(783\) 1.50635e7 0.878052
\(784\) −810319. −0.0470832
\(785\) 0 0
\(786\) −2.09660e7 −1.21048
\(787\) 1.50075e7 0.863719 0.431860 0.901941i \(-0.357858\pi\)
0.431860 + 0.901941i \(0.357858\pi\)
\(788\) 6.41633e6 0.368104
\(789\) −1.41050e7 −0.806642
\(790\) 0 0
\(791\) −1.33028e7 −0.755965
\(792\) −2.67523e6 −0.151547
\(793\) −8.71121e6 −0.491921
\(794\) −1.71586e7 −0.965899
\(795\) 0 0
\(796\) −6.15930e6 −0.344547
\(797\) 2.52578e7 1.40848 0.704240 0.709962i \(-0.251288\pi\)
0.704240 + 0.709962i \(0.251288\pi\)
\(798\) 2.22797e6 0.123852
\(799\) 3.62455e6 0.200857
\(800\) 0 0
\(801\) −2.12412e7 −1.16976
\(802\) −1.33337e7 −0.732008
\(803\) −2.05933e6 −0.112703
\(804\) −2.63209e7 −1.43602
\(805\) 0 0
\(806\) −4.24304e6 −0.230059
\(807\) −4.98675e7 −2.69547
\(808\) 3.05307e7 1.64516
\(809\) 4.92229e6 0.264421 0.132210 0.991222i \(-0.457793\pi\)
0.132210 + 0.991222i \(0.457793\pi\)
\(810\) 0 0
\(811\) 9.00480e6 0.480753 0.240376 0.970680i \(-0.422729\pi\)
0.240376 + 0.970680i \(0.422729\pi\)
\(812\) 1.31665e7 0.700780
\(813\) −4.62170e7 −2.45231
\(814\) −16388.9 −0.000866942 0
\(815\) 0 0
\(816\) −1.73098e6 −0.0910052
\(817\) 1.36925e6 0.0717677
\(818\) 7.37984e6 0.385624
\(819\) −5.19466e6 −0.270612
\(820\) 0 0
\(821\) 2.32720e7 1.20497 0.602486 0.798130i \(-0.294177\pi\)
0.602486 + 0.798130i \(0.294177\pi\)
\(822\) −3.87663e6 −0.200113
\(823\) 2.00591e7 1.03232 0.516158 0.856493i \(-0.327362\pi\)
0.516158 + 0.856493i \(0.327362\pi\)
\(824\) −7.27584e6 −0.373306
\(825\) 0 0
\(826\) 8.98010e6 0.457964
\(827\) −9.70394e6 −0.493383 −0.246692 0.969094i \(-0.579343\pi\)
−0.246692 + 0.969094i \(0.579343\pi\)
\(828\) −4.98114e6 −0.252495
\(829\) −2.31044e7 −1.16764 −0.583819 0.811884i \(-0.698442\pi\)
−0.583819 + 0.811884i \(0.698442\pi\)
\(830\) 0 0
\(831\) −4.09965e7 −2.05942
\(832\) −2.78539e6 −0.139501
\(833\) −6.25886e6 −0.312523
\(834\) 1.53552e7 0.764432
\(835\) 0 0
\(836\) 294072. 0.0145525
\(837\) 1.68415e7 0.830934
\(838\) −5.04544e6 −0.248193
\(839\) 2.47020e6 0.121151 0.0605755 0.998164i \(-0.480706\pi\)
0.0605755 + 0.998164i \(0.480706\pi\)
\(840\) 0 0
\(841\) 2.57605e7 1.25593
\(842\) 9.27270e6 0.450740
\(843\) 2.31127e7 1.12016
\(844\) −9.44351e6 −0.456328
\(845\) 0 0
\(846\) −5.37703e6 −0.258295
\(847\) −1.45824e7 −0.698426
\(848\) 3.87141e6 0.184876
\(849\) 4.43715e7 2.11269
\(850\) 0 0
\(851\) −76790.6 −0.00363483
\(852\) 2.14469e7 1.01220
\(853\) −2.26066e7 −1.06381 −0.531903 0.846805i \(-0.678523\pi\)
−0.531903 + 0.846805i \(0.678523\pi\)
\(854\) −1.56086e7 −0.732350
\(855\) 0 0
\(856\) 1.28674e6 0.0600215
\(857\) −352440. −0.0163920 −0.00819602 0.999966i \(-0.502609\pi\)
