Properties

Label 65.6.c.b.51.7
Level $65$
Weight $6$
Character 65.51
Analytic conductor $10.425$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(51,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.51");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 227x^{12} + 16583x^{10} + 514217x^{8} + 6872896x^{6} + 35265600x^{4} + 63141120x^{2} + 26873856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.7
Root \(0.780788i\) of defining polynomial
Character \(\chi\) \(=\) 65.51
Dual form 65.6.c.b.51.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21921i q^{2} -11.3769 q^{3} +30.5135 q^{4} +25.0000i q^{5} +13.8708i q^{6} -6.14028i q^{7} -76.2172i q^{8} -113.566 q^{9} +30.4803 q^{10} +391.252i q^{11} -347.149 q^{12} +(472.460 + 384.804i) q^{13} -7.48630 q^{14} -284.422i q^{15} +883.508 q^{16} +1547.69 q^{17} +138.461i q^{18} +3012.26i q^{19} +762.838i q^{20} +69.8572i q^{21} +477.019 q^{22} +921.321 q^{23} +867.115i q^{24} -625.000 q^{25} +(469.158 - 576.029i) q^{26} +4056.62 q^{27} -187.361i q^{28} -5248.50 q^{29} -346.771 q^{30} +1749.89i q^{31} -3516.13i q^{32} -4451.23i q^{33} -1886.96i q^{34} +153.507 q^{35} -3465.31 q^{36} +2782.37i q^{37} +3672.59 q^{38} +(-5375.13 - 4377.88i) q^{39} +1905.43 q^{40} +7301.71i q^{41} +85.1708 q^{42} -2464.65 q^{43} +11938.5i q^{44} -2839.16i q^{45} -1123.29i q^{46} -22645.6i q^{47} -10051.6 q^{48} +16769.3 q^{49} +762.007i q^{50} -17607.9 q^{51} +(14416.4 + 11741.7i) q^{52} -27383.4 q^{53} -4945.87i q^{54} -9781.30 q^{55} -467.995 q^{56} -34270.2i q^{57} +6399.03i q^{58} -47642.5i q^{59} -8678.73i q^{60} -25808.7 q^{61} +2133.49 q^{62} +697.329i q^{63} +23985.3 q^{64} +(-9620.11 + 11811.5i) q^{65} -5426.99 q^{66} +36207.0i q^{67} +47225.4 q^{68} -10481.8 q^{69} -187.157i q^{70} +25265.2i q^{71} +8655.71i q^{72} -60584.3i q^{73} +3392.30 q^{74} +7110.56 q^{75} +91914.8i q^{76} +2402.40 q^{77} +(-5337.56 + 6553.42i) q^{78} +87635.7 q^{79} +22087.7i q^{80} -18555.1 q^{81} +8902.33 q^{82} +82465.4i q^{83} +2131.59i q^{84} +38692.2i q^{85} +3004.93i q^{86} +59711.6 q^{87} +29820.1 q^{88} +26062.4i q^{89} -3461.54 q^{90} +(2362.80 - 2901.04i) q^{91} +28112.7 q^{92} -19908.3i q^{93} -27609.7 q^{94} -75306.6 q^{95} +40002.7i q^{96} -135691. i q^{97} -20445.3i q^{98} -44433.1i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 84 q^{3} - 38 q^{4} + 1118 q^{9} + 550 q^{10} + 168 q^{12} - 1132 q^{13} + 6440 q^{14} - 3434 q^{16} + 228 q^{17} + 2328 q^{22} + 8104 q^{23} - 8750 q^{25} - 142 q^{26} + 13680 q^{27} - 16700 q^{29}+ \cdots + 318800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21921i 0.215528i −0.994176 0.107764i \(-0.965631\pi\)
0.994176 0.107764i \(-0.0343691\pi\)
\(3\) −11.3769 −0.729828 −0.364914 0.931041i \(-0.618902\pi\)
−0.364914 + 0.931041i \(0.618902\pi\)
\(4\) 30.5135 0.953548
\(5\) 25.0000i 0.447214i
\(6\) 13.8708i 0.157298i
\(7\) 6.14028i 0.0473634i −0.999720 0.0236817i \(-0.992461\pi\)
0.999720 0.0236817i \(-0.00753882\pi\)
\(8\) 76.2172i 0.421045i
\(9\) −113.566 −0.467351
\(10\) 30.4803 0.0963871
\(11\) 391.252i 0.974933i 0.873142 + 0.487467i \(0.162079\pi\)
−0.873142 + 0.487467i \(0.837921\pi\)
\(12\) −347.149 −0.695926
\(13\) 472.460 + 384.804i 0.775366 + 0.631512i
\(14\) −7.48630 −0.0102081
\(15\) 284.422i 0.326389i
\(16\) 883.508 0.862801
\(17\) 1547.69 1.29886 0.649428 0.760423i \(-0.275009\pi\)
0.649428 + 0.760423i \(0.275009\pi\)
\(18\) 138.461i 0.100727i
\(19\) 3012.26i 1.91430i 0.289601 + 0.957148i \(0.406477\pi\)
−0.289601 + 0.957148i \(0.593523\pi\)
\(20\) 762.838i 0.426439i
\(21\) 69.8572i 0.0345671i
\(22\) 477.019 0.210126
\(23\) 921.321 0.363154 0.181577 0.983377i \(-0.441880\pi\)
0.181577 + 0.983377i \(0.441880\pi\)
\(24\) 867.115i 0.307290i
\(25\) −625.000 −0.200000
\(26\) 469.158 576.029i 0.136109 0.167113i
\(27\) 4056.62 1.07091
\(28\) 187.361i 0.0451632i
\(29\) −5248.50 −1.15888 −0.579442 0.815013i \(-0.696730\pi\)
−0.579442 + 0.815013i \(0.696730\pi\)
\(30\) −346.771 −0.0703460
\(31\) 1749.89i 0.327045i 0.986540 + 0.163522i \(0.0522856\pi\)
−0.986540 + 0.163522i \(0.947714\pi\)
\(32\) 3516.13i 0.607002i
\(33\) 4451.23i 0.711534i
\(34\) 1886.96i 0.279940i
\(35\) 153.507 0.0211816
\(36\) −3465.31 −0.445642
\(37\) 2782.37i 0.334127i 0.985946 + 0.167063i \(0.0534284\pi\)
−0.985946 + 0.167063i \(0.946572\pi\)
\(38\) 3672.59 0.412585
\(39\) −5375.13 4377.88i −0.565884 0.460895i
\(40\) 1905.43 0.188297
\(41\) 7301.71i 0.678368i 0.940720 + 0.339184i \(0.110151\pi\)
−0.940720 + 0.339184i \(0.889849\pi\)
\(42\) 85.1708 0.00745019
\(43\) −2464.65 −0.203275 −0.101638 0.994821i \(-0.532408\pi\)
−0.101638 + 0.994821i \(0.532408\pi\)
\(44\) 11938.5i 0.929645i
\(45\) 2839.16i 0.209006i
\(46\) 1123.29i 0.0782700i
\(47\) 22645.6i 1.49533i −0.664073 0.747667i \(-0.731174\pi\)
0.664073 0.747667i \(-0.268826\pi\)
\(48\) −10051.6 −0.629696
\(49\) 16769.3 0.997757
\(50\) 762.007i 0.0431056i
\(51\) −17607.9 −0.947941
\(52\) 14416.4 + 11741.7i 0.739349 + 0.602177i
\(53\) −27383.4 −1.33905 −0.669527 0.742788i \(-0.733503\pi\)
−0.669527 + 0.742788i \(0.733503\pi\)
\(54\) 4945.87i 0.230812i
\(55\) −9781.30 −0.436004
\(56\) −467.995 −0.0199421
\(57\) 34270.2i 1.39711i
\(58\) 6399.03i 0.249772i
\(59\) 47642.5i 1.78182i −0.454176 0.890912i \(-0.650066\pi\)
0.454176 0.890912i \(-0.349934\pi\)
\(60\) 8678.73i 0.311227i
\(61\) −25808.7 −0.888059 −0.444030 0.896012i \(-0.646452\pi\)
−0.444030 + 0.896012i \(0.646452\pi\)
\(62\) 2133.49 0.0704873
\(63\) 697.329i 0.0221353i
\(64\) 23985.3 0.731974
\(65\) −9620.11 + 11811.5i −0.282421 + 0.346754i
\(66\) −5426.99 −0.153356
