Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [650,2,Mod(131,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.131");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 650.l (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
131.1 |
|
−0.309017 | − | 0.951057i | −1.69698 | + | 1.23293i | −0.809017 | + | 0.587785i | −1.53931 | + | 1.62189i | 1.69698 | + | 1.23293i | −3.44863 | 0.809017 | + | 0.587785i | 0.432586 | − | 1.33136i | 2.01818 | + | 0.962774i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
131.2 | −0.309017 | − | 0.951057i | −1.47354 | + | 1.07059i | −0.809017 | + | 0.587785i | 1.58287 | + | 1.57940i | 1.47354 | + | 1.07059i | 2.37656 | 0.809017 | + | 0.587785i | 0.0981028 | − | 0.301929i | 1.01296 | − | 1.99347i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
131.3 | −0.309017 | − | 0.951057i | −0.286240 | + | 0.207966i | −0.809017 | + | 0.587785i | −2.22306 | + | 0.240824i | 0.286240 | + | 0.207966i | 2.80842 | 0.809017 | + | 0.587785i | −0.888367 | + | 2.73411i | 0.916001 | + | 2.03984i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
131.4 | −0.309017 | − | 0.951057i | −0.126245 | + | 0.0917222i | −0.809017 | + | 0.587785i | −1.23420 | − | 1.86460i | 0.126245 | + | 0.0917222i | −2.41858 | 0.809017 | + | 0.587785i | −0.919526 | + | 2.83001i | −1.39195 | + | 1.74999i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
131.5 | −0.309017 | − | 0.951057i | 1.46497 | − | 1.06437i | −0.809017 | + | 0.587785i | −0.204340 | + | 2.22671i | −1.46497 | − | 1.06437i | 2.68223 | 0.809017 | + | 0.587785i | 0.0862215 | − | 0.265362i | 2.18087 | − | 0.493753i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
261.1 | 0.809017 | − | 0.587785i | −0.777911 | + | 2.39416i | 0.309017 | − | 0.951057i | 2.08891 | + | 0.797773i | 0.777911 | + | 2.39416i | 1.47068 | −0.309017 | − | 0.951057i | −2.69982 | − | 1.96153i | 2.15889 | − | 0.582420i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
261.2 | 0.809017 | − | 0.587785i | −0.311946 | + | 0.960072i | 0.309017 | − | 0.951057i | −2.22385 | + | 0.233444i | 0.311946 | + | 0.960072i | −0.400732 | −0.309017 | − | 0.951057i | 1.60262 | + | 1.16437i | −1.66192 | + | 1.49601i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
261.3 | 0.809017 | − | 0.587785i | −0.0885960 | + | 0.272670i | 0.309017 | − | 0.951057i | −0.642903 | − | 2.14165i | 0.0885960 | + | 0.272670i | 3.26367 | −0.309017 | − | 0.951057i | 2.36055 | + | 1.71504i | −1.77895 | − | 1.35474i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
261.4 | 0.809017 | − | 0.587785i | 0.370600 | − | 1.14059i | 0.309017 | − | 0.951057i | 1.06050 | + | 1.96859i | −0.370600 | − | 1.14059i | 1.46282 | −0.309017 | − | 0.951057i | 1.26345 | + | 0.917949i | 2.01507 | + | 0.969274i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
261.5 | 0.809017 | − | 0.587785i | 0.925886 | − | 2.84959i | 0.309017 | − | 0.951057i | −1.66463 | + | 1.49299i | −0.925886 | − | 2.84959i | −3.79644 | −0.309017 | − | 0.951057i | −4.83582 | − | 3.51343i | −0.469156 | + | 2.18630i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
391.1 | 0.809017 | + | 0.587785i | −0.777911 | − | 2.39416i | 0.309017 | + | 0.951057i | 2.08891 | − | 0.797773i | 0.777911 | − | 2.39416i | 1.47068 | −0.309017 | + | 0.951057i | −2.69982 | + | 1.96153i | 2.15889 | + | 0.582420i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
391.2 | 0.809017 | + | 0.587785i | −0.311946 | − | 0.960072i | 0.309017 | + | 0.951057i | −2.22385 | − | 0.233444i | 0.311946 | − | 0.960072i | −0.400732 | −0.309017 | + | 0.951057i | 1.60262 | − | 1.16437i | −1.66192 | − | 1.49601i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
391.3 | 0.809017 | + | 0.587785i | −0.0885960 | − | 0.272670i | 0.309017 | + | 0.951057i | −0.642903 | + | 2.14165i | 0.0885960 | − | 0.272670i | 3.26367 | −0.309017 | + | 0.951057i | 2.36055 | − | 1.71504i | −1.77895 | + | 1.35474i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
391.4 | 0.809017 | + | 0.587785i | 0.370600 | + | 1.14059i | 0.309017 | + | 0.951057i | 1.06050 | − | 1.96859i | −0.370600 | + | 1.14059i | 1.46282 | −0.309017 | + | 0.951057i | 1.26345 | − | 0.917949i | 2.01507 | − | 0.969274i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
391.5 | 0.809017 | + | 0.587785i | 0.925886 | + | 2.84959i | 0.309017 | + | 0.951057i | −1.66463 | − | 1.49299i | −0.925886 | + | 2.84959i | −3.79644 | −0.309017 | + | 0.951057i | −4.83582 | + | 3.51343i | −0.469156 | − | 2.18630i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
521.1 | −0.309017 | + | 0.951057i | −1.69698 | − | 1.23293i | −0.809017 | − | 0.587785i | −1.53931 | − | 1.62189i | 1.69698 | − | 1.23293i | −3.44863 | 0.809017 | − | 0.587785i | 0.432586 | + | 1.33136i | 2.01818 | − | 0.962774i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
521.2 | −0.309017 | + | 0.951057i | −1.47354 | − | 1.07059i | −0.809017 | − | 0.587785i | 1.58287 | − | 1.57940i | 1.47354 | − | 1.07059i | 2.37656 | 0.809017 | − | 0.587785i | 0.0981028 | + | 0.301929i | 1.01296 | + | 1.99347i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
521.3 | −0.309017 | + | 0.951057i | −0.286240 | − | 0.207966i | −0.809017 | − | 0.587785i | −2.22306 | − | 0.240824i | 0.286240 | − | 0.207966i | 2.80842 | 0.809017 | − | 0.587785i | −0.888367 | − | 2.73411i | 0.916001 | − | 2.03984i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
521.4 | −0.309017 | + | 0.951057i | −0.126245 | − | 0.0917222i | −0.809017 | − | 0.587785i | −1.23420 | + | 1.86460i | 0.126245 | − | 0.0917222i | −2.41858 | 0.809017 | − | 0.587785i | −0.919526 | − | 2.83001i | −1.39195 | − | 1.74999i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
521.5 | −0.309017 | + | 0.951057i | 1.46497 | + | 1.06437i | −0.809017 | − | 0.587785i | −0.204340 | − | 2.22671i | −1.46497 | + | 1.06437i | 2.68223 | 0.809017 | − | 0.587785i | 0.0862215 | + | 0.265362i | 2.18087 | + | 0.493753i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 650.2.l.b | ✓ | 20 |
25.d | even | 5 | 1 | inner | 650.2.l.b | ✓ | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
650.2.l.b | ✓ | 20 | 1.a | even | 1 | 1 | trivial |
650.2.l.b | ✓ | 20 | 25.d | even | 5 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .