L(s) = 1 | − 3.56i·2-s − 28.5·3-s + 19.2·4-s + 25i·5-s + 101. i·6-s + 143. i·7-s − 182. i·8-s + 572.·9-s + 89.1·10-s − 392. i·11-s − 550.·12-s + (−607. + 49.4i)13-s + 512.·14-s − 714. i·15-s − 35.9·16-s + 484.·17-s + ⋯ |
L(s) = 1 | − 0.630i·2-s − 1.83·3-s + 0.602·4-s + 0.447i·5-s + 1.15i·6-s + 1.10i·7-s − 1.01i·8-s + 2.35·9-s + 0.282·10-s − 0.976i·11-s − 1.10·12-s + (−0.996 + 0.0811i)13-s + 0.698·14-s − 0.819i·15-s − 0.0350·16-s + 0.406·17-s + ⋯ |
Λ(s)=(=(65s/2ΓC(s)L(s)(0.0811+0.996i)Λ(6−s)
Λ(s)=(=(65s/2ΓC(s+5/2)L(s)(0.0811+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
65
= 5⋅13
|
Sign: |
0.0811+0.996i
|
Analytic conductor: |
10.4249 |
Root analytic conductor: |
3.22876 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ65(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 65, ( :5/2), 0.0811+0.996i)
|
Particular Values
L(3) |
≈ |
0.729447−0.672485i |
L(21) |
≈ |
0.729447−0.672485i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−25iT |
| 13 | 1+(607.−49.4i)T |
good | 2 | 1+3.56iT−32T2 |
| 3 | 1+28.5T+243T2 |
| 7 | 1−143.iT−1.68e4T2 |
| 11 | 1+392.iT−1.61e5T2 |
| 17 | 1−484.T+1.41e6T2 |
| 19 | 1+3.07e3iT−2.47e6T2 |
| 23 | 1−3.91e3T+6.43e6T2 |
| 29 | 1−4.31e3T+2.05e7T2 |
| 31 | 1+2.95e3iT−2.86e7T2 |
| 37 | 1+6.95e3iT−6.93e7T2 |
| 41 | 1−1.63e4iT−1.15e8T2 |
| 43 | 1−1.56e4T+1.47e8T2 |
| 47 | 1+1.52e4iT−2.29e8T2 |
| 53 | 1+1.04e4T+4.18e8T2 |
| 59 | 1+2.08e4iT−7.14e8T2 |
| 61 | 1+650.T+8.44e8T2 |
| 67 | 1+9.52e3iT−1.35e9T2 |
| 71 | 1−1.53e4iT−1.80e9T2 |
| 73 | 1+4.98e4iT−2.07e9T2 |
| 79 | 1+5.91e3T+3.07e9T2 |
| 83 | 1+1.78e4iT−3.93e9T2 |
| 89 | 1−9.27e4iT−5.58e9T2 |
| 97 | 1+3.30e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.02307395810763118012928148724, −12.09894845688506541245615179857, −11.34415961622251389746989072317, −10.78771462007950654172274366113, −9.458327033090688109435339577564, −7.12226933031964304339881483467, −6.18433517971415813905193347345, −5.00935273626032846830103082247, −2.70054203218576788367006441992, −0.66146591467384761655772876858,
1.23280205251044607049716044386, 4.56143890372930453828251274180, 5.60285353023722427607784776410, 6.87597668768682448447969254480, 7.57721839869209859025319638532, 10.04720602904560664608672188913, 10.73893237542796609682795234832, 12.04625282686386073219512661077, 12.57255773972694059115438343119, 14.36965014530062324846346183411