Properties

Label 650.2.l.b
Level $650$
Weight $2$
Character orbit 650.l
Analytic conductor $5.190$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(131,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.131");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.l (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 9 x^{19} + 43 x^{18} - 132 x^{17} + 291 x^{16} - 480 x^{15} + 624 x^{14} - 653 x^{13} + \cdots + 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{10} q^{2} - \beta_{2} q^{3} - \beta_{13} q^{4} + (\beta_{18} - \beta_{17} + \beta_{11} + \cdots - 1) q^{5} - \beta_{6} q^{6} + (\beta_{12} - \beta_{9} - \beta_{8} + \cdots + 1) q^{7} + ( - \beta_{13} - \beta_{11} - \beta_{10} + 1) q^{8}+ \cdots + ( - 2 \beta_{18} + \beta_{17} + \cdots + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{2} - 4 q^{3} - 5 q^{4} - 10 q^{5} + 4 q^{6} + 8 q^{7} + 5 q^{8} - 7 q^{9} + 10 q^{10} + q^{12} + 5 q^{13} + 2 q^{14} + 5 q^{15} - 5 q^{16} + 2 q^{18} - 4 q^{19} + 5 q^{20} + 3 q^{21} - 5 q^{22}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 9 x^{19} + 43 x^{18} - 132 x^{17} + 291 x^{16} - 480 x^{15} + 624 x^{14} - 653 x^{13} + \cdots + 31 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 41602842506613 \nu^{19} + 310044321766184 \nu^{18} + \cdots - 23\!\cdots\!85 ) / 12\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 19\!\cdots\!17 \nu^{19} + \cdots + 62\!\cdots\!62 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 11\!\cdots\!06 \nu^{19} + \cdots + 12\!\cdots\!78 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 17\!\cdots\!19 \nu^{19} + \cdots - 60\!\cdots\!03 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 18\!\cdots\!64 \nu^{19} + \cdots - 23\!\cdots\!10 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 32\!\cdots\!76 \nu^{19} + \cdots + 20\!\cdots\!67 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 32\!\cdots\!58 \nu^{19} + \cdots + 98\!\cdots\!48 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 56\!\cdots\!52 \nu^{19} + \cdots + 28\!\cdots\!12 ) / 60\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 35\!\cdots\!83 \nu^{19} + \cdots + 13\!\cdots\!94 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 39\!\cdots\!01 \nu^{19} + \cdots + 35\!\cdots\!68 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 40\!\cdots\!11 \nu^{19} + \cdots + 23\!\cdots\!92 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 62\!\cdots\!48 \nu^{19} + \cdots + 75\!\cdots\!37 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 65\!\cdots\!33 \nu^{19} + \cdots - 20\!\cdots\!74 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 66\!\cdots\!95 \nu^{19} + \cdots + 12\!\cdots\!63 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 84\!\cdots\!50 \nu^{19} + \cdots + 28\!\cdots\!73 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 12\!\cdots\!88 \nu^{19} + \cdots + 19\!\cdots\!80 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 12\!\cdots\!05 \nu^{19} + \cdots + 32\!\cdots\!78 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 13\!\cdots\!75 \nu^{19} + \cdots + 47\!\cdots\!12 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 20\!\cdots\!76 \nu^{19} + \cdots - 60\!\cdots\!65 ) / 36\!\cdots\!75 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{19} + 3 \beta_{18} - \beta_{17} - \beta_{16} + \beta_{15} + 2 \beta_{13} + 2 \beta_{11} + \cdots - 1 ) / 5 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{19} + 4 \beta_{18} - 6 \beta_{17} - 3 \beta_{16} + \beta_{15} + 2 \beta_{14} + 6 \beta_{13} + \cdots - 5 ) / 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4 \beta_{18} - 15 \beta_{17} - 3 \beta_{16} - 2 \beta_{14} + 11 \beta_{13} - 4 \beta_{12} + 9 \beta_{11} + \cdots - 11 ) / 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 7 \beta_{19} + 3 \beta_{18} - 17 \beta_{17} + 4 \beta_{16} - 8 \beta_{15} - 16 \beta_{14} + 17 \beta_{13} + \cdots - 30 ) / 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 54 \beta_{19} + 26 \beta_{17} + 15 \beta_{16} - 36 \beta_{15} - 24 \beta_{14} + 15 \beta_{13} + \cdots - 51 ) / 5 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 158 \beta_{19} - 48 \beta_{18} + 157 \beta_{17} - 29 \beta_{16} - 62 \beta_{15} + \beta_{14} - 17 \beta_{13} + \cdots + 10 ) / 5 