Properties

Label 650.2.l.b
Level 650650
Weight 22
Character orbit 650.l
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(131,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.131");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.l (of order 55, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 2020
Relative dimension: 55 over Q(ζ5)\Q(\zeta_{5})
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x209x19+43x18132x17+291x16480x15+624x14653x13++31 x^{20} - 9 x^{19} + 43 x^{18} - 132 x^{17} + 291 x^{16} - 480 x^{15} + 624 x^{14} - 653 x^{13} + \cdots + 31 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 52 5^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β10q2β2q3β13q4+(β18β17+β11+1)q5β6q6+(β12β9β8++1)q7+(β13β11β10+1)q8++(2β18+β17++3)q99+O(q100) q + \beta_{10} q^{2} - \beta_{2} q^{3} - \beta_{13} q^{4} + (\beta_{18} - \beta_{17} + \beta_{11} + \cdots - 1) q^{5} - \beta_{6} q^{6} + (\beta_{12} - \beta_{9} - \beta_{8} + \cdots + 1) q^{7} + ( - \beta_{13} - \beta_{11} - \beta_{10} + 1) q^{8}+ \cdots + ( - 2 \beta_{18} + \beta_{17} + \cdots + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+5q24q35q410q5+4q6+8q7+5q87q9+10q10+q12+5q13+2q14+5q155q16+2q184q19+5q20+3q215q22+24q99+O(q100) 20 q + 5 q^{2} - 4 q^{3} - 5 q^{4} - 10 q^{5} + 4 q^{6} + 8 q^{7} + 5 q^{8} - 7 q^{9} + 10 q^{10} + q^{12} + 5 q^{13} + 2 q^{14} + 5 q^{15} - 5 q^{16} + 2 q^{18} - 4 q^{19} + 5 q^{20} + 3 q^{21} - 5 q^{22}+ \cdots - 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x209x19+43x18132x17+291x16480x15+624x14653x13++31 x^{20} - 9 x^{19} + 43 x^{18} - 132 x^{17} + 291 x^{16} - 480 x^{15} + 624 x^{14} - 653 x^{13} + \cdots + 31 : Copy content Toggle raw display

β1\beta_{1}== (41602842506613ν19+310044321766184ν18+23 ⁣ ⁣85)/12 ⁣ ⁣75 ( - 41602842506613 \nu^{19} + 310044321766184 \nu^{18} + \cdots - 23\!\cdots\!85 ) / 12\!\cdots\!75 Copy content Toggle raw display
β2\beta_{2}== (19 ⁣ ⁣17ν19++62 ⁣ ⁣62)/36 ⁣ ⁣75 ( 19\!\cdots\!17 \nu^{19} + \cdots + 62\!\cdots\!62 ) / 36\!\cdots\!75 Copy content Toggle raw display
β3\beta_{3}== (11 ⁣ ⁣06ν19++12 ⁣ ⁣78)/36 ⁣ ⁣75 ( - 11\!\cdots\!06 \nu^{19} + \cdots + 12\!\cdots\!78 ) / 36\!\cdots\!75 Copy content Toggle raw display
β4\beta_{4}== (17 ⁣ ⁣19ν19+60 ⁣ ⁣03)/36 ⁣ ⁣75 ( - 17\!\cdots\!19 \nu^{19} + \cdots - 60\!\cdots\!03 ) / 36\!\cdots\!75 Copy content Toggle raw display
β5\beta_{5}== (18 ⁣ ⁣64ν19+23 ⁣ ⁣10)/36 ⁣ ⁣75 ( 18\!\cdots\!64 \nu^{19} + \cdots - 23\!\cdots\!10 ) / 36\!\cdots\!75 Copy content Toggle raw display
β6\beta_{6}== (32 ⁣ ⁣76ν19++20 ⁣ ⁣67)/36 ⁣ ⁣75 ( - 32\!\cdots\!76 \nu^{19} + \cdots + 20\!\cdots\!67 ) / 36\!\cdots\!75 Copy content Toggle raw display