\(67\) 36207.0i 0.985384i 0.870204 + 0.492692i \(0.163987\pi\)
−0.870204 + 0.492692i \(0.836013\pi\)
\(68\) 47225.4 1.23852
\(69\) −10481.8 −0.265040
\(70\) 187.157i 0.00456522i
\(71\) 25265.2i 0.594809i 0.954752 + 0.297404i \(0.0961209\pi\)
−0.954752 + 0.297404i \(0.903879\pi\)
\(72\) 8655.71i 0.196776i
\(73\) 60584.3i 1.33062i −0.746568 0.665309i \(-0.768300\pi\)
0.746568 0.665309i \(-0.231700\pi\)
\(74\) 3392.30 0.0720137
\(75\) 7110.56 0.145966
\(76\) 91914.8i 1.82537i
\(77\) 2402.40 0.0461762
\(78\) −5337.56 + 6553.42i −0.0993359 + 0.121964i
\(79\) 87635.7 1.57984 0.789920 0.613209i \(-0.210122\pi\)
0.789920 + 0.613209i \(0.210122\pi\)
\(80\) 22087.7i 0.385856i
\(81\) −18555.1 −0.314232
\(82\) 8902.33 0.146207
\(83\) 82465.4i 1.31394i 0.753915 + 0.656972i \(0.228163\pi\)
−0.753915 + 0.656972i \(0.771837\pi\)
\(84\) 2131.59i 0.0329614i
\(85\) 38692.2i 0.580866i
\(86\) 3004.93i 0.0438116i
\(87\) 59711.6 0.845787
\(88\) 29820.1 0.410490
\(89\) 26062.4i 0.348771i 0.984677 + 0.174385i \(0.0557938\pi\)
−0.984677 + 0.174385i \(0.944206\pi\)
\(90\) −3461.54 −0.0450467
\(91\) 2362.80 2901.04i 0.0299105 0.0367240i
\(92\) 28112.7 0.346285
\(93\) 19908.3i 0.238686i
\(94\) −27609.7 −0.322287
\(95\) −75306.6 −0.856099
\(96\) 40002.7i 0.443007i
\(97\) 135691.i 1.46427i −0.681159 0.732135i \(-0.738524\pi\)
0.681159 0.732135i \(-0.261476\pi\)
\(98\) 20445.3i 0.215045i
\(99\) 44433.1i 0.455636i
\(100\) −19071.0 −0.190710
\(101\) −144713. −1.41157 −0.705787 0.708424i \(-0.749407\pi\)
−0.705787 + 0.708424i \(0.749407\pi\)
\(102\) 21467.7i 0.204308i
\(103\) −6472.89 −0.0601181 −0.0300590 0.999548i \(-0.509570\pi\)
−0.0300590 + 0.999548i \(0.509570\pi\)
\(104\) 29328.7 36009.6i 0.265895 0.326464i
\(105\) −1746.43 −0.0154589
\(106\) 33386.2i 0.288604i
\(107\) 89977.4 0.759755 0.379878 0.925037i \(-0.375966\pi\)
0.379878 + 0.925037i \(0.375966\pi\)
\(108\) 123782. 1.02117
\(109\) 36938.6i 0.297792i 0.988853 + 0.148896i \(0.0475720\pi\)
−0.988853 + 0.148896i \(0.952428\pi\)
\(110\) 11925.5i 0.0939711i
\(111\) 31654.8i 0.243855i
\(112\) 5424.98i 0.0408652i
\(113\) 27703.8 0.204100 0.102050 0.994779i \(-0.467460\pi\)
0.102050 + 0.994779i \(0.467460\pi\)
\(114\) −41782.6 −0.301116
\(115\) 23033.0i 0.162408i
\(116\) −160150. −1.10505
\(117\) −53655.6 43700.8i −0.362368 0.295138i
\(118\) −58086.3 −0.384033
\(119\) 9503.22i 0.0615182i
\(120\) −21677.9 −0.137424
\(121\) 7972.79 0.0495047
\(122\) 31466.3i 0.191402i
\(123\) 83070.8i 0.495092i
\(124\) 53395.4i 0.311853i
\(125\) 15625.0i 0.0894427i
\(126\) 850.191 0.00477079
\(127\) 198569. 1.09245 0.546226 0.837638i \(-0.316064\pi\)
0.546226 + 0.837638i \(0.316064\pi\)
\(128\) 141759.i 0.764764i
\(129\) 28040.1 0.148356
\(130\) 14400.7 + 11728.9i 0.0747353 + 0.0608696i
\(131\) −102104. −0.519834 −0.259917 0.965631i \(-0.583695\pi\)
−0.259917 + 0.965631i \(0.583695\pi\)
\(132\) 135823.i 0.678481i
\(133\) 18496.1 0.0906675
\(134\) 44144.0 0.212378
\(135\) 101415.i 0.478927i
\(136\) 117960.i 0.546876i
\(137\) 388748.i 1.76957i −0.466001 0.884784i \(-0.654306\pi\)
0.466001 0.884784i \(-0.345694\pi\)
\(138\) 12779.5i 0.0571236i
\(139\) −245256. −1.07667 −0.538334 0.842732i \(-0.680946\pi\)
−0.538334 + 0.842732i \(0.680946\pi\)
\(140\) 4684.04 0.0201976
\(141\) 257636.i 1.09134i
\(142\) 30803.7 0.128198
\(143\) −150555. + 184851.i −0.615682 + 0.755930i
\(144\) −100337. −0.403231
\(145\) 131213.i 0.518269i
\(146\) −73865.1 −0.286786
\(147\) −190782. −0.728191
\(148\) 84900.0i 0.318606i
\(149\) 455367.i 1.68034i −0.542327 0.840168i \(-0.682457\pi\)
0.542327 0.840168i \(-0.317543\pi\)
\(150\) 8669.27i 0.0314597i
\(151\) 265698.i 0.948301i 0.880444 + 0.474150i \(0.157245\pi\)
−0.880444 + 0.474150i \(0.842755\pi\)
\(152\) 229586. 0.806004
\(153\) −175765. −0.607022
\(154\) 2929.03i 0.00995226i
\(155\) −43747.3 −0.146259
\(156\) −164014. 133584.i −0.539597 0.439485i
\(157\) 160333. 0.519127 0.259564 0.965726i \(-0.416421\pi\)
0.259564 + 0.965726i \(0.416421\pi\)
\(158\) 106846.i 0.340500i
\(159\) 311538. 0.977279
\(160\) 87903.3 0.271460
\(161\) 5657.16i 0.0172002i
\(162\) 22622.5i 0.0677258i
\(163\) 417031.i 1.22942i 0.788755 + 0.614708i \(0.210726\pi\)
−0.788755 + 0.614708i \(0.789274\pi\)
\(164\) 222801.i 0.646856i
\(165\) 111281. 0.318208
\(166\) 100543. 0.283192
\(167\) 84930.5i 0.235653i 0.993034 + 0.117826i \(0.0375926\pi\)
−0.993034 + 0.117826i \(0.962407\pi\)
\(168\) 5324.32 0.0145543
\(169\) 75144.3 + 363609.i 0.202386 + 0.979306i
\(170\) 47173.9 0.125193
\(171\) 342092.i 0.894648i
\(172\) −75205.2 −0.193833
\(173\) −122126. −0.310236 −0.155118 0.987896i \(-0.549576\pi\)
−0.155118 + 0.987896i \(0.549576\pi\)
\(174\) 72801.1i 0.182291i
\(175\) 3837.67i 0.00947268i
\(176\) 345674.i 0.841173i
\(177\) 542024.i 1.30043i
\(178\) 31775.6 0.0751699
\(179\) 459412. 1.07169 0.535846 0.844316i \(-0.319993\pi\)
0.535846 + 0.844316i \(0.319993\pi\)
\(180\) 86632.7i 0.199297i
\(181\) 334446. 0.758804 0.379402 0.925232i \(-0.376130\pi\)
0.379402 + 0.925232i \(0.376130\pi\)
\(182\) −3536.98 2880.76i −0.00791505 0.00644657i
\(183\) 293623. 0.648130
\(184\) 70220.5i 0.152904i
\(185\) −69559.3 −0.149426
\(186\) −24272.5 −0.0514436
\(187\) 605536.i 1.26630i
\(188\) 690996.i 1.42587i
\(189\) 24908.7i 0.0507221i
\(190\) 91814.7i 0.184513i
\(191\) −51647.5 −0.102439 −0.0512195 0.998687i \(-0.516311\pi\)
−0.0512195 + 0.998687i \(0.516311\pi\)
\(192\) −272879. −0.534215
\(193\) 661873.i 1.27903i 0.768778 + 0.639516i \(0.220865\pi\)
−0.768778 + 0.639516i \(0.779135\pi\)
\(194\) −165436. −0.315592
\(195\) 109447. 134378.i 0.206118 0.253071i
\(196\) 511690. 0.951409
