L(s) = 1 | + (0.809 − 0.587i)2-s + (−0.311 + 0.960i)3-s + (0.309 − 0.951i)4-s + (−2.22 + 0.233i)5-s + (0.311 + 0.960i)6-s − 0.400·7-s + (−0.309 − 0.951i)8-s + (1.60 + 1.16i)9-s + (−1.66 + 1.49i)10-s + (−3.50 + 2.54i)11-s + (0.816 + 0.593i)12-s + (0.809 + 0.587i)13-s + (−0.324 + 0.235i)14-s + (0.469 − 2.20i)15-s + (−0.809 − 0.587i)16-s + (1.02 + 3.14i)17-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (−0.180 + 0.554i)3-s + (0.154 − 0.475i)4-s + (−0.994 + 0.104i)5-s + (0.127 + 0.391i)6-s − 0.151·7-s + (−0.109 − 0.336i)8-s + (0.534 + 0.388i)9-s + (−0.525 + 0.473i)10-s + (−1.05 + 0.766i)11-s + (0.235 + 0.171i)12-s + (0.224 + 0.163i)13-s + (−0.0866 + 0.0629i)14-s + (0.121 − 0.570i)15-s + (−0.202 − 0.146i)16-s + (0.248 + 0.763i)17-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.0206−0.999i)Λ(2−s)
Λ(s)=(=(650s/2ΓC(s+1/2)L(s)(−0.0206−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.0206−0.999i
|
Analytic conductor: |
5.19027 |
Root analytic conductor: |
2.27821 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(261,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :1/2), −0.0206−0.999i)
|
Particular Values
L(1) |
≈ |
0.816107+0.833165i |
L(21) |
≈ |
0.816107+0.833165i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809+0.587i)T |
| 5 | 1+(2.22−0.233i)T |
| 13 | 1+(−0.809−0.587i)T |
good | 3 | 1+(0.311−0.960i)T+(−2.42−1.76i)T2 |
| 7 | 1+0.400T+7T2 |
| 11 | 1+(3.50−2.54i)T+(3.39−10.4i)T2 |
| 17 | 1+(−1.02−3.14i)T+(−13.7+9.99i)T2 |
| 19 | 1+(−1.63−5.01i)T+(−15.3+11.1i)T2 |
| 23 | 1+(4.42−3.21i)T+(7.10−21.8i)T2 |
| 29 | 1+(2.40−7.38i)T+(−23.4−17.0i)T2 |
| 31 | 1+(2.54+7.82i)T+(−25.0+18.2i)T2 |
| 37 | 1+(3.58+2.60i)T+(11.4+35.1i)T2 |
| 41 | 1+(−7.60−5.52i)T+(12.6+38.9i)T2 |
| 43 | 1−6.47T+43T2 |
| 47 | 1+(−0.115+0.356i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−0.968+2.98i)T+(−42.8−31.1i)T2 |
| 59 | 1+(−2.12−1.54i)T+(18.2+56.1i)T2 |
| 61 | 1+(6.95−5.05i)T+(18.8−58.0i)T2 |
| 67 | 1+(3.29+10.1i)T+(−54.2+39.3i)T2 |
| 71 | 1+(−0.974+3.00i)T+(−57.4−41.7i)T2 |
| 73 | 1+(−11.6+8.48i)T+(22.5−69.4i)T2 |
| 79 | 1+(2.55−7.86i)T+(−63.9−46.4i)T2 |
| 83 | 1+(0.171+0.527i)T+(−67.1+48.7i)T2 |
| 89 | 1+(−14.5+10.5i)T+(27.5−84.6i)T2 |
| 97 | 1+(0.961−2.95i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75013992573974074318447328762, −10.20307825566116416208055556871, −9.331247734140510691071501473271, −7.84212105097278781213080738023, −7.48805544241332256636673071782, −6.02328791666546400016374970726, −5.06394625402122012618952716393, −4.14182482325432704870577391854, −3.45477044361098070239073559906, −1.87684819629777063975174580453,
0.52945545925845163484689775164, 2.70714883165405939312202811560, 3.77804168583553688533509583824, 4.82712538556869316303694159768, 5.83762751958281168714862912496, 6.86683587144083810990552586576, 7.55737698938383873109375563342, 8.249706188703391956507506914422, 9.300412942757988391715295910710, 10.58601441165867234054146032477