β7\beta_{7}== (32 ⁣ ⁣58ν19++98 ⁣ ⁣48)/36 ⁣ ⁣75 ( 32\!\cdots\!58 \nu^{19} + \cdots + 98\!\cdots\!48 ) / 36\!\cdots\!75 Copy content Toggle raw display
β8\beta_{8}== (56 ⁣ ⁣52ν19++28 ⁣ ⁣12)/60 ⁣ ⁣75 ( 56\!\cdots\!52 \nu^{19} + \cdots + 28\!\cdots\!12 ) / 60\!\cdots\!75 Copy content Toggle raw display
β9\beta_{9}== (35 ⁣ ⁣83ν19++13 ⁣ ⁣94)/36 ⁣ ⁣75 ( 35\!\cdots\!83 \nu^{19} + \cdots + 13\!\cdots\!94 ) / 36\!\cdots\!75 Copy content Toggle raw display
β10\beta_{10}== (39 ⁣ ⁣01ν19++35 ⁣ ⁣68)/36 ⁣ ⁣75 ( 39\!\cdots\!01 \nu^{19} + \cdots + 35\!\cdots\!68 ) / 36\!\cdots\!75 Copy content Toggle raw display
β11\beta_{11}== (40 ⁣ ⁣11ν19++23 ⁣ ⁣92)/36 ⁣ ⁣75 ( - 40\!\cdots\!11 \nu^{19} + \cdots + 23\!\cdots\!92 ) / 36\!\cdots\!75 Copy content Toggle raw display
β12\beta_{12}== (62 ⁣ ⁣48ν19++75 ⁣ ⁣37)/36 ⁣ ⁣75 ( 62\!\cdots\!48 \nu^{19} + \cdots + 75\!\cdots\!37 ) / 36\!\cdots\!75 Copy content Toggle raw display
β13\beta_{13}== (65 ⁣ ⁣33ν19+20 ⁣ ⁣74)/36 ⁣ ⁣75 ( - 65\!\cdots\!33 \nu^{19} + \cdots - 20\!\cdots\!74 ) / 36\!\cdots\!75 Copy content Toggle raw display
β14\beta_{14}== (66 ⁣ ⁣95ν19++12 ⁣ ⁣63)/36 ⁣ ⁣75 ( 66\!\cdots\!95 \nu^{19} + \cdots + 12\!\cdots\!63 ) / 36\!\cdots\!75 Copy content Toggle raw display
β15\beta_{15}== (84 ⁣ ⁣50ν19++28 ⁣ ⁣73)/36 ⁣ ⁣75 ( 84\!\cdots\!50 \nu^{19} + \cdots + 28\!\cdots\!73 ) / 36\!\cdots\!75 Copy content Toggle raw display
β16\beta_{16}== (12 ⁣ ⁣88ν19++19 ⁣ ⁣80)/36 ⁣ ⁣75 ( 12\!\cdots\!88 \nu^{19} + \cdots + 19\!\cdots\!80 ) / 36\!\cdots\!75 Copy content Toggle raw display
β17\beta_{17}== (12 ⁣ ⁣05ν19++32 ⁣ ⁣78)/36 ⁣ ⁣75 ( - 12\!\cdots\!05 \nu^{19} + \cdots + 32\!\cdots\!78 ) / 36\!\cdots\!75 Copy content Toggle raw display
β18\beta_{18}== (13 ⁣ ⁣75ν19++47 ⁣ ⁣12)/36 ⁣ ⁣75 ( - 13\!\cdots\!75 \nu^{19} + \cdots + 47\!\cdots\!12 ) / 36\!\cdots\!75 Copy content Toggle raw display
β19\beta_{19}== (20 ⁣ ⁣76ν19+60 ⁣ ⁣65)/36 ⁣ ⁣75 ( 20\!\cdots\!76 \nu^{19} + \cdots - 60\!\cdots\!65 ) / 36\!\cdots\!75 Copy content Toggle raw display
ν\nu== (β19+3β18β17β16+β15+2β13+2β11+1)/5 ( \beta_{19} + 3 \beta_{18} - \beta_{17} - \beta_{16} + \beta_{15} + 2 \beta_{13} + 2 \beta_{11} + \cdots - 1 ) / 5 Copy content Toggle raw display
ν2\nu^{2}== (β19+4β186β173β16+β15+2β14+6β13+5)/5 ( \beta_{19} + 4 \beta_{18} - 6 \beta_{17} - 3 \beta_{16} + \beta_{15} + 2 \beta_{14} + 6 \beta_{13} + \cdots - 5 ) / 5 Copy content Toggle raw display
ν3\nu^{3}== (4β1815β173β162β14+11β134β12+9β11+11)/5 ( 4 \beta_{18} - 15 \beta_{17} - 3 \beta_{16} - 2 \beta_{14} + 11 \beta_{13} - 4 \beta_{12} + 9 \beta_{11} + \cdots - 11 ) / 5 Copy content Toggle raw display
ν4\nu^{4}== (7β19+3β1817β17+4β168β1516β14+17β13+30)/5 ( 7 \beta_{19} + 3 \beta_{18} - 17 \beta_{17} + 4 \beta_{16} - 8 \beta_{15} - 16 \beta_{14} + 17 \beta_{13} + \cdots - 30 ) / 5 Copy content Toggle raw display
ν5\nu^{5}== (54β19+26β17+15β1636β1524β14+15β13+51)/5 ( 54 \beta_{19} + 26 \beta_{17} + 15 \beta_{16} - 36 \beta_{15} - 24 \beta_{14} + 15 \beta_{13} + \cdots - 51 ) / 5 Copy content Toggle raw display
ν6\nu^{6}== (158β1948β18+157β1729β1662β15+β1417β13++10)/5 ( 158 \beta_{19} - 48 \beta_{18} + 157 \beta_{17} - 29 \beta_{16} - 62 \beta_{15} + \beta_{14} - 17 \beta_{13} + \cdots + 10 ) / 5 Copy content Toggle raw display
ν7\nu^{7}== (223β19224β18+362β17232β16+63β15+119β14++329)/5 ( 223 \beta_{19} - 224 \beta_{18} + 362 \beta_{17} - 232 \beta_{16} + 63 \beta_{15} + 119 \beta_{14} + \cdots + 329 ) / 5 Copy content Toggle raw display
ν8\nu^{8}== (186β19449β18+351β17557β16+734β15+443β14++1190)/5 ( - 186 \beta_{19} - 449 \beta_{18} + 351 \beta_{17} - 557 \beta_{16} + 734 \beta_{15} + 443 \beta_{14} + \cdots + 1190 ) / 5 Copy content Toggle raw display
ν9\nu^{9}== (1828β19+52β18667β17434β16+2272β15+1007β14++2144)/5 ( - 1828 \beta_{19} + 52 \beta_{18} - 667 \beta_{17} - 434 \beta_{16} + 2272 \beta_{15} + 1007 \beta_{14} + \cdots + 2144 ) / 5 Copy content Toggle raw display
ν10\nu^{10}== 948β19+583β18747β17+297β16+671β15+258β14+12 - 948 \beta_{19} + 583 \beta_{18} - 747 \beta_{17} + 297 \beta_{16} + 671 \beta_{15} + 258 \beta_{14} + \cdots - 12 Copy content Toggle raw display
ν11\nu^{11}== (5169β19+7923β187946β17+6234β161904β15+12246)/5 ( - 5169 \beta_{19} + 7923 \beta_{18} - 7946 \beta_{17} + 6234 \beta_{16} - 1904 \beta_{15} + \cdots - 12246 ) / 5 Copy content Toggle raw display
ν12\nu^{12}== (8941β19+5134β183671β17+10732β1624589β159478β14+35965)/5 ( 8941 \beta_{19} + 5134 \beta_{18} - 3671 \beta_{17} + 10732 \beta_{16} - 24589 \beta_{15} - 9478 \beta_{14} + \cdots - 35965 ) / 5 Copy content Toggle raw display
ν13\nu^{13}== (56200β1931776β18+37730β17+2157β1667675β15+38451)/5 ( 56200 \beta_{19} - 31776 \beta_{18} + 37730 \beta_{17} + 2157 \beta_{16} - 67675 \beta_{15} + \cdots - 38451 ) / 5 Copy content Toggle raw display
ν14\nu^{14}== (128682β19126572β18+155413β1743481β1680008β15++87835)/5 ( 128682 \beta_{19} - 126572 \beta_{18} + 155413 \beta_{17} - 43481 \beta_{16} - 80008 \beta_{15} + \cdots + 87835 ) / 5 Copy content Toggle raw display
ν15\nu^{15}== (86219β19216840β18+301811β17140695β16+120284β15++501014)/5 ( 86219 \beta_{19} - 216840 \beta_{18} + 301811 \beta_{17} - 140695 \beta_{16} + 120284 \beta_{15} + \cdots + 501014 ) / 5 Copy content Toggle raw display