\(197\) 418033.i 0.767442i −0.923449 0.383721i \(-0.874643\pi\)
0.923449 0.383721i \(-0.125357\pi\)
\(198\) −54173.3 −0.0982025
\(199\) 846082. 1.51454 0.757268 0.653104i \(-0.226534\pi\)
0.757268 + 0.653104i \(0.226534\pi\)
\(200\) 47635.8i 0.0842089i
\(201\) 411923.i 0.719161i
\(202\) 176436.i 0.304234i
\(203\) 32227.2i 0.0548887i
\(204\) −537278. −0.903907
\(205\) −182543. −0.303375
\(206\) 7891.82i 0.0129571i
\(207\) −104631. −0.169721
\(208\) 417422. + 339978.i 0.668986 + 0.544869i
\(209\) −1.17855e6 −1.86631
\(210\) 2129.27i 0.00333183i
\(211\) 469546. 0.726059 0.363029 0.931778i \(-0.381742\pi\)
0.363029 + 0.931778i \(0.381742\pi\)
\(212\) −835565. −1.27685
\(213\) 287440.i 0.434108i
\(214\) 109701.i 0.163749i
\(215\) 61616.3i 0.0909075i
\(216\) 309184.i 0.450903i
\(217\) 10744.8 0.0154899
\(218\) 45035.9 0.0641827
\(219\) 689261.i 0.971122i
\(220\) −298462. −0.415750
\(221\) 731220. + 595556.i 1.00709 + 0.820242i
\(222\) −38593.8 −0.0525576
\(223\) 739991.i 0.996470i −0.867042 0.498235i \(-0.833982\pi\)
0.867042 0.498235i \(-0.166018\pi\)
\(224\) −21590.0 −0.0287497
\(225\) 70979.0 0.0934703
\(226\) 33776.8i 0.0439894i
\(227\) 102602.i 0.132157i −0.997814 0.0660786i \(-0.978951\pi\)
0.997814 0.0660786i \(-0.0210488\pi\)
\(228\) 1.04570e6i 1.33221i
\(229\) 82633.6i 0.104128i 0.998644 + 0.0520640i \(0.0165800\pi\)
−0.998644 + 0.0520640i \(0.983420\pi\)
\(230\) 28082.1 0.0350034
\(231\) −27331.8 −0.0337006
\(232\) 400026.i 0.487942i
\(233\) −145160. −0.175169 −0.0875846 0.996157i \(-0.527915\pi\)
−0.0875846 + 0.996157i \(0.527915\pi\)
\(234\) −53280.5 + 65417.5i −0.0636105 + 0.0781006i
\(235\) 566139. 0.668734
\(236\) 1.45374e6i 1.69905i
\(237\) −997022. −1.15301
\(238\) −11586.4 −0.0132589
\(239\) 305532.i 0.345989i 0.984923 + 0.172994i \(0.0553442\pi\)
−0.984923 + 0.172994i \(0.944656\pi\)
\(240\) 251289.i 0.281609i
\(241\) 1.35283e6i 1.50037i −0.661226 0.750187i \(-0.729963\pi\)
0.661226 0.750187i \(-0.270037\pi\)
\(242\) 9720.52i 0.0106697i
\(243\) −774659. −0.841579
\(244\) −787515. −0.846807
\(245\) 419232.i 0.446210i
\(246\) −101281. −0.106706
\(247\) −1.15913e6 + 1.42317e6i −1.20890 + 1.48428i
\(248\) 133372. 0.137700
\(249\) 938200.i 0.958952i
\(250\) −19050.2 −0.0192774
\(251\) 275636. 0.276155 0.138077 0.990421i \(-0.455908\pi\)
0.138077 + 0.990421i \(0.455908\pi\)
\(252\) 21278.0i 0.0211071i
\(253\) 360469.i 0.354051i
\(254\) 242098.i 0.235454i
\(255\) 440197.i 0.423932i
\(256\) 594696. 0.567146
\(257\) 611818. 0.577816 0.288908 0.957357i \(-0.406708\pi\)
0.288908 + 0.957357i \(0.406708\pi\)
\(258\) 34186.8i 0.0319749i
\(259\) 17084.5 0.0158254
\(260\) −293543. + 360411.i −0.269302 + 0.330647i
\(261\) 596053. 0.541606
\(262\) 124487.i 0.112039i
\(263\) −505146. −0.450327 −0.225163 0.974321i \(-0.572292\pi\)
−0.225163 + 0.974321i \(0.572292\pi\)
\(264\) −339261. −0.299587
\(265\) 684586.i 0.598843i
\(266\) 22550.7i 0.0195414i
\(267\) 296509.i 0.254543i
\(268\) 1.10480e6i 0.939610i
\(269\) 325423. 0.274200 0.137100 0.990557i \(-0.456222\pi\)
0.137100 + 0.990557i \(0.456222\pi\)
\(270\) 123647. 0.103222
\(271\) 314685.i 0.260288i 0.991495 + 0.130144i \(0.0415439\pi\)
−0.991495 + 0.130144i \(0.958456\pi\)
\(272\) 1.36739e6 1.12065
\(273\) −26881.4 + 33004.8i −0.0218295 + 0.0268022i
\(274\) −473967. −0.381392
\(275\) 244533.i 0.194987i
\(276\) −319836. −0.252728
\(277\) −1.70118e6 −1.33214 −0.666072 0.745887i \(-0.732026\pi\)
−0.666072 + 0.745887i \(0.732026\pi\)
\(278\) 299018.i 0.232052i
\(279\) 198729.i 0.152845i
\(280\) 11699.9i 0.00891838i
\(281\) 973161.i 0.735222i −0.929980 0.367611i \(-0.880176\pi\)
0.929980 0.367611i \(-0.119824\pi\)
\(282\) 314113. 0.235214
\(283\) 855504. 0.634974 0.317487 0.948263i \(-0.397161\pi\)
0.317487 + 0.948263i \(0.397161\pi\)
\(284\) 770931.i 0.567178i
\(285\) 856755. 0.624805
\(286\) 225373. + 183559.i 0.162924 + 0.132697i
\(287\) 44834.5 0.0321298
\(288\) 399315.i 0.283683i
\(289\) 975477. 0.687025
\(290\) −159976. −0.111702
\(291\) 1.54374e6i 1.06867i
\(292\) 1.84864e6i 1.26881i
\(293\) 434109.i 0.295413i −0.989031 0.147707i \(-0.952811\pi\)
0.989031 0.147707i \(-0.0471891\pi\)
\(294\) 232604.i 0.156946i
\(295\) 1.19106e6 0.796856
\(296\) 212065. 0.140682
\(297\) 1.58716e6i 1.04407i
\(298\) −555189. −0.362160
\(299\) 435287. + 354528.i 0.281578 + 0.229336i
\(300\) 216968. 0.139185
\(301\) 15133.6i 0.00962781i
\(302\) 323942. 0.204386
\(303\) 1.64638e6 1.03021
\(304\) 2.66136e6i 1.65165i
\(305\) 645218.i 0.397152i
\(306\) 214295.i 0.130830i
\(307\) 1.33224e6i 0.806748i −0.915035 0.403374i \(-0.867837\pi\)
0.915035 0.403374i \(-0.132163\pi\)
\(308\) 73305.6 0.0440312
\(309\) 73641.3 0.0438758
\(310\) 53337.2i 0.0315229i
\(311\) −1.22090e6 −0.715781 −0.357891 0.933764i \(-0.616504\pi\)
−0.357891 + 0.933764i \(0.616504\pi\)
\(312\) −333670. + 409677.i −0.194057 + 0.238262i
\(313\) −3.36877e6 −1.94362 −0.971808 0.235772i \(-0.924238\pi\)
−0.971808 + 0.235772i \(0.924238\pi\)
\(314\) 195480.i 0.111887i
\(315\) −17433.2 −0.00989922
\(316\) 2.67407e6 1.50645
\(317\) 181109.i 0.101226i −0.998718 0.0506131i \(-0.983882\pi\)
0.998718 0.0506131i \(-0.0161175\pi\)
\(318\) 379831.i 0.210631i
\(319\) 2.05349e6i 1.12984i
\(320\) 599633.i 0.327349i
\(321\) −1.02366e6 −0.554491
\(322\) −6897.28 −0.00370713
\(323\) 4.66204e6i 2.48639i
\(324\) −566180. −0.299635
\(325\) −295288. 240503.i −0.155073 0.126302i
\(326\) 508449. 0.264974
\(327\) 420246.i 0.217337i
\(328\) 556516. 0.285623
\(329\) −139050. −0.0708241
\(330\) 135675.i 0.0685827i
\(331\) 1.72873e6i 0.867277i −0.901087 0.433639i \(-0.857229\pi\)
