L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.126 − 0.0917i)3-s + (−0.809 − 0.587i)4-s + (−1.23 + 1.86i)5-s + (0.126 − 0.0917i)6-s − 2.41·7-s + (0.809 − 0.587i)8-s + (−0.919 − 2.83i)9-s + (−1.39 − 1.74i)10-s + (−0.733 + 2.25i)11-s + (0.0482 + 0.148i)12-s + (−0.309 − 0.951i)13-s + (0.747 − 2.30i)14-s + (0.326 − 0.122i)15-s + (0.309 + 0.951i)16-s + (4.87 − 3.54i)17-s + ⋯ |
L(s) = 1 | + (−0.218 + 0.672i)2-s + (−0.0728 − 0.0529i)3-s + (−0.404 − 0.293i)4-s + (−0.551 + 0.833i)5-s + (0.0515 − 0.0374i)6-s − 0.914·7-s + (0.286 − 0.207i)8-s + (−0.306 − 0.943i)9-s + (−0.440 − 0.553i)10-s + (−0.221 + 0.680i)11-s + (0.0139 + 0.0428i)12-s + (−0.0857 − 0.263i)13-s + (0.199 − 0.614i)14-s + (0.0843 − 0.0315i)15-s + (0.0772 + 0.237i)16-s + (1.18 − 0.858i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.607 + 0.794i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.607 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.524911 - 0.259439i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.524911 - 0.259439i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 - 0.951i)T \) |
| 5 | \( 1 + (1.23 - 1.86i)T \) |
| 13 | \( 1 + (0.309 + 0.951i)T \) |
good | 3 | \( 1 + (0.126 + 0.0917i)T + (0.927 + 2.85i)T^{2} \) |
| 7 | \( 1 + 2.41T + 7T^{2} \) |
| 11 | \( 1 + (0.733 - 2.25i)T + (-8.89 - 6.46i)T^{2} \) |
| 17 | \( 1 + (-4.87 + 3.54i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.61 + 1.17i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-2.62 + 8.08i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-0.670 - 0.486i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (7.09 - 5.15i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.19 + 3.66i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (2.20 + 6.78i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 12.5T + 43T^{2} \) |
| 47 | \( 1 + (4.58 + 3.32i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (5.91 + 4.29i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.383 - 1.17i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-1.27 + 3.91i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + (2.06 - 1.49i)T + (20.7 - 63.7i)T^{2} \) |
| 71 | \( 1 + (5.50 + 4.00i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.613 - 1.88i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-7.13 - 5.18i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.58 + 4.78i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + (-0.650 + 2.00i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (10.7 + 7.77i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26117637878456632502344539752, −9.533958669318932747459062446546, −8.702106821830962555954800910341, −7.46507188014734972757837760917, −6.99086989819347481350419937743, −6.18233667125640657547976365631, −5.09597023776910059268099252596, −3.70453804185645627281125363715, −2.84160598927255381882949858309, −0.36792676686944837507364858791,
1.38107114072406274861837328251, 3.06492051627789575366017243539, 3.88604686805847829570970358424, 5.17056738922424776207964746051, 5.92067566326939009496847998892, 7.60549602290586884695644806787, 8.032526610606714870170725592701, 9.158942638859230275144792197195, 9.725936095209995023132323693832, 10.78669637673034567890850071216