ν16\nu^{16}== (506172β19+11457β18+65602β17204689β16+838468β15++1116355)/5 ( - 506172 \beta_{19} + 11457 \beta_{18} + 65602 \beta_{17} - 204689 \beta_{16} + 838468 \beta_{15} + \cdots + 1116355 ) / 5 Copy content Toggle raw display
ν17\nu^{17}== (2274617β19+1250846β181652148β17+172408β16+2025878β15++755289)/5 ( - 2274617 \beta_{19} + 1250846 \beta_{18} - 1652148 \beta_{17} + 172408 \beta_{16} + 2025878 \beta_{15} + \cdots + 755289 ) / 5 Copy content Toggle raw display
ν18\nu^{18}== (4661261β19+4121881β186034594β17+1944033β16+1685959β15+4084120)/5 ( - 4661261 \beta_{19} + 4121881 \beta_{18} - 6034594 \beta_{17} + 1944033 \beta_{16} + 1685959 \beta_{15} + \cdots - 4084120 ) / 5 Copy content Toggle raw display
ν19\nu^{19}== (1916403β19+6797252β1810457397β17+5838451β166671978β15+18425246)/5 ( - 1916403 \beta_{19} + 6797252 \beta_{18} - 10457397 \beta_{17} + 5838451 \beta_{16} - 6671978 \beta_{15} + \cdots - 18425246 ) / 5 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) β13-\beta_{13} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
131.1
−0.885825 0.248389i
0.704508 + 1.87902i
−0.277264 1.40948i
1.66610 1.78167i
−0.634573 + 0.972731i
1.91485 + 0.738251i
−0.149850 0.244564i
1.02648 1.17527i
1.21043 + 1.15658i
−0.0748646 + 0.476059i
1.91485 0.738251i
−0.149850 + 0.244564i
1.02648 + 1.17527i
1.21043 1.15658i
−0.0748646 0.476059i
−0.885825 + 0.248389i
0.704508 1.87902i
−0.277264 + 1.40948i
1.66610 + 1.78167i
−0.634573 0.972731i
−0.309017 0.951057i −1.69698 + 1.23293i −0.809017 + 0.587785i −1.53931 + 1.62189i 1.69698 + 1.23293i −3.44863 0.809017 + 0.587785i 0.432586 1.33136i 2.01818 + 0.962774i
131.2 −0.309017 0.951057i −1.47354 + 1.07059i −0.809017 + 0.587785i 1.58287 + 1.57940i 1.47354 + 1.07059i 2.37656 0.809017 + 0.587785i 0.0981028 0.301929i 1.01296 1.99347i
131.3 −0.309017 0.951057i −0.286240 + 0.207966i −0.809017 + 0.587785i −2.22306 + 0.240824i 0.286240 + 0.207966i 2.80842 0.809017 + 0.587785i −0.888367 + 2.73411i 0.916001 + 2.03984i
131.4 −0.309017 0.951057i −0.126245 + 0.0917222i −0.809017 + 0.587785i −1.23420 1.86460i 0.126245 + 0.0917222i −2.41858 0.809017 + 0.587785i −0.919526 + 2.83001i −1.39195 + 1.74999i
131.5 −0.309017 0.951057i 1.46497 1.06437i −0.809017 + 0.587785i −0.204340 + 2.22671i −1.46497 1.06437i 2.68223 0.809017 + 0.587785i 0.0862215 0.265362i 2.18087 0.493753i
261.1 0.809017 0.587785i −0.777911 + 2.39416i 0.309017 0.951057i 2.08891 + 0.797773i 0.777911 + 2.39416i 1.47068 −0.309017 0.951057i −2.69982 1.96153i 2.15889 0.582420i
