L(s) = 1 | + (0.809 − 0.587i)2-s + (−0.311 + 0.960i)3-s + (0.309 − 0.951i)4-s + (−2.22 + 0.233i)5-s + (0.311 + 0.960i)6-s − 0.400·7-s + (−0.309 − 0.951i)8-s + (1.60 + 1.16i)9-s + (−1.66 + 1.49i)10-s + (−3.50 + 2.54i)11-s + (0.816 + 0.593i)12-s + (0.809 + 0.587i)13-s + (−0.324 + 0.235i)14-s + (0.469 − 2.20i)15-s + (−0.809 − 0.587i)16-s + (1.02 + 3.14i)17-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (−0.180 + 0.554i)3-s + (0.154 − 0.475i)4-s + (−0.994 + 0.104i)5-s + (0.127 + 0.391i)6-s − 0.151·7-s + (−0.109 − 0.336i)8-s + (0.534 + 0.388i)9-s + (−0.525 + 0.473i)10-s + (−1.05 + 0.766i)11-s + (0.235 + 0.171i)12-s + (0.224 + 0.163i)13-s + (−0.0866 + 0.0629i)14-s + (0.121 − 0.570i)15-s + (−0.202 − 0.146i)16-s + (0.248 + 0.763i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0206 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0206 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.816107 + 0.833165i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.816107 + 0.833165i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 5 | \( 1 + (2.22 - 0.233i)T \) |
| 13 | \( 1 + (-0.809 - 0.587i)T \) |
good | 3 | \( 1 + (0.311 - 0.960i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + 0.400T + 7T^{2} \) |
| 11 | \( 1 + (3.50 - 2.54i)T + (3.39 - 10.4i)T^{2} \) |
| 17 | \( 1 + (-1.02 - 3.14i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-1.63 - 5.01i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (4.42 - 3.21i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (2.40 - 7.38i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.54 + 7.82i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (3.58 + 2.60i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-7.60 - 5.52i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 6.47T + 43T^{2} \) |
| 47 | \( 1 + (-0.115 + 0.356i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.968 + 2.98i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-2.12 - 1.54i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (6.95 - 5.05i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (3.29 + 10.1i)T + (-54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (-0.974 + 3.00i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-11.6 + 8.48i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (2.55 - 7.86i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (0.171 + 0.527i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (-14.5 + 10.5i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (0.961 - 2.95i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75013992573974074318447328762, −10.20307825566116416208055556871, −9.331247734140510691071501473271, −7.84212105097278781213080738023, −7.48805544241332256636673071782, −6.02328791666546400016374970726, −5.06394625402122012618952716393, −4.14182482325432704870577391854, −3.45477044361098070239073559906, −1.87684819629777063975174580453,
0.52945545925845163484689775164, 2.70714883165405939312202811560, 3.77804168583553688533509583824, 4.82712538556869316303694159768, 5.83762751958281168714862912496, 6.86683587144083810990552586576, 7.55737698938383873109375563342, 8.249706188703391956507506914422, 9.300412942757988391715295910710, 10.58601441165867234054146032477