−0.00819602 + 0.999966i \(0.502609\pi\)
\(858\) 610892. 0.0283300
\(859\) 8.16362e6 0.377485 0.188743 0.982027i \(-0.439559\pi\)
0.188743 + 0.982027i \(0.439559\pi\)
\(860\) 0 0
\(861\) 2.94543e7 1.35407
\(862\) 8.73124e6 0.400228
\(863\) 2.20483e7 1.00774 0.503869 0.863780i \(-0.331910\pi\)
0.503869 + 0.863780i \(0.331910\pi\)
\(864\) 1.31281e7 0.598299
\(865\) 0 0
\(866\) 2.10800e7 0.955160
\(867\) 2.07687e7 0.938343
\(868\) 1.47207e7 0.663175
\(869\) −2.84778e6 −0.127925
\(870\) 0 0
\(871\) 8.76731e6 0.391581
\(872\) 9.00007e6 0.400825
\(873\) −4.42458e7 −1.96488
\(874\) −711616. −0.0315113
\(875\) 0 0
\(876\) 2.29429e7 1.01016
\(877\) −3.29930e7 −1.44852 −0.724258 0.689529i \(-0.757818\pi\)
−0.724258 + 0.689529i \(0.757818\pi\)
\(878\) 6.08405e6 0.266352
\(879\) −1.02208e7 −0.446185
\(880\) 0 0
\(881\) −2.33438e7 −1.01328 −0.506642 0.862156i \(-0.669114\pi\)
−0.506642 + 0.862156i \(0.669114\pi\)
\(882\) 9.28504e6 0.401895
\(883\) 3.71832e6 0.160489 0.0802444 0.996775i \(-0.474430\pi\)
0.0802444 + 0.996775i \(0.474430\pi\)
\(884\) 2.65932e6 0.114456
\(885\) 0 0
\(886\) −2.01660e6 −0.0863051
\(887\) 5.38193e6 0.229683 0.114841 0.993384i \(-0.463364\pi\)
0.114841 + 0.993384i \(0.463364\pi\)
\(888\) 459477. 0.0195538
\(889\) 6.37022e6 0.270334
\(890\) 0 0
\(891\) 1.28360e6 0.0541670
\(892\) −3340.99 −0.000140593 0
\(893\) 1.48739e6 0.0624160
\(894\) −1.05579e7 −0.441807
\(895\) 0 0
\(896\) 1.24104e7 0.516436
\(897\) 2.86234e6 0.118779
\(898\) 4.38507e6 0.181462
\(899\) 5.17334e7 2.13487
\(900\) 0 0
\(901\) 2.99026e7 1.22715
\(902\) −2.00783e6 −0.0821697
\(903\) −9.86836e6 −0.402741
\(904\) −2.54235e7 −1.03470
\(905\) 0 0
\(906\) −2.46300e7 −0.996883
\(907\) 2.68436e7 1.08348 0.541742 0.840545i \(-0.317765\pi\)
0.541742 + 0.840545i \(0.317765\pi\)
\(908\) −2.40455e7 −0.967873
\(909\) 5.83614e7 2.34270
\(910\) 0 0
\(911\) 1.10032e7 0.439260 0.219630 0.975583i \(-0.429515\pi\)
0.219630 + 0.975583i \(0.429515\pi\)
\(912\) −710334. −0.0282797
\(913\) 2.13645e6 0.0848235
\(914\) 3.48990e6 0.138181
\(915\) 0 0
\(916\) −1.46296e7 −0.576095
\(917\) −2.42287e7 −0.951496
\(918\) 5.45140e6 0.213502
\(919\) 4.98823e7 1.94831 0.974153 0.225887i \(-0.0725282\pi\)
0.974153 + 0.225887i \(0.0725282\pi\)
\(920\) 0 0
\(921\) 1.60945e7 0.625215
\(922\) 291143. 0.0112792
\(923\) −7.14381e6 −0.276011
\(924\) −2.11941e6 −0.0816647
\(925\) 0 0
\(926\) 1.68462e7 0.645615
\(927\) −1.39082e7 −0.531585
\(928\) 4.03268e7 1.53718
\(929\) −4.09032e7 −1.55495 −0.777477 0.628911i \(-0.783501\pi\)
−0.777477 + 0.628911i \(0.783501\pi\)
\(930\) 0 0
\(931\) −2.56842e6 −0.0971163
\(932\) 8.43622e6 0.318132
\(933\) 2.64730e7 0.995632
\(934\) −1.42919e7 −0.536073