261.2 0.809017 0.587785i −0.311946 + 0.960072i 0.309017 0.951057i −2.22385 + 0.233444i 0.311946 + 0.960072i −0.400732 −0.309017 0.951057i 1.60262 + 1.16437i −1.66192 + 1.49601i
261.3 0.809017 0.587785i −0.0885960 + 0.272670i 0.309017 0.951057i −0.642903 2.14165i 0.0885960 + 0.272670i 3.26367 −0.309017 0.951057i 2.36055 + 1.71504i −1.77895 1.35474i
261.4 0.809017 0.587785i 0.370600 1.14059i 0.309017 0.951057i 1.06050 + 1.96859i −0.370600 1.14059i 1.46282 −0.309017 0.951057i 1.26345 + 0.917949i 2.01507 + 0.969274i
261.5 0.809017 0.587785i 0.925886 2.84959i 0.309017 0.951057i −1.66463 + 1.49299i −0.925886 2.84959i −3.79644 −0.309017 0.951057i −4.83582 3.51343i −0.469156 + 2.18630i
391.1 0.809017 + 0.587785i −0.777911 2.39416i 0.309017 + 0.951057i 2.08891 0.797773i 0.777911 2.39416i 1.47068 −0.309017 + 0.951057i −2.69982 + 1.96153i 2.15889 + 0.582420i
391.2 0.809017 + 0.587785i −0.311946 0.960072i 0.309017 + 0.951057i −2.22385 0.233444i 0.311946 0.960072i −0.400732 −0.309017 + 0.951057i 1.60262 1.16437i −1.66192 1.49601i
391.3 0.809017 + 0.587785i −0.0885960 0.272670i 0.309017 + 0.951057i −0.642903 + 2.14165i 0.0885960 0.272670i 3.26367 −0.309017 + 0.951057i 2.36055 1.71504i −1.77895 + 1.35474i
391.4 0.809017 + 0.587785i 0.370600 + 1.14059i 0.309017 + 0.951057i 1.06050 1.96859i −0.370600 + 1.14059i 1.46282 −0.309017 + 0.951057i 1.26345 0.917949i 2.01507 0.969274i
391.5 0.809017 + 0.587785i 0.925886 + 2.84959i 0.309017 + 0.951057i −1.66463 1.49299i −0.925886 + 2.84959i −3.79644 −0.309017 + 0.951057i −4.83582 + 3.51343i −0.469156 2.18630i
521.1 −0.309017 + 0.951057i −1.69698 1.23293i −0.809017 0.587785i −1.53931 1.62189i 1.69698 1.23293i −3.44863 0.809017 0.587785i 0.432586 + 1.33136i 2.01818 0.962774i
521.2 −0.309017 + 0.951057i −1.47354 1.07059i −0.809017 0.587785i 1.58287 1.57940i 1.47354 1.07059i 2.37656 0.809017 0.587785i 0.0981028 + 0.301929i 1.01296 + 1.99347i
521.3 −0.309017 + 0.951057i −0.286240 0.207966i −0.809017 0.587785i −2.22306 0.240824i 0.286240 0.207966i 2.80842 0.809017 0.587785i −0.888367 2.73411i 0.916001 2.03984i
521.4 −0.309017 + 0.951057i −0.126245 0.0917222i −0.809017 0.587785i −1.23420 + 1.86460i 0.126245 0.0917222i −2.41858 0.809017 0.587785i −0.919526 2.83001i −1.39195 1.74999i
521.5 −0.309017 + 0.951057i 1.46497 + 1.06437i −0.809017 0.587785i −0.204340 2.22671i −1.46497 + 1.06437i 2.68223 0.809017 0.587785i 0.0862215 + 0.265362i 2.18087 + 0.493753i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 131.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.l.b 20