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 223 \beta_{19} - 224 \beta_{18} + 362 \beta_{17} - 232 \beta_{16} + 63 \beta_{15} + 119 \beta_{14} + \cdots + 329 ) / 5 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 186 \beta_{19} - 449 \beta_{18} + 351 \beta_{17} - 557 \beta_{16} + 734 \beta_{15} + 443 \beta_{14} + \cdots + 1190 ) / 5 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 1828 \beta_{19} + 52 \beta_{18} - 667 \beta_{17} - 434 \beta_{16} + 2272 \beta_{15} + 1007 \beta_{14} + \cdots + 2144 ) / 5 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 948 \beta_{19} + 583 \beta_{18} - 747 \beta_{17} + 297 \beta_{16} + 671 \beta_{15} + 258 \beta_{14} + \cdots - 12 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 5169 \beta_{19} + 7923 \beta_{18} - 7946 \beta_{17} + 6234 \beta_{16} - 1904 \beta_{15} + \cdots - 12246 ) / 5 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 8941 \beta_{19} + 5134 \beta_{18} - 3671 \beta_{17} + 10732 \beta_{16} - 24589 \beta_{15} - 9478 \beta_{14} + \cdots - 35965 ) / 5 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 56200 \beta_{19} - 31776 \beta_{18} + 37730 \beta_{17} + 2157 \beta_{16} - 67675 \beta_{15} + \cdots - 38451 ) / 5 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 128682 \beta_{19} - 126572 \beta_{18} + 155413 \beta_{17} - 43481 \beta_{16} - 80008 \beta_{15} + \cdots + 87835 ) / 5 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 86219 \beta_{19} - 216840 \beta_{18} + 301811 \beta_{17} - 140695 \beta_{16} + 120284 \beta_{15} + \cdots + 501014 ) / 5 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( - 506172 \beta_{19} + 11457 \beta_{18} + 65602 \beta_{17} - 204689 \beta_{16} + 838468 \beta_{15} + \cdots + 1116355 ) / 5 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( - 2274617 \beta_{19} + 1250846 \beta_{18} - 1652148 \beta_{17} + 172408 \beta_{16} + 2025878 \beta_{15} + \cdots + 755289 ) / 5 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( - 4661261 \beta_{19} + 4121881 \beta_{18} - 6034594 \beta_{17} + 1944033 \beta_{16} + 1685959 \beta_{15} + \cdots - 4084120 ) / 5 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( - 1916403 \beta_{19} + 6797252 \beta_{18} - 10457397 \beta_{17} + 5838451 \beta_{16} - 6671978 \beta_{15} + \cdots - 18425246 ) / 5 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-\beta_{13}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
131.1
−0.885825 0.248389i
0.704508 + 1.87902i
−0.277264 1.40948i
1.66610 1.78167i
−0.634573 + 0.972731i
1.91485 + 0.738251i
−0.149850 0.244564i
1.02648 1.17527i
1.21043 + 1.15658i
−0.0748646 + 0.476059i
1.91485 0.738251i
−0.149850 + 0.244564i
1.02648 + 1.17527i
1.21043 1.15658i
−0.0748646 0.476059i
−0.885825 + 0.248389i
0.704508 1.87902i
−0.277264 + 1.40948i
1.66610 + 1.78167i
−0.634573 0.972731i
−0.309017 0.951057i −1.69698 + 1.23293i −0.809017 + 0.587785i −1.53931 + 1.62189i 1.69698 + 1.23293i −3.44863 0.809017 + 0.587785i 0.432586 1.33136i 2.01818 + 0.962774i
131.2 −0.309017 0.951057i −1.47354 + 1.07059i −0.809017 + 0.587785i 1.58287 + 1.57940i 1.47354 + 1.07059i 2.37656 0.809017 + 0.587785i 0.0981028 0.301929i 1.01296 1.99347i
131.3 −0.309017 0.951057i −0.286240 + 0.207966i −0.809017 + 0.587785i −2.22306 + 0.240824i 0.286240 + 0.207966i 2.80842 0.809017 + 0.587785i −0.888367 + 2.73411i 0.916001 + 2.03984i
131.4 −0.309017 0.951057i −0.126245 + 0.0917222i −0.809017 + 0.587785i −1.23420 1.86460i 0.126245 + 0.0917222i −2.41858 0.809017 + 0.587785i −0.919526 + 2.83001i −1.39195 + 1.74999i
131.5 −0.309017 0.951057i 1.46497 1.06437i −0.809017 + 0.587785i −0.204340 + 2.22671i −1.46497 1.06437i 2.68223 0.809017 + 0.587785i 0.0862215 0.265362i 2.18087 0.493753i
261.1 0.809017 0.587785i −0.777911 + 2.39416i 0.309017 0.951057i 2.08891 + 0.797773i 0.777911 + 2.39416i 1.47068 −0.309017 0.951057i −2.69982 1.96153i 2.15889 0.582420i
261.2 0.809017 0.587785i −0.311946 + 0.960072i 0.309017 0.951057i −2.22385 + 0.233444i 0.311946 + 0.960072i −0.400732 −0.309017 0.951057i 1.60262 + 1.16437i −1.66192 + 1.49601i
261.3 0.809017 0.587785i −0.0885960 + 0.272670i 0.309017 0.951057i −0.642903 2.14165i 0.0885960 + 0.272670i 3.26367 −0.309017 0.951057i 2.36055 + 1.71504i −1.77895 1.35474i