0.901087 0.433639i \(-0.142771\pi\)
\(332\) 2.51631e6i 1.25291i
\(333\) 315984.i 0.156154i
\(334\) 103548. 0.0507898
\(335\) −905175. −0.440677
\(336\) 61719.4i 0.0298245i
\(337\) 2.31320e6 1.10953 0.554764 0.832008i \(-0.312809\pi\)
0.554764 + 0.832008i \(0.312809\pi\)
\(338\) 443317. 91616.8i 0.211068 0.0436198i
\(339\) −315183. −0.148958
\(340\) 1.18063e6i 0.553883i
\(341\) −684649. −0.318847
\(342\) −417082. −0.192822
\(343\) 206168.i 0.0946205i
\(344\) 187849.i 0.0855880i
\(345\) 262044.i 0.118530i
\(346\) 148897.i 0.0668646i
\(347\) 1.45965e6 0.650766 0.325383 0.945582i \(-0.394507\pi\)
0.325383 + 0.945582i \(0.394507\pi\)
\(348\) 1.82201e6 0.806498
\(349\) 441041.i 0.193828i 0.995293 + 0.0969138i \(0.0308971\pi\)
−0.995293 + 0.0969138i \(0.969103\pi\)
\(350\) 4678.93 0.00204163
\(351\) 1.91659e6 + 1.56100e6i 0.830350 + 0.676295i
\(352\) 1.37569e6 0.591787
\(353\) 1.75552e6i 0.749843i −0.927057 0.374921i \(-0.877670\pi\)
0.927057 0.374921i \(-0.122330\pi\)
\(354\) 660842. 0.280278
\(355\) −631631. −0.266006
\(356\) 795257.i 0.332569i
\(357\) 108117.i 0.0448977i
\(358\) 560121.i 0.230980i
\(359\) 2.60457e6i 1.06659i −0.845928 0.533297i \(-0.820953\pi\)
0.845928 0.533297i \(-0.179047\pi\)
\(360\) −216393. −0.0880008
\(361\) −6.59763e6 −2.66453
\(362\) 407761.i 0.163544i
\(363\) −90705.5 −0.0361299
\(364\) 72097.5 88520.8i 0.0285211 0.0350181i
\(365\) 1.51461e6 0.595070
\(366\) 357989.i 0.139690i
\(367\) −1.40036e6 −0.542717 −0.271359 0.962478i \(-0.587473\pi\)
−0.271359 + 0.962478i \(0.587473\pi\)
\(368\) 813994. 0.313330
\(369\) 829229.i 0.317036i
\(370\) 84807.5i 0.0322055i
\(371\) 168142.i 0.0634221i
\(372\) 607473.i 0.227599i
\(373\) −698420. −0.259923 −0.129961 0.991519i \(-0.541485\pi\)
−0.129961 + 0.991519i \(0.541485\pi\)
\(374\) 738276. 0.272923
\(375\) 177764.i 0.0652778i
\(376\) −1.72598e6 −0.629603
\(377\) −2.47971e6 2.01965e6i −0.898560 0.731850i
\(378\) −30369.0 −0.0109320
\(379\) 860183.i 0.307605i 0.988102 + 0.153802i \(0.0491519\pi\)
−0.988102 + 0.153802i \(0.950848\pi\)
\(380\) −2.29787e6 −0.816331
\(381\) −2.25910e6 −0.797302
\(382\) 62969.2i 0.0220785i
\(383\) 3.53928e6i 1.23287i −0.787406 0.616435i \(-0.788576\pi\)
0.787406 0.616435i \(-0.211424\pi\)
\(384\) 1.61278e6i 0.558146i
\(385\) 60059.9i 0.0206506i
\(386\) 806964. 0.275668
\(387\) 279902. 0.0950010
\(388\) 4.14041e6i 1.39625i
\(389\) 854347. 0.286260 0.143130 0.989704i \(-0.454283\pi\)
0.143130 + 0.989704i \(0.454283\pi\)
\(390\) −163835. 133439.i −0.0545439 0.0444244i
\(391\) 1.42592e6 0.471685
\(392\) 1.27811e6i 0.420100i
\(393\) 1.16163e6 0.379390
\(394\) −509671. −0.165405
\(395\) 2.19089e6i 0.706526i
\(396\) 1.35581e6i 0.434471i
\(397\) 4.61900e6i 1.47086i −0.677601 0.735430i \(-0.736980\pi\)
0.677601 0.735430i \(-0.263020\pi\)
\(398\) 1.03155e6i 0.326425i
\(399\) −210428. −0.0661717
\(400\) −552192. −0.172560
\(401\) 147425.i 0.0457835i 0.999738 + 0.0228917i \(0.00728730\pi\)
−0.999738 + 0.0228917i \(0.992713\pi\)
\(402\) −502221. −0.154999
\(403\) −673366. + 826754.i −0.206533 + 0.253579i
\(404\) −4.41570e6 −1.34600
\(405\) 463876.i 0.140529i
\(406\) 39291.8 0.0118301
\(407\) −1.08861e6 −0.325751
\(408\) 1.34202e6i 0.399125i
\(409\) 5.88390e6i 1.73923i −0.493731 0.869615i \(-0.664367\pi\)
0.493731 0.869615i \(-0.335633\pi\)
\(410\) 222558.i 0.0653859i
\(411\) 4.42275e6i 1.29148i
\(412\) −197511. −0.0573254
\(413\) −292538. −0.0843932
\(414\) 127567.i 0.0365796i
\(415\) −2.06164e6 −0.587613
\(416\) 1.35302e6 1.66123e6i 0.383329 0.470649i
\(417\) 2.79025e6 0.785782
\(418\) 1.43691e6i 0.402243i
\(419\) 875261. 0.243558 0.121779 0.992557i \(-0.461140\pi\)
0.121779 + 0.992557i \(0.461140\pi\)
\(420\) −53289.8 −0.0147408
\(421\) 268396.i 0.0738025i −0.999319 0.0369012i \(-0.988251\pi\)
0.999319 0.0369012i \(-0.0117487\pi\)
\(422\) 572475.i 0.156486i
\(423\) 2.57177e6i 0.698847i
\(424\) 2.08709e6i 0.563802i
\(425\) −967304. −0.259771
\(426\) −350450. −0.0935625
\(427\) 158473.i 0.0420615i
\(428\) 2.74553e6 0.724463
\(429\) 1.71285e6 2.10303e6i 0.449342 0.551699i
\(430\) −75123.3 −0.0195931
\(431\) 5.07495e6i 1.31595i 0.753041 + 0.657974i \(0.228586\pi\)
−0.753041 + 0.657974i \(0.771414\pi\)
\(432\) 3.58405e6 0.923985
\(433\) 192569. 0.0493590 0.0246795 0.999695i \(-0.492143\pi\)
0.0246795 + 0.999695i \(0.492143\pi\)
\(434\) 13100.2i 0.00333852i
\(435\) 1.49279e6i 0.378247i
\(436\) 1.12713e6i 0.283959i
\(437\) 2.77526e6i 0.695185i
\(438\) 840356. 0.209304
\(439\) 7.75585e6 1.92074 0.960368 0.278734i \(-0.0899148\pi\)
0.960368 + 0.278734i \(0.0899148\pi\)
\(440\) 745504.i 0.183577i
\(441\) −1.90443e6 −0.466303
\(442\) 726109. 891512.i 0.176785 0.217056i
\(443\) −1.65318e6 −0.400230 −0.200115 0.979772i \(-0.564132\pi\)
−0.200115 + 0.979772i \(0.564132\pi\)
\(444\) 965898.i 0.232527i
\(445\) −651561. −0.155975
\(446\) −902205. −0.214767
\(447\) 5.18066e6i 1.22636i
\(448\) 147277.i 0.0346688i
\(449\) 4.12655e6i 0.965988i 0.875624 + 0.482994i \(0.160451\pi\)
−0.875624 + 0.482994i \(0.839549\pi\)
\(450\) 86538.4i 0.0201455i
\(451\) −2.85681e6 −0.661363
\(452\) 845341. 0.194619
\(453\) 3.02282e6i 0.692096i
\(454\) −125094. −0.0284836
\(455\) 72525.9 + 59070.1i 0.0164235 + 0.0133764i
\(456\) −2.61198e6 −0.588244
\(457\) 2.76471e6i 0.619239i −0.950861 0.309620i \(-0.899798\pi\)
0.950861 0.309620i \(-0.100202\pi\)
\(458\) 100748. 0.0224425
\(459\) 6.27837e6 1.39096
\(460\) 702819.i 0.154863i
\(461\) 4.25293e6i 0.932043i 0.884773 + 0.466022i \(0.154313\pi\)
−0.884773 + 0.466022i \(0.845687\pi\)
\(462\) 33323.2i 0.00726344i
\(463\) 2.81006e6i 0.609204i 0.952480 + 0.304602i \(0.0985235\pi\)