25.d even 5 1 inner 650.2.l.b 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.2.l.b 20 1.a even 1 1 trivial
650.2.l.b 20 25.d even 5 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T320+4T319+19T318+59T317+174T316+367T315+676T314++1 T_{3}^{20} + 4 T_{3}^{19} + 19 T_{3}^{18} + 59 T_{3}^{17} + 174 T_{3}^{16} + 367 T_{3}^{15} + 676 T_{3}^{14} + \cdots + 1 acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4T3+T2++1)5 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{5} Copy content Toggle raw display
33 T20+4T19++1 T^{20} + 4 T^{19} + \cdots + 1 Copy content Toggle raw display
55 T20+10T19++9765625 T^{20} + 10 T^{19} + \cdots + 9765625 Copy content Toggle raw display
77 (T104T9++1595)2 (T^{10} - 4 T^{9} + \cdots + 1595)^{2} Copy content Toggle raw display
1111 T20+10T18++121 T^{20} + 10 T^{18} + \cdots + 121 Copy content Toggle raw display
1313 (T4T3+T2++1)5 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{5} Copy content Toggle raw display
1717 T20++100180081 T^{20} + \cdots + 100180081 Copy content Toggle raw display
1919 T20+4T19++297025 T^{20} + 4 T^{19} + \cdots + 297025 Copy content Toggle raw display
2323 T20+17T19++4116841 T^{20} + 17 T^{19} + \cdots + 4116841 Copy content Toggle raw display
2929 T20++32042790025 T^{20} + \cdots + 32042790025 Copy content Toggle raw display
3131 T20+2T19++3222025 T^{20} + 2 T^{19} + \cdots + 3222025 Copy content Toggle raw display
3737 T20++20992822321 T^{20} + \cdots + 20992822321 Copy content Toggle raw display
4141 T20++34279795461025 T^{20} + \cdots + 34279795461025 Copy content Toggle raw display
4343 (T10T9++3448001)2 (T^{10} - T^{9} + \cdots + 3448001)^{2} Copy content Toggle raw display
4747 T20++2715556321 T^{20} + \cdots + 2715556321 Copy content Toggle raw display
5353 T20++10 ⁣ ⁣41 T^{20} + \cdots + 10\!\cdots\!41 Copy content Toggle raw display
5959 T20++2003937516025 T^{20} + \cdots + 2003937516025 Copy content Toggle raw display
6161 T20++99 ⁣ ⁣61 T^{20} + \cdots + 99\!\cdots\!61 Copy content Toggle raw display
6767 T20++57274699680025 T^{20} + \cdots + 57274699680025 Copy content Toggle raw display
7171 T20++45 ⁣ ⁣25 T^{20} + \cdots + 45\!\cdots\!25 Copy content Toggle raw display
7373 T20++83 ⁣ ⁣21 T^{20} + \cdots + 83\!\cdots\!21 Copy content Toggle raw display
7979 T20++44 ⁣ ⁣25 T^{20} + \cdots + 44\!\cdots\!25 Copy content Toggle raw display
8383 T20++10538049025 T^{20} + \cdots + 10538049025 Copy content Toggle raw display
8989 T20++46 ⁣ ⁣25 T^{20} + \cdots + 46\!\cdots\!25 Copy content Toggle raw display
9797 T20++16832713467361 T^{20} + \cdots + 16832713467361 Copy content Toggle raw display
show more
show less