Properties

Label 65.6.c.b
Level $65$
Weight $6$
Character orbit 65.c
Analytic conductor $10.425$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(51,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.51");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 227x^{12} + 16583x^{10} + 514217x^{8} + 6872896x^{6} + 35265600x^{4} + 63141120x^{2} + 26873856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{7} q^{2} + ( - \beta_{3} - 6) q^{3} + ( - \beta_1 - 3) q^{4} + (\beta_{10} - \beta_{7}) q^{5} + (\beta_{11} - \beta_{10} + \cdots - 5 \beta_{7}) q^{6} + (4 \beta_{9} - \beta_{8} - 12 \beta_{7}) q^{7}+ \cdots + ( - 111 \beta_{13} + \cdots + 770 \beta_{7}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 84 q^{3} - 38 q^{4} + 1118 q^{9} + 550 q^{10} + 168 q^{12} - 1132 q^{13} + 6440 q^{14} - 3434 q^{16} + 228 q^{17} + 2328 q^{22} + 8104 q^{23} - 8750 q^{25} - 142 q^{26} + 13680 q^{27} - 16700 q^{29}+ \cdots + 318800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{14} + 227x^{12} + 16583x^{10} + 514217x^{8} + 6872896x^{6} + 35265600x^{4} + 63141120x^{2} + 26873856 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 153323 \nu^{12} - 33150733 \nu^{10} - 2224588081 \nu^{8} - 62419381495 \nu^{6} + \cdots - 16260941604528 ) / 412866726480 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 6095749 \nu^{12} + 1269875447 \nu^{10} + 77435901659 \nu^{8} + 1693739423717 \nu^{6} + \cdots - 96699000904704 ) / 3302933811840 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 1587505 \nu^{12} - 354871457 \nu^{10} - 25078400129 \nu^{8} - 725931604763 \nu^{6} + \cdots - 9437062940928 ) / 550488968640 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 8179421 \nu^{12} - 1833956407 \nu^{10} - 130694362027 \nu^{8} - 3869788643461 \nu^{6} + \cdots - 118009485315072 ) / 660586762368 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 13852441 \nu^{12} - 3107294447 \nu^{10} - 221973779099 \nu^{8} - 6640014720509 \nu^{6} + \cdots - 227071566103680 ) / 1100977937280 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 51973429 \nu^{12} - 11771418959 \nu^{10} - 855185469923 \nu^{8} - 26158724567405 \nu^{6} + \cdots - 15\!\cdots\!04 ) / 3302933811840 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 55653181 \nu^{13} - 12567036551 \nu^{11} - 908575583867 \nu^{9} + \cdots - 14\!\cdots\!36 \nu ) / 356716851678720 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 73690502 \nu^{13} + 16449406381 \nu^{11} + 1160165094667 \nu^{9} + \cdots + 21\!\cdots\!08 \nu ) / 44589606459840 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 409593517 \nu^{13} + 91606124039 \nu^{11} + 6485680353563 \nu^{9} + \cdots + 39\!\cdots\!20 \nu ) / 237811234452480 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 1280023163 \nu^{13} + 289041840673 \nu^{11} + 20897238428941 \nu^{9} + \cdots + 41\!\cdots\!28 \nu ) / 713433703357440 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 1325093989 \nu^{13} + 299854797119 \nu^{11} + 21753367545683 \nu^{9} + \cdots + 46\!\cdots\!64 \nu ) / 713433703357440 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 1022703043 \nu^{13} - 233041870889 \nu^{11} - 17098508673173 \nu^{9} + \cdots - 41\!\cdots\!92 \nu ) / 356716851678720 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 1144031411 \nu^{13} + 259880838241 \nu^{11} + 19015898569597 \nu^{9} + \cdots + 79\!\cdots\!16 \nu ) / 178358425839360 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{10} + 23\beta_{7} ) / 25 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{4} - 16\beta_{3} - 4\beta_{2} - 29\beta _1 - 819 ) / 25 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 25\beta_{12} + 150\beta_{11} - 269\beta_{10} + 25\beta_{9} - 25\beta_{8} - 1756\beta_{7} ) / 25 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -20\beta_{6} + 55\beta_{5} - 146\beta_{4} + 489\beta_{3} + 121\beta_{2} + 656\beta _1 + 13341 ) / 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 800 \beta_{13} - 3850 \beta_{12} - 25100 \beta_{11} + 31722 \beta_{10} - 1600 \beta_{9} + \cdots + 184803 \beta_{7} ) / 25 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 13900 \beta_{6} - 42900 \beta_{5} + 99134 \beta_{4} - 312736 \beta_{3} - 74834 \beta_{2} + \cdots - 7093099 ) / 25 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 134400 \beta_{13} + 500575 \beta_{12} + 3346000 \beta_{11} - 3822189 \beta_{10} + \cdots - 21484536 \beta_{7} ) / 25 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 342140 \beta_{6} + 1109175 \beta_{5} - 2502852 \beta_{4} + 7750853 \beta_{3} + 1819407 \beta_{2} + \cdots + 165327137 ) / 5 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 