−0.952480 + 0.304602i \(0.901477\pi\)
\(464\) −4.63709e6 −0.999887
\(465\) 497708. 0.106744
\(466\) 176981.i 0.0377539i
\(467\) 8.91425e6 1.89144 0.945720 0.324982i \(-0.105358\pi\)
0.945720 + 0.324982i \(0.105358\pi\)
\(468\) −1.63722e6 1.33347e6i −0.345535 0.281428i
\(469\) 222321. 0.0466711
\(470\) 690243.i 0.144131i
\(471\) −1.82409e6 −0.378873
\(472\) −3.63118e6 −0.750228
\(473\) 964301.i 0.198180i
\(474\) 1.21558e6i 0.248507i
\(475\) 1.88266e6i 0.382859i
\(476\) 289977.i 0.0586605i
\(477\) 3.10984e6 0.625809
\(478\) 372508. 0.0745703
\(479\) 1.04773e6i 0.208647i 0.994543 + 0.104323i \(0.0332677\pi\)
−0.994543 + 0.104323i \(0.966732\pi\)
\(480\) −1.00007e6 −0.198119
\(481\) −1.07067e6 + 1.31456e6i −0.211005 + 0.259070i
\(482\) −1.64938e6 −0.323373
\(483\) 64360.9i 0.0125532i
\(484\) 243278. 0.0472051
\(485\) 3.39227e6 0.654842
\(486\) 944473.i 0.181384i
\(487\) 2.64473e6i 0.505311i 0.967556 + 0.252656i \(0.0813039\pi\)
−0.967556 + 0.252656i \(0.918696\pi\)
\(488\) 1.96707e6i 0.373913i
\(489\) 4.74451e6i 0.897262i
\(490\) 511133. 0.0961709
\(491\) −2.58589e6 −0.484069 −0.242034 0.970268i \(-0.577815\pi\)
−0.242034 + 0.970268i \(0.577815\pi\)
\(492\) 2.53478e6i 0.472093i
\(493\) −8.12304e6 −1.50522
\(494\) 1.73515e6 + 1.41323e6i 0.319904 + 0.260552i
\(495\) 1.11083e6 0.203767
\(496\) 1.54604e6i 0.282174i
\(497\) 155135. 0.0281722
\(498\) −1.14386e6 −0.206681
\(499\) 8.62141e6i 1.54998i −0.631972 0.774992i \(-0.717754\pi\)
0.631972 0.774992i \(-0.282246\pi\)
\(500\) 476774.i 0.0852879i
\(501\) 966245.i 0.171986i
\(502\) 336059.i 0.0595191i
\(503\) 4.82702e6 0.850665 0.425333 0.905037i \(-0.360157\pi\)
0.425333 + 0.905037i \(0.360157\pi\)
\(504\) 53148.5 0.00931997
\(505\) 3.61782e6i 0.631275i
\(506\) 439488. 0.0763081
\(507\) −854909. 4.13674e6i −0.147707 0.714725i
\(508\) 6.05905e6 1.04171
\(509\) 7.34279e6i 1.25622i 0.778124 + 0.628111i \(0.216172\pi\)
−0.778124 + 0.628111i \(0.783828\pi\)
\(510\) −536693. −0.0913693
\(511\) −372005. −0.0630225
\(512\) 5.26136e6i 0.887000i
\(513\) 1.22196e7i 2.05005i
\(514\) 745936.i 0.124536i
\(515\) 161822.i 0.0268856i
\(516\) 855602. 0.141464
\(517\) 8.86012e6 1.45785
\(518\) 20829.7i 0.00341081i
\(519\) 1.38941e6 0.226419
\(520\) 900240. + 733218.i 0.145999 + 0.118912i
\(521\) 1.06181e7 1.71377 0.856885 0.515508i \(-0.172397\pi\)
0.856885 + 0.515508i \(0.172397\pi\)
\(522\) 726715.i 0.116731i
\(523\) −7.02911e6 −1.12369 −0.561844 0.827243i \(-0.689908\pi\)
−0.561844 + 0.827243i \(0.689908\pi\)
\(524\) −3.11556e6 −0.495687
\(525\) 43660.8i 0.00691342i
\(526\) 615880.i 0.0970581i
\(527\) 2.70828e6i 0.424784i
\(528\) 3.93270e6i 0.613912i
\(529\) −5.58751e6 −0.868119
\(530\) −834655. −0.129068
\(531\) 5.41059e6i 0.832738i
\(532\) 564382. 0.0864558
\(533\) −2.80973e6 + 3.44977e6i −0.428397 + 0.525983i
\(534\) −361508. −0.0548611
\(535\) 2.24943e6i 0.339773i
\(536\) 2.75960e6 0.414891
\(537\) −5.22668e6 −0.782150
\(538\) 396760.i 0.0590979i
\(539\) 6.56102e6i 0.972746i
\(540\) 3.09454e6i 0.456680i
\(541\) 1.98960e6i 0.292263i 0.989265 + 0.146131i \(0.0466822\pi\)
−0.989265 + 0.146131i \(0.953318\pi\)
\(542\) 383668. 0.0560993
\(543\) −3.80496e6 −0.553796
\(544\) 5.44187e6i 0.788408i
\(545\) −923464. −0.133177
\(546\) 40239.8 + 32774.1i 0.00577663 + 0.00470488i
\(547\) −7.00138e6 −1.00050 −0.500248 0.865882i \(-0.666758\pi\)
−0.500248 + 0.865882i \(0.666758\pi\)
\(548\) 1.18621e7i 1.68737i
\(549\) 2.93100e6 0.415036
\(550\) −298137. −0.0420251
\(551\) 1.58099e7i 2.21845i
\(552\) 798891.i 0.111594i
\(553\) 538107.i 0.0748266i
\(554\) 2.07410e6i 0.287115i
\(555\) 791369. 0.109055
\(556\) −7.48361e6 −1.02665
\(557\) 2.38525e6i 0.325759i −0.986646 0.162879i \(-0.947922\pi\)
0.986646 0.162879i \(-0.0520781\pi\)
\(558\) −242292. −0.0329423
\(559\) −1.16445e6 948409.i −0.157613 0.128371i
\(560\) 135625. 0.0182755
\(561\) 6.88911e6i 0.924179i
\(562\) −1.18649e6 −0.158461
\(563\) 1.10441e7 1.46845 0.734226 0.678905i \(-0.237545\pi\)
0.734226 + 0.678905i \(0.237545\pi\)
\(564\) 7.86138e6i 1.04064i
\(565\) 692595.i 0.0912764i
\(566\) 1.04304e6i 0.136855i
\(567\) 113933.i 0.0148831i
\(568\) 1.92564e6 0.250441
\(569\) −1.05466e7 −1.36563 −0.682815 0.730591i \(-0.739245\pi\)
−0.682815 + 0.730591i \(0.739245\pi\)
\(570\) 1.04457e6i 0.134663i
\(571\) −2.56217e6 −0.328865 −0.164433 0.986388i \(-0.552579\pi\)
−0.164433 + 0.986388i \(0.552579\pi\)
\(572\) −4.59398e6 + 5.64046e6i −0.587082 + 0.720816i
\(573\) 587588. 0.0747629
\(574\) 54662.8i 0.00692487i
\(575\) −575826. −0.0726309
\(576\) −2.72393e6 −0.342089
\(577\) 1.48196e7i 1.85309i −0.376183 0.926545i \(-0.622764\pi\)
0.376183 0.926545i \(-0.377236\pi\)
\(578\) 1.18931e6i 0.148073i
\(579\) 7.53006e6i 0.933474i
\(580\) 4.00376e6i 0.494194i
\(581\) 506360. 0.0622328
\(582\) 1.88215e6 0.230328
\(583\) 1.07138e7i 1.30549i
\(584\) −4.61757e6 −0.560249
\(585\) 1.09252e6 1.34139e6i 0.131990 0.162056i
\(586\) −529271. −0.0636699
\(587\) 1.20402e7i 1.44224i 0.692809 + 0.721121i \(0.256373\pi\)
−0.692809 + 0.721121i \(0.743627\pi\)
\(588\) −5.82145e6 −0.694364
\(589\) −5.27113e6 −0.626060
\(590\) 1.45216e6i 0.171745i
\(591\) 4.75592e6i 0.560100i
\(592\) 2.45825e6i 0.288285i
\(593\) 2.36654e6i 0.276361i 0.990407 + 0.138180i \(0.0441254\pi\)
−0.990407 + 0.138180i \(0.955875\pi\)
\(594\) 1.93508e6 0.225026
\(595\) 237581. 0.0275118
\(596\) 1.38949e7i 1.60228i
\(597\) −9.62578e6 −1.10535
\(598\) 432245. 530708.i 0.0494284 0.0606879i
\(599\) −292768. −0.0333392 −0.0166696 0.999861i \(-0.505306\pi\)
−0.0166696 + 0.999861i \(0.505306\pi\)
\(600\) 541947.i 0.0614580i
