L(s) = 1 | − 1.21i·2-s − 11.3·3-s + 30.5·4-s + 25i·5-s + 13.8i·6-s − 6.14i·7-s − 76.2i·8-s − 113.·9-s + 30.4·10-s + 391. i·11-s − 347.·12-s + (472. + 384. i)13-s − 7.48·14-s − 284. i·15-s + 883.·16-s + 1.54e3·17-s + ⋯ |
L(s) = 1 | − 0.215i·2-s − 0.729·3-s + 0.953·4-s + 0.447i·5-s + 0.157i·6-s − 0.0473i·7-s − 0.421i·8-s − 0.467·9-s + 0.0963·10-s + 0.974i·11-s − 0.695·12-s + (0.775 + 0.631i)13-s − 0.0102·14-s − 0.326i·15-s + 0.862·16-s + 1.29·17-s + ⋯ |
Λ(s)=(=(65s/2ΓC(s)L(s)(0.631−0.775i)Λ(6−s)
Λ(s)=(=(65s/2ΓC(s+5/2)L(s)(0.631−0.775i)Λ(1−s)
Degree: |
2 |
Conductor: |
65
= 5⋅13
|
Sign: |
0.631−0.775i
|
Analytic conductor: |
10.4249 |
Root analytic conductor: |
3.22876 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ65(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 65, ( :5/2), 0.631−0.775i)
|
Particular Values
L(3) |
≈ |
1.40632+0.668348i |
L(21) |
≈ |
1.40632+0.668348i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−25iT |
| 13 | 1+(−472.−384.i)T |
good | 2 | 1+1.21iT−32T2 |
| 3 | 1+11.3T+243T2 |
| 7 | 1+6.14iT−1.68e4T2 |
| 11 | 1−391.iT−1.61e5T2 |
| 17 | 1−1.54e3T+1.41e6T2 |
| 19 | 1−3.01e3iT−2.47e6T2 |
| 23 | 1−921.T+6.43e6T2 |
| 29 | 1+5.24e3T+2.05e7T2 |
| 31 | 1−1.74e3iT−2.86e7T2 |
| 37 | 1−2.78e3iT−6.93e7T2 |
| 41 | 1−7.30e3iT−1.15e8T2 |
| 43 | 1+2.46e3T+1.47e8T2 |
| 47 | 1+2.26e4iT−2.29e8T2 |
| 53 | 1+2.73e4T+4.18e8T2 |
| 59 | 1+4.76e4iT−7.14e8T2 |
| 61 | 1+2.58e4T+8.44e8T2 |
| 67 | 1−3.62e4iT−1.35e9T2 |
| 71 | 1−2.52e4iT−1.80e9T2 |
| 73 | 1+6.05e4iT−2.07e9T2 |
| 79 | 1−8.76e4T+3.07e9T2 |
| 83 | 1−8.24e4iT−3.93e9T2 |
| 89 | 1−2.60e4iT−5.58e9T2 |
| 97 | 1+1.35e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.23384085225799150989236604811, −12.48367334442932776369317706085, −11.76682285133220820503950232774, −10.81066140275556304489173877833, −9.860256434831619662488498393830, −7.894631987468914639427366702717, −6.64043896633120461430525062415, −5.61905341884784790673032839397, −3.49221941169252596560477264163, −1.64100649405658500953760186325,
0.820953959190761149791128661615, 3.05491424202200746819560979093, 5.37670275417430131767769711339, 6.15492354417010067842556343743, 7.65895551500918884874234207928, 8.946549399489030485128860341445, 10.79120380616896912831256556840, 11.31900200490332457983006735704, 12.42708618866790674053924275693, 13.70434539706976184419368830902