17926200 \beta_{13} - 62192600 \beta_{12} - 419927850 \beta_{11} + 464780942 \beta_{10} + \cdots + 2579020983 \beta_{7} ) / 25 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 207763700 \beta_{6} - 687307000 \beta_{5} + 1544398164 \beta_{4} - 4754946656 \beta_{3} + \cdots - 99324212379 ) / 25 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 2248957000 \beta_{13} + 7625764425 \beta_{12} + 51714169850 \beta_{11} + \cdots - 312885440216 \beta_{7} ) / 25 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 5051399940 \beta_{6} + 16844572395 \beta_{5} - 37831049478 \beta_{4} + 116257812317 \beta_{3} + \cdots + 2410992161373 ) / 5 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 276858622800 \beta_{13} - 931533803850 \beta_{12} - 6328800141400 \beta_{11} + \cdots + 38095163507263 \beta_{7} ) / 25 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1
11.0446i
6.60393i
4.25184i
2.31108i
5.90915i
1.56769i
0.780788i
0.780788i
1.56769i
5.90915i
2.31108i
4.25184i
6.60393i
11.0446i
9.04461i −18.8112 −49.8050 25.0000i 170.140i 194.877i 161.040i 110.862 −226.115
51.2 8.60393i 1.77599 −42.0277 25.0000i 15.2805i 192.014i 86.2773i −239.846 215.098
51.3 6.25184i 1.69265 −7.08552 25.0000i 10.5822i 79.8024i 155.761i −240.135 156.296
51.4 4.31108i 27.4571 13.4146 25.0000i 118.370i 31.4512i 195.786i 510.890 107.777
51.5 3.90915i −14.1735 16.7186 25.0000i 55.4063i 16.6406i 190.448i −42.1117 −97.7287
51.6 3.56769i −28.5641 19.2716 25.0000i 101.908i 143.616i 182.921i 572.907 89.1924
51.7 1.21921i −11.3769 30.5135 25.0000i 13.8708i 6.14028i 76.2172i −113.566 30.4803
51.8 1.21921i −11.3769 30.5135 25.0000i 13.8708i 6.14028i 76.2172i −113.566 30.4803
51.9 3.56769i −28.5641 19.2716 25.0000i 101.908i 143.616i 182.921i 572.907 89.1924
51.10 3.90915i −14.1735 16.7186 25.0000i 55.4063i 16.6406i 190.448i −42.1117 −97.7287
51.11 4.31108i 27.4571 13.4146 25.0000i 118.370i 31.4512i 195.786i 510.890 107.777
51.12 6.25184i 1.69265 −7.08552 25.0000i 10.5822i 79.8024i 155.761i −240.135 156.296
51.13 8.60393i 1.77599 −42.0277 25.0000i 15.2805i 192.014i 86.2773i −239.846 215.098
51.14 9.04461i −18.8112 −49.8050 25.0000i 170.140i 194.877i 161.040i 110.862 −226.115
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 51.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 65.6.c.b 14
13.b even 2 1 inner 65.6.c.b 14
13.d odd 4 1 845.6.a.i 7
13.d odd 4 1 845.6.a.j 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.6.c.b 14 1.a even 1 1 trivial
65.6.c.b 14 13.b even 2 1 inner
845.6.a.i 7 13.d odd 4 1
845.6.a.j 7 13.d odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{14} + 243 T_{2}^{12} + 22303 T_{2}^{10} + 978289 T_{2}^{8} + 21825120 T_{2}^{6} + \cdots + 1271920896 \) acting on \(S_{6}^{\mathrm{new}}(65, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{14} + \cdots + 1271920896 \) Copy content Toggle raw display
$3$ \( (T^{7} + 42 T^{6} + \cdots - 7151544)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 625)^{7} \) Copy content Toggle raw display
$7$ \( T^{14} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{14} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{14} + \cdots + 97\!\cdots\!57 \) Copy content Toggle raw display
$17$ \( (T^{7} + \cdots + 44\!\cdots\!00)^{2} \) Copy content Toggle raw display
$19$ \( T^{14} + \cdots + 13\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( (T^{7} + \cdots + 28\!\cdots\!96)^{2} \) Copy content Toggle raw display
$29$ \( (T^{7} + \cdots + 15\!\cdots\!60)^{2} \) Copy content Toggle raw display
$31$ \( T^{14} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{14} + \cdots + 19\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{14} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{7} + \cdots + 19\!\cdots\!68)^{2} \) Copy content Toggle raw display
$47$ \( T^{14} + \cdots + 98\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( (T^{7} + \cdots - 17\!\cdots\!16)^{2} \) Copy content Toggle raw display
$59$ \( T^{14} + \cdots + 87\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( (T^{7} + \cdots - 59\!\cdots\!12)^{2} \) Copy content Toggle raw display
$67$ \( T^{14} + \cdots + 15\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{14} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{14} + \cdots + 18\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( (T^{7} + \cdots - 12\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{14} + \cdots + 70\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{14} + \cdots + 30\!\cdots\!76 \) Copy content Toggle raw display
$97$ \( T^{14} + \cdots + 77\!\cdots\!04 \) Copy content Toggle raw display
show more
show less