\(601\) 1.20438e7 1.36011 0.680057 0.733159i \(-0.261955\pi\)
0.680057 + 0.733159i \(0.261955\pi\)
\(602\) 18451.1 0.00207506
\(603\) 4.11190e6i 0.460520i
\(604\) 8.10738e6i 0.904250i
\(605\) 199320.i 0.0221392i
\(606\) 2.00729e6i 0.222039i
\(607\) −1.05634e7 −1.16367 −0.581836 0.813306i \(-0.697666\pi\)
−0.581836 + 0.813306i \(0.697666\pi\)
\(608\) 1.05915e7 1.16198
\(609\) 366646.i 0.0400593i
\(610\) −786657. −0.0855975
\(611\) 8.71411e6 1.06991e7i 0.944322 1.15943i
\(612\) −5.36321e6 −0.578824
\(613\) 1.72742e7i 1.85673i 0.371675 + 0.928363i \(0.378783\pi\)
−0.371675 + 0.928363i \(0.621217\pi\)
\(614\) −1.62429e6 −0.173877
\(615\) 2.07677e6 0.221412
\(616\) 183104.i 0.0194422i
\(617\) 1.23381e7i 1.30477i 0.757886 + 0.652387i \(0.226232\pi\)
−0.757886 + 0.652387i \(0.773768\pi\)
\(618\) 89784.4i 0.00945648i
\(619\) 3.76541e6i 0.394990i 0.980304 + 0.197495i \(0.0632806\pi\)
−0.980304 + 0.197495i \(0.936719\pi\)
\(620\) −1.33488e6 −0.139465
\(621\) 3.73745e6 0.388907
\(622\) 1.48854e6i 0.154271i
\(623\) 160031. 0.0165190
\(624\) −4.74897e6 3.86789e6i −0.488245 0.397660i
\(625\) 390625. 0.0400000
\(626\) 4.10724e6i 0.418904i
\(627\) 1.34083e7 1.36209
\(628\) 4.89232e6 0.495012
\(629\) 4.30624e6i 0.433982i
\(630\) 21254.8i 0.00213356i
\(631\) 4.25951e6i 0.425879i 0.977065 + 0.212940i \(0.0683037\pi\)
−0.977065 + 0.212940i \(0.931696\pi\)
\(632\) 6.67935e6i 0.665183i
\(633\) −5.34197e6 −0.529898
\(634\) −220811. −0.0218171
\(635\) 4.96423e6i 0.488560i
\(636\) 9.50613e6 0.931882
\(637\) 7.92283e6 + 6.45290e6i 0.773627 + 0.630095i
\(638\) −2.50364e6 −0.243511
\(639\) 2.86928e6i 0.277985i
\(640\) 3.54399e6 0.342013
\(641\) 2.97347e6 0.285837 0.142918 0.989734i \(-0.454351\pi\)
0.142918 + 0.989734i \(0.454351\pi\)
\(642\) 1.24806e6i 0.119508i
\(643\) 9.08699e6i 0.866748i 0.901214 + 0.433374i \(0.142677\pi\)
−0.901214 + 0.433374i \(0.857323\pi\)
\(644\) 172620.i 0.0164012i
\(645\) 701002.i 0.0663468i
\(646\) 5.68401e6 0.535888
\(647\) −1.70405e7 −1.60037 −0.800185 0.599753i \(-0.795266\pi\)
−0.800185 + 0.599753i \(0.795266\pi\)
\(648\) 1.41421e6i 0.132306i
\(649\) 1.86402e7 1.73716
\(650\) −293224. + 360018.i −0.0272217 + 0.0334227i
\(651\) −122243. −0.0113050
\(652\) 1.27251e7i 1.17231i
\(653\) 33156.7 0.00304291 0.00152145 0.999999i \(-0.499516\pi\)
0.00152145 + 0.999999i \(0.499516\pi\)
\(654\) −512369. −0.0468423
\(655\) 2.55260e6i 0.232477i
\(656\) 6.45112e6i 0.585296i
\(657\) 6.88034e6i 0.621866i
\(658\) 169531.i 0.0152646i
\(659\) 1.21273e7 1.08780 0.543902 0.839149i \(-0.316946\pi\)
0.543902 + 0.839149i \(0.316946\pi\)
\(660\) 3.39557e6 0.303426
\(661\) 7.42160e6i 0.660684i −0.943861 0.330342i \(-0.892836\pi\)
0.943861 0.330342i \(-0.107164\pi\)
\(662\) −2.10769e6 −0.186923
\(663\) −8.31901e6 6.77558e6i −0.735001 0.598636i
\(664\) 6.28528e6 0.553229
\(665\) 462403.i 0.0405477i
\(666\) −385251. −0.0336557
\(667\) −4.83555e6 −0.420854
\(668\) 2.59153e6i 0.224706i
\(669\) 8.41879e6i 0.727251i
\(670\) 1.10360e6i 0.0949783i
\(671\) 1.00977e7i 0.865799i
\(672\) 245627. 0.0209823
\(673\) 1.24325e7 1.05809 0.529043 0.848595i \(-0.322551\pi\)
0.529043 + 0.848595i \(0.322551\pi\)
\(674\) 2.82028e6i 0.239135i
\(675\) −2.53539e6 −0.214183
\(676\) 2.29292e6 + 1.10950e7i 0.192984 + 0.933815i
\(677\) −8.45003e6 −0.708576 −0.354288 0.935136i \(-0.615277\pi\)
−0.354288 + 0.935136i \(0.615277\pi\)
\(678\) 384275.i 0.0321047i
\(679\) −833179. −0.0693528
\(680\) 2.94901e6 0.244570
\(681\) 1.16729e6i 0.0964520i
\(682\) 834732.i 0.0687205i
\(683\) 9.91289e6i 0.813108i −0.913627 0.406554i \(-0.866730\pi\)
0.913627 0.406554i \(-0.133270\pi\)
\(684\) 1.04384e7i 0.853090i
\(685\) 9.71871e6 0.791375
\(686\) −251362. −0.0203934
\(687\) 940113.i 0.0759956i
\(688\) −2.17754e6 −0.175386
\(689\) −1.29376e7 1.05373e7i −1.03826 0.845629i
\(690\) −319487. −0.0255465
\(691\) 3.01942e6i 0.240563i −0.992740 0.120281i \(-0.961620\pi\)
0.992740 0.120281i \(-0.0383796\pi\)
\(692\) −3.72649e6 −0.295825
\(693\) −272831. −0.0215805
\(694\) 1.77962e6i 0.140258i
\(695\) 6.13139e6i 0.481501i
\(696\) 4.55105e6i 0.356114i
\(697\) 1.13008e7i 0.881101i
\(698\) 537722. 0.0417753
\(699\) 1.65147e6 0.127843
\(700\) 117101.i 0.00903265i
\(701\) 7.55729e6 0.580859 0.290430 0.956896i \(-0.406202\pi\)
0.290430 + 0.956896i \(0.406202\pi\)
\(702\) 1.90319e6 2.33673e6i 0.145761 0.178964i
\(703\) −8.38124e6 −0.639617
\(704\) 9.38431e6i 0.713626i
\(705\) −6.44090e6 −0.488061
\(706\) −2.14036e6 −0.161612
\(707\) 888577.i 0.0668570i
\(708\) 1.65391e7i 1.24002i
\(709\) 8.22641e6i 0.614603i 0.951612 + 0.307302i \(0.0994260\pi\)
−0.951612 + 0.307302i \(0.900574\pi\)
\(710\) 770091.i 0.0573319i
\(711\) −9.95247e6 −0.738341
\(712\) 1.98641e6 0.146848
\(713\) 1.61221e6i 0.118768i
\(714\) 131818. 0.00967672
\(715\) −4.62128e6 3.76389e6i −0.338062 0.275341i
\(716\) 1.40183e7 1.02191
\(717\) 3.47600e6i 0.252512i
\(718\) −3.17552e6 −0.229881
\(719\) −2.42533e7 −1.74964 −0.874821 0.484446i \(-0.839021\pi\)
−0.874821 + 0.484446i \(0.839021\pi\)
\(720\) 2.50842e6i 0.180330i
\(721\) 39745.3i 0.00284740i
\(722\) 8.04391e6i 0.574280i
\(723\) 1.53910e7i 1.09501i
\(724\) 1.02051e7 0.723556
\(725\) 3.28031e6 0.231777
\(726\) 110589.i 0.00778702i
\(727\) −4.40741e6 −0.309277 −0.154638 0.987971i \(-0.549421\pi\)
−0.154638 + 0.987971i \(0.549421\pi\)
\(728\) −221109. 180086.i −0.0154624 0.0125937i
\(729\) 1.33221e7 0.928439
\(730\) 1.84663e6i 0.128254i
\(731\) −3.81451e6 −0.264025
\(732\) 8.95947e6 0.618023
\(733\) 1.70711e7i 1.17355i −0.809751 0.586774i \(-0.800398\pi\)
0.809751 0.586774i \(-0.199602\pi\)
\(734\) 1.70733e6i 0.116971i