261.4 0.809017 0.587785i 0.370600 1.14059i 0.309017 0.951057i 1.06050 + 1.96859i −0.370600 1.14059i 1.46282 −0.309017 0.951057i 1.26345 + 0.917949i 2.01507 + 0.969274i
261.5 0.809017 0.587785i 0.925886 2.84959i 0.309017 0.951057i −1.66463 + 1.49299i −0.925886 2.84959i −3.79644 −0.309017 0.951057i −4.83582 3.51343i −0.469156 + 2.18630i
391.1 0.809017 + 0.587785i −0.777911 2.39416i 0.309017 + 0.951057i 2.08891 0.797773i 0.777911 2.39416i 1.47068 −0.309017 + 0.951057i −2.69982 + 1.96153i 2.15889 + 0.582420i
391.2 0.809017 + 0.587785i −0.311946 0.960072i 0.309017 + 0.951057i −2.22385 0.233444i 0.311946 0.960072i −0.400732 −0.309017 + 0.951057i 1.60262 1.16437i −1.66192 1.49601i
391.3 0.809017 + 0.587785i −0.0885960 0.272670i 0.309017 + 0.951057i −0.642903 + 2.14165i 0.0885960 0.272670i 3.26367 −0.309017 + 0.951057i 2.36055 1.71504i −1.77895 + 1.35474i
391.4 0.809017 + 0.587785i 0.370600 + 1.14059i 0.309017 + 0.951057i 1.06050 1.96859i −0.370600 + 1.14059i 1.46282 −0.309017 + 0.951057i 1.26345 0.917949i 2.01507 0.969274i
391.5 0.809017 + 0.587785i 0.925886 + 2.84959i 0.309017 + 0.951057i −1.66463 1.49299i −0.925886 + 2.84959i −3.79644 −0.309017 + 0.951057i −4.83582 + 3.51343i −0.469156 2.18630i
521.1 −0.309017 + 0.951057i −1.69698 1.23293i −0.809017 0.587785i −1.53931 1.62189i 1.69698 1.23293i −3.44863 0.809017 0.587785i 0.432586 + 1.33136i 2.01818 0.962774i
521.2 −0.309017 + 0.951057i −1.47354 1.07059i −0.809017 0.587785i 1.58287 1.57940i 1.47354 1.07059i 2.37656 0.809017 0.587785i 0.0981028 + 0.301929i 1.01296 + 1.99347i
521.3 −0.309017 + 0.951057i −0.286240 0.207966i −0.809017 0.587785i −2.22306 0.240824i 0.286240 0.207966i 2.80842 0.809017 0.587785i −0.888367 2.73411i 0.916001 2.03984i
521.4 −0.309017 + 0.951057i −0.126245 0.0917222i −0.809017 0.587785i −1.23420 + 1.86460i 0.126245 0.0917222i −2.41858 0.809017 0.587785i −0.919526 2.83001i −1.39195 1.74999i
521.5 −0.309017 + 0.951057i 1.46497 + 1.06437i −0.809017 0.587785i −0.204340 2.22671i −1.46497 + 1.06437i 2.68223 0.809017 0.587785i 0.0862215 + 0.265362i 2.18087 + 0.493753i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 131.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.l.b 20
25.d even 5 1 inner 650.2.l.b 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.2.l.b 20 1.a even 1 1 trivial
650.2.l.b 20 25.d even 5 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{20} + 4 T_{3}^{19} + 19 T_{3}^{18} + 59 T_{3}^{17} + 174 T_{3}^{16} + 367 T_{3}^{15} + 676 T_{3}^{14} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{5} \) Copy content Toggle raw display
$3$ \( T^{20} + 4 T^{19} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{20} + 10 T^{19} + \cdots + 9765625 \) Copy content Toggle raw display
$7$ \( (T^{10} - 4 T^{9} + \cdots + 1595)^{2} \) Copy content Toggle raw display
$11$ \( T^{20} + 10 T^{18} + \cdots + 121 \) Copy content Toggle raw display
$13$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{5} \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 100180081 \) Copy content Toggle raw display
$19$ \( T^{20} + 4 T^{19} + \cdots + 297025 \) Copy content Toggle raw display
$23$ \( T^{20} + 17 T^{19} + \cdots + 4116841 \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 32042790025 \) Copy content Toggle raw display
$31$ \( T^{20} + 2 T^{19} + \cdots + 3222025 \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 20992822321 \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 34279795461025 \) Copy content Toggle raw display
$43$ \( (T^{10} - T^{9} + \cdots + 3448001)^{2} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 2715556321 \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 10\!\cdots\!41 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 2003937516025 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 99\!\cdots\!61 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 57274699680025 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 45\!\cdots\!25 \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 83\!\cdots\!21 \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 44\!\cdots\!25 \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 10538049025 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 46\!\cdots\!25 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 16832713467361 \) Copy content Toggle raw display
show more
show less