L(s) = 1 | + 2-s + (2 + 2i)3-s + 4-s + (2 + 2i)6-s − 4i·7-s + 8-s + 5i·9-s + (−2 + 2i)11-s + (2 + 2i)12-s + (2 + 3i)13-s − 4i·14-s + 16-s + (3 + 3i)17-s + 5i·18-s + (−2 + 2i)19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (1.15 + 1.15i)3-s + 0.5·4-s + (0.816 + 0.816i)6-s − 1.51i·7-s + 0.353·8-s + 1.66i·9-s + (−0.603 + 0.603i)11-s + (0.577 + 0.577i)12-s + (0.554 + 0.832i)13-s − 1.06i·14-s + 0.250·16-s + (0.727 + 0.727i)17-s + 1.17i·18-s + (−0.458 + 0.458i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.661 - 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.661 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.94270 + 1.32752i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.94270 + 1.32752i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-2 - 3i)T \) |
good | 3 | \( 1 + (-2 - 2i)T + 3iT^{2} \) |
| 7 | \( 1 + 4iT - 7T^{2} \) |
| 11 | \( 1 + (2 - 2i)T - 11iT^{2} \) |
| 17 | \( 1 + (-3 - 3i)T + 17iT^{2} \) |
| 19 | \( 1 + (2 - 2i)T - 19iT^{2} \) |
| 23 | \( 1 + (-2 + 2i)T - 23iT^{2} \) |
| 29 | \( 1 + 6iT - 29T^{2} \) |
| 31 | \( 1 + (6 + 6i)T + 31iT^{2} \) |
| 37 | \( 1 + 4iT - 37T^{2} \) |
| 41 | \( 1 + (1 + i)T + 41iT^{2} \) |
| 43 | \( 1 + (2 - 2i)T - 43iT^{2} \) |
| 47 | \( 1 + 4iT - 47T^{2} \) |
| 53 | \( 1 + (-1 - i)T + 53iT^{2} \) |
| 59 | \( 1 + (2 + 2i)T + 59iT^{2} \) |
| 61 | \( 1 + 12T + 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (2 + 2i)T + 71iT^{2} \) |
| 73 | \( 1 + 10T + 73T^{2} \) |
| 79 | \( 1 + 4iT - 79T^{2} \) |
| 83 | \( 1 + 8iT - 83T^{2} \) |
| 89 | \( 1 + (-5 - 5i)T + 89iT^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45482610981743914304423159499, −10.03842060204705412044743419712, −9.034890958930216718659071302942, −7.955494208720469956249099425281, −7.34215368291357507670157760830, −6.05102248518211326996855072120, −4.63249321518354774566911557141, −4.08156166234688855214334650344, −3.40244502515591778640501783780, −1.98890084549157337313457793293,
1.57673875979509692122494613027, 2.92726761012816273224139569727, 3.12778053219394646716512195739, 5.15637704471511326845205558602, 5.86941378321270130757415554123, 6.93901187287315527112138887520, 7.81668272242571049085112115960, 8.607476713993641986366879919145, 9.149582604927927579105012583059, 10.58678052830156172268302830916