\(735\) 4.76956e6i 0.325657i
\(736\) 3.23949e6i 0.220436i
\(737\) −1.41661e7 −0.960684
\(738\) −1.01101e6 −0.0683302
\(739\) 6.86306e6i 0.462281i −0.972920 0.231141i \(-0.925754\pi\)
0.972920 0.231141i \(-0.0742458\pi\)
\(740\) −2.12250e6 −0.142485
\(741\) 1.31873e7 1.61913e7i 0.882289 1.08327i
\(742\) 205000. 0.0136693
\(743\) 7.82433e6i 0.519966i −0.965613 0.259983i \(-0.916283\pi\)
0.965613 0.259983i \(-0.0837170\pi\)
\(744\) −1.51736e6 −0.100498
\(745\) 1.13842e7 0.751469
\(746\) 851521.i 0.0560207i
\(747\) 9.36530e6i 0.614073i
\(748\) 1.84770e7i 1.20747i
\(749\) 552486.i 0.0359846i
\(750\) 216732. 0.0140692
\(751\) −1.55733e7 −1.00758 −0.503790 0.863826i \(-0.668062\pi\)
−0.503790 + 0.863826i \(0.668062\pi\)
\(752\) 2.00075e7i 1.29018i
\(753\) −3.13588e6 −0.201545
\(754\) −2.46238e6 + 3.02329e6i −0.157734 + 0.193665i
\(755\) −6.64245e6 −0.424093
\(756\) 760053.i 0.0483659i
\(757\) 4.30381e6 0.272969 0.136485 0.990642i \(-0.456420\pi\)
0.136485 + 0.990642i \(0.456420\pi\)
\(758\) 1.04874e6 0.0662974
\(759\) 4.10101e6i 0.258397i
\(760\) 5.73966e6i 0.360456i
\(761\) 2.17549e7i 1.36174i 0.732403 + 0.680871i \(0.238399\pi\)
−0.732403 + 0.680871i \(0.761601\pi\)
\(762\) 2.75432e6i 0.171841i
\(763\) 226813. 0.0141045
\(764\) −1.57595e6 −0.0976805
\(765\) 4.39413e6i 0.271468i
\(766\) −4.31513e6 −0.265718
\(767\) 1.83331e7 2.25092e7i 1.12524 1.38157i
\(768\) −6.76579e6 −0.413919
\(769\) 2.85348e7i 1.74004i 0.493017 + 0.870020i \(0.335894\pi\)
−0.493017 + 0.870020i \(0.664106\pi\)
\(770\) 73225.7 0.00445079
\(771\) −6.96059e6 −0.421706
\(772\) 2.01961e7i 1.21962i
\(773\) 2.79269e7i 1.68102i −0.541795 0.840511i \(-0.682255\pi\)
0.541795 0.840511i \(-0.317745\pi\)
\(774\) 341259.i 0.0204754i
\(775\) 1.09368e6i 0.0654089i
\(776\) −1.03420e7 −0.616523
\(777\) −194369. −0.0115498
\(778\) 1.04163e6i 0.0616971i
\(779\) −2.19947e7 −1.29860
\(780\) 3.33961e6 4.10035e6i 0.196544 0.241315i
\(781\) −9.88507e6 −0.579899
\(782\) 1.73849e6i 0.101661i
\(783\) −2.12912e7 −1.24107
\(784\) 1.48158e7 0.860865
\(785\) 4.00832e6i 0.232161i
\(786\) 1.41627e6i 0.0817692i
\(787\) 2.09367e7i 1.20496i −0.798136 0.602478i \(-0.794180\pi\)
0.798136 0.602478i \(-0.205820\pi\)
\(788\) 1.27557e7i 0.731792i
\(789\) 5.74700e6 0.328661
\(790\) 2.67116e6 0.152276
\(791\) 170109.i 0.00966688i
\(792\) −3.38657e6 −0.191843
\(793\) −1.21936e7 9.93131e6i −0.688571 0.560820i
\(794\) −5.63153e6 −0.317012
\(795\) 7.78846e6i 0.437052i
\(796\) 2.58169e7 1.44418
\(797\) 1.45712e7 0.812549 0.406274 0.913751i \(-0.366828\pi\)
0.406274 + 0.913751i \(0.366828\pi\)
\(798\) 256557.i 0.0142619i
\(799\) 3.50482e7i 1.94222i
\(800\) 2.19758e6i 0.121400i
\(801\) 2.95982e6i 0.162998i
\(802\) 179742. 0.00986763
\(803\) 2.37037e7 1.29726
\(804\) 1.25692e7i 0.685754i
\(805\) 141429. 0.00769217
\(806\) 1.00799e6 + 820975.i 0.0546535 + 0.0445136i
\(807\) −3.70231e6 −0.200119
\(808\) 1.10296e7i 0.594336i
\(809\) −2.59047e7 −1.39158 −0.695789 0.718246i \(-0.744945\pi\)
−0.695789 + 0.718246i \(0.744945\pi\)
\(810\) −565564. −0.0302879
\(811\) 9.38778e6i 0.501200i 0.968091 + 0.250600i \(0.0806279\pi\)
−0.968091 + 0.250600i \(0.919372\pi\)
\(812\) 983367.i 0.0523390i
\(813\) 3.58014e6i 0.189965i
\(814\) 1.32725e6i 0.0702086i
\(815\) −1.04258e7 −0.549812
\(816\) −1.55567e7 −0.817884
\(817\) 7.42418e6i 0.389129i
\(818\) −7.17372e6 −0.374853
\(819\) −268335. + 329460.i −0.0139787 + 0.0171630i
\(820\) −5.57002e6 −0.289283
\(821\) 7.37712e6i 0.381970i 0.981593 + 0.190985i \(0.0611681\pi\)
−0.981593 + 0.190985i \(0.938832\pi\)
\(822\) 5.39227e6 0.278350
\(823\) 2.13960e7 1.10111 0.550557 0.834798i \(-0.314416\pi\)
0.550557 + 0.834798i \(0.314416\pi\)
\(824\) 493345.i 0.0253124i
\(825\) 2.78202e6i 0.142307i
\(826\) 356666.i 0.0181891i
\(827\) 6.14027e6i 0.312194i −0.987742 0.156097i \(-0.950109\pi\)
0.987742 0.156097i \(-0.0498912\pi\)
\(828\) −3.19266e6 −0.161837
\(829\) −1.46790e7 −0.741838 −0.370919 0.928665i \(-0.620957\pi\)
−0.370919 + 0.928665i \(0.620957\pi\)
\(830\) 2.51357e6i 0.126647i
\(831\) 1.93542e7 0.972237
\(832\) 1.13321e7 + 9.22966e6i 0.567548 + 0.462251i
\(833\) 2.59536e7 1.29594
\(834\) 3.40190e6i 0.169358i
\(835\) −2.12326e6 −0.105387
\(836\) −3.59618e7 −1.77962
\(837\) 7.09864e6i 0.350237i
\(838\) 1.06713e6i 0.0524937i
\(839\) 2.35783e7i 1.15640i 0.815896 + 0.578198i \(0.196244\pi\)
−0.815896 + 0.578198i \(0.803756\pi\)
\(840\) 133108.i 0.00650888i
\(841\) 7.03561e6 0.343014
\(842\) −327232. −0.0159065
\(843\) 1.10715e7i 0.536586i
\(844\) 1.43275e7 0.692331
\(845\) −9.09024e6 + 1.87861e6i −0.437959 + 0.0905096i
\(846\) 3.13554e6 0.150621
\(847\) 48955.1i 0.00234471i
\(848\) −2.41935e7 −1.15534
\(849\) −9.73298e6 −0.463422
\(850\) 1.17935e6i 0.0559880i
\(851\) 2.56346e6i 0.121340i
\(852\) 8.77080e6i 0.413943i
\(853\) 1.60837e7i 0.756856i 0.925631 + 0.378428i \(0.123535\pi\)
−0.925631 + 0.378428i \(0.876465\pi\)
\(854\) 193212. 0.00906544
\(855\) 8.55229e6 0.400099
\(856\) 6.85782e6i 0.319891i
\(857\) 2.45455e7 1.14162 0.570809 0.821083i \(-0.306630\pi\)
0.570809 + 0.821083i \(0.306630\pi\)
\(858\) −2.56404e6 2.08833e6i −0.118907 0.0968459i
\(859\) 2.36147e7 1.09194 0.545971 0.837804i \(-0.316161\pi\)
0.545971 + 0.837804i \(0.316161\pi\)
\(860\) 1.88013e6i 0.0866846i
\(861\) −510077. −0.0234492
\(862\) 6.18744e6 0.283624
\(863\) 2.10316e7i 0.961271i −0.876920 0.480635i \(-0.840406\pi\)
0.876920 0.480635i \(-0.159594\pi\)
\(864\) 1.42636e7i 0.650047i
\(865\) 3.05314e6i 0.138742i
\(866\) 234782.i 0.0106383i
\(867\) −1.10979e7 −0.501410
\(868\) 327862. 0.0147704
\(869\) 3.42876e7i 1.54024i
\(870\) 1.82003e6 0.0815229