\(935\) 0 0
\(936\) −9.92771e6 −0.370390
\(937\) 4.44775e7 1.65498 0.827488 0.561483i \(-0.189769\pi\)
0.827488 + 0.561483i \(0.189769\pi\)
\(938\) 1.57091e7 0.582968
\(939\) −1.67880e7 −0.621348
\(940\) 0 0
\(941\) 8.18280e6 0.301251 0.150625 0.988591i \(-0.451871\pi\)
0.150625 + 0.988591i \(0.451871\pi\)
\(942\) −3.94472e6 −0.144840
\(943\) −9.40773e6 −0.344513
\(944\) −2.86309e6 −0.104569
\(945\) 0 0
\(946\) 672705. 0.0244397
\(947\) 3.72825e7 1.35092 0.675461 0.737396i \(-0.263945\pi\)
0.675461 + 0.737396i \(0.263945\pi\)
\(948\) 3.17270e7 1.14659
\(949\) −7.64213e6 −0.275454
\(950\) 0 0
\(951\) 3.00793e7 1.07849
\(952\) 1.19907e7 0.428798
\(953\) 4.11870e7 1.46902 0.734511 0.678597i \(-0.237412\pi\)
0.734511 + 0.678597i \(0.237412\pi\)
\(954\) −4.43606e7 −1.57807
\(955\) 0 0
\(956\) −9.39967e6 −0.332635
\(957\) −7.44832e6 −0.262893
\(958\) −9.54050e6 −0.335859
\(959\) −4.47992e6 −0.157298
\(960\) 0 0
\(961\) 2.92107e7 1.02031
\(962\) −60819.0 −0.00211886
\(963\) 2.45969e6 0.0854702
\(964\) 2.59903e7 0.900781
\(965\) 0 0
\(966\) 5.12869e6 0.176833
\(967\) 2.42760e7 0.834856 0.417428 0.908710i \(-0.362932\pi\)
0.417428 + 0.908710i \(0.362932\pi\)
\(968\) −2.78690e7 −0.955944
\(969\) −5.48658e6 −0.187712
\(970\) 0 0
\(971\) −2.85115e6 −0.0970446 −0.0485223 0.998822i \(-0.515451\pi\)
−0.0485223 + 0.998822i \(0.515451\pi\)
\(972\) −2.56557e7 −0.870999
\(973\) 1.77447e7 0.600879
\(974\) −1.11366e7 −0.376146
\(975\) 0 0
\(976\) 4.97642e6 0.167222
\(977\) 3.23237e7 1.08339 0.541695 0.840575i \(-0.317783\pi\)
0.541695 + 0.840575i \(0.317783\pi\)
\(978\) 5.23031e7 1.74856
\(979\) 2.88670e6 0.0962597
\(980\) 0 0
\(981\) 1.72042e7 0.570772
\(982\) −1.73264e7 −0.573362
\(983\) 1.56769e7 0.517461 0.258731 0.965950i \(-0.416696\pi\)
0.258731 + 0.965950i \(0.416696\pi\)
\(984\) 5.62912e7 1.85333
\(985\) 0 0
\(986\) 1.67455e7 0.548538
\(987\) −1.07198e7 −0.350262
\(988\) 1.09129e6 0.0355672
\(989\) 3.15197e6 0.102469
\(990\) 0 0
\(991\) 5.10915e7 1.65259 0.826294 0.563239i \(-0.190445\pi\)
0.826294 + 0.563239i \(0.190445\pi\)
\(992\) 4.50868e7 1.45469
\(993\) 5.72485e7 1.84243
\(994\) −1.28002e7 −0.410912
\(995\) 0 0
\(996\) −2.38021e7 −0.760269
\(997\) −5.33407e7 −1.69950 −0.849749 0.527188i \(-0.823247\pi\)
−0.849749 + 0.527188i \(0.823247\pi\)
\(998\) 1.16129e7 0.369073
\(999\) 241403. 0.00765294
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.m.1.6 15
5.2 odd 4 65.6.b.a.14.12 30
5.3 odd 4 65.6.b.a.14.19 yes 30
5.4 even 2 325.6.a.l.1.10 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.b.a.14.12 30 5.2 odd 4
65.6.b.a.14.19 yes 30 5.3 odd 4
325.6.a.l.1.10 15 5.4 even 2
325.6.a.m.1.6 15 1.1 even 1 trivial