\(871\) −1.39326e7 + 1.71064e7i −0.622282 + 0.764033i
\(872\) 2.81535e6 0.125384
\(873\) 1.54099e7i 0.684329i
\(874\) 3.38363e6 0.149832
\(875\) −95941.8 −0.00423631
\(876\) 2.10318e7i 0.926011i
\(877\) 2.16451e7i 0.950298i 0.879905 + 0.475149i \(0.157606\pi\)
−0.879905 + 0.475149i \(0.842394\pi\)
\(878\) 9.45602e6i 0.413973i
\(879\) 4.93881e6i 0.215601i
\(880\) −8.64186e6 −0.376184
\(881\) 1.25222e7 0.543552 0.271776 0.962360i \(-0.412389\pi\)
0.271776 + 0.962360i \(0.412389\pi\)
\(882\) 2.32190e6i 0.100501i
\(883\) 4.38601e6 0.189307 0.0946537 0.995510i \(-0.469826\pi\)
0.0946537 + 0.995510i \(0.469826\pi\)
\(884\) 2.23121e7 + 1.81725e7i 0.960307 + 0.782140i
\(885\) −1.35506e7 −0.581568
\(886\) 2.01557e6i 0.0862609i
\(887\) 3.48074e7 1.48547 0.742733 0.669587i \(-0.233529\pi\)
0.742733 + 0.669587i \(0.233529\pi\)
\(888\) −2.41264e6 −0.102674
\(889\) 1.21927e6i 0.0517423i
\(890\) 794391.i 0.0336170i
\(891\) 7.25971e6i 0.306355i
\(892\) 2.25797e7i 0.950181i
\(893\) 6.82144e7 2.86251
\(894\) 6.31632e6 0.264314
\(895\) 1.14853e7i 0.479275i
\(896\) −870442. −0.0362218
\(897\) −4.95222e6 4.03343e6i −0.205503 0.167376i
\(898\) 5.03114e6 0.208198
\(899\) 9.18431e6i 0.379007i
\(900\) 2.16582e6 0.0891283
\(901\) −4.23810e7 −1.73924
\(902\) 3.48306e6i 0.142542i
\(903\) 172174.i 0.00702664i
\(904\) 2.11151e6i 0.0859353i
\(905\) 8.36115e6i 0.339347i
\(906\) −3.68546e6 −0.149166
\(907\) −8.74330e6 −0.352904 −0.176452 0.984309i \(-0.556462\pi\)
−0.176452 + 0.984309i \(0.556462\pi\)
\(908\) 3.13075e6i 0.126018i
\(909\) 1.64345e7 0.659701
\(910\) 72019.0 88424.4i 0.00288299 0.00353972i
\(911\) −2.23703e7 −0.893048 −0.446524 0.894772i \(-0.647338\pi\)
−0.446524 + 0.894772i \(0.647338\pi\)
\(912\) 3.02780e7i 1.20542i
\(913\) −3.22648e7 −1.28101
\(914\) −3.37076e6 −0.133463
\(915\) 7.34058e6i 0.289853i
\(916\) 2.52144e6i 0.0992911i
\(917\) 626947.i 0.0246211i
\(918\) 7.65466e6i 0.299792i
\(919\) −3.29243e6 −0.128596 −0.0642981 0.997931i \(-0.520481\pi\)
−0.0642981 + 0.997931i \(0.520481\pi\)
\(920\) 1.75551e6 0.0683808
\(921\) 1.51568e7i 0.588787i
\(922\) 5.18522e6 0.200882
\(923\) −9.72217e6 + 1.19368e7i −0.375629 + 0.461194i
\(924\) −833989. −0.0321352
\(925\) 1.73898e6i 0.0668253i
\(926\) 3.42606e6 0.131301
\(927\) 735102. 0.0280963
\(928\) 1.84544e7i 0.703446i
\(929\) 2.50376e7i 0.951817i 0.879495 + 0.475908i \(0.157881\pi\)
−0.879495 + 0.475908i \(0.842119\pi\)
\(930\) 606812.i 0.0230063i
\(931\) 5.05135e7i 1.91000i
\(932\) −4.42935e6 −0.167032
\(933\) 1.38901e7 0.522397
\(934\) 1.08684e7i 0.407659i
\(935\) −1.51384e7 −0.566305
\(936\) −3.33075e6 + 4.08948e6i −0.124266 + 0.152573i
\(937\) −4.64120e6 −0.172696 −0.0863478 0.996265i \(-0.527520\pi\)
−0.0863478 + 0.996265i \(0.527520\pi\)
\(938\) 271056.i 0.0100589i
\(939\) 3.83261e7 1.41851
\(940\) 1.72749e7 0.637670
\(941\) 1.62911e7i 0.599760i −0.953977 0.299880i \(-0.903053\pi\)
0.953977 0.299880i \(-0.0969467\pi\)
\(942\) 2.22395e6i 0.0816579i
\(943\) 6.72722e6i 0.246352i
\(944\) 4.20926e7i 1.53736i
\(945\) 622719. 0.0226836
\(946\) −1.17569e6 −0.0427134
\(947\) 2.98948e7i 1.08323i 0.840627 + 0.541614i \(0.182187\pi\)
−0.840627 + 0.541614i \(0.817813\pi\)
\(948\) −3.04226e7 −1.09945
\(949\) 2.33131e7 2.86237e7i 0.840301 1.03172i
\(950\) −2.29537e6 −0.0825169
\(951\) 2.06046e6i 0.0738777i
\(952\) −724309. −0.0259019
\(953\) 4.34693e7 1.55043 0.775213 0.631700i \(-0.217643\pi\)
0.775213 + 0.631700i \(0.217643\pi\)
\(954\) 3.79155e6i 0.134879i
\(955\) 1.29119e6i 0.0458122i
\(956\) 9.32286e6i 0.329917i
\(957\) 2.33623e7i 0.824586i
\(958\) 1.27741e6 0.0449692
\(959\) −2.38702e6 −0.0838127
\(960\) 6.82196e6i 0.238908i
\(961\) 2.55670e7 0.893042
\(962\) 1.60273e6 + 1.30537e6i 0.0558370 + 0.0454775i
\(963\) −1.02184e7 −0.355073
\(964\) 4.12795e7i 1.43068i
\(965\) −1.65468e7 −0.572001
\(966\) 78469.6 0.00270557
\(967\) 2.94293e7i 1.01208i −0.862510 0.506039i \(-0.831109\pi\)
0.862510 0.506039i \(-0.168891\pi\)
\(968\) 607664.i 0.0208437i
\(969\) 5.30395e7i 1.81464i
\(970\) 4.13590e6i 0.141137i
\(971\) −3.14967e7 −1.07205 −0.536027 0.844201i \(-0.680076\pi\)
−0.536027 + 0.844201i \(0.680076\pi\)
\(972\) −2.36376e7 −0.802486
\(973\) 1.50594e6i 0.0509947i
\(974\) 3.22448e6 0.108909
\(975\) 3.35946e6 + 2.73617e6i 0.113177 + 0.0921790i
\(976\) −2.28022e7 −0.766218
\(977\) 5.67335e6i 0.190153i −0.995470 0.0950764i \(-0.969690\pi\)
0.995470 0.0950764i \(-0.0303096\pi\)
\(978\) −5.78457e6 −0.193385
\(979\) −1.01970e7 −0.340028
\(980\) 1.27923e7i 0.425483i
\(981\) 4.19498e6i 0.139174i
\(982\) 3.15275e6i 0.104330i
\(983\) 1.96686e7i 0.649217i −0.945848 0.324609i \(-0.894767\pi\)
0.945848 0.324609i \(-0.105233\pi\)
\(984\) −6.33142e6 −0.208456
\(985\) 1.04508e7 0.343210
\(986\) 9.90370e6i 0.324418i
\(987\) 1.58196e6 0.0516894
\(988\) −3.53692e7 + 4.34261e7i −1.15274 + 1.41533i
\(989\) −2.27074e6 −0.0738203
\(990\) 1.35433e6i 0.0439175i
\(991\) 3.75674e7 1.21514 0.607571 0.794266i \(-0.292144\pi\)
0.607571 + 0.794266i \(0.292144\pi\)
\(992\) 6.15285e6 0.198517
\(993\) 1.96676e7i 0.632963i
\(994\) 189143.i 0.00607189i
\(995\) 2.11520e7i 0.677321i
\(996\) 2.86278e7i 0.914407i
\(997\) −6.54052e6 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(998\) −1.05113e7 −0.334065
\(999\) 1.12870e7i 0.357821i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.c.b.51.7 14
13.5 odd 4 845.6.a.i.1.5 7
13.8 odd 4 845.6.a.j.1.3 7
13.12 even 2 inner 65.6.c.b.51.8 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.c.b.51.7 14 1.1 even 1 trivial
65.6.c.b.51.8 yes 14 13.12 even 2 inner
845.6.a.i.1.5 7 13.5 odd 4
845.6.a.j.1.3 7 13.8 odd 4