Properties

Label 2-650-25.21-c1-0-13
Degree 22
Conductor 650650
Sign 0.607+0.794i0.607 + 0.794i
Analytic cond. 5.190275.19027
Root an. cond. 2.278212.27821
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.309 + 0.951i)2-s + (−0.126 − 0.0917i)3-s + (−0.809 − 0.587i)4-s + (−1.23 + 1.86i)5-s + (0.126 − 0.0917i)6-s − 2.41·7-s + (0.809 − 0.587i)8-s + (−0.919 − 2.83i)9-s + (−1.39 − 1.74i)10-s + (−0.733 + 2.25i)11-s + (0.0482 + 0.148i)12-s + (−0.309 − 0.951i)13-s + (0.747 − 2.30i)14-s + (0.326 − 0.122i)15-s + (0.309 + 0.951i)16-s + (4.87 − 3.54i)17-s + ⋯
L(s)  = 1  + (−0.218 + 0.672i)2-s + (−0.0728 − 0.0529i)3-s + (−0.404 − 0.293i)4-s + (−0.551 + 0.833i)5-s + (0.0515 − 0.0374i)6-s − 0.914·7-s + (0.286 − 0.207i)8-s + (−0.306 − 0.943i)9-s + (−0.440 − 0.553i)10-s + (−0.221 + 0.680i)11-s + (0.0139 + 0.0428i)12-s + (−0.0857 − 0.263i)13-s + (0.199 − 0.614i)14-s + (0.0843 − 0.0315i)15-s + (0.0772 + 0.237i)16-s + (1.18 − 0.858i)17-s + ⋯

Functional equation

Λ(s)=(650s/2ΓC(s)L(s)=((0.607+0.794i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.607 + 0.794i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(650s/2ΓC(s+1/2)L(s)=((0.607+0.794i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.607 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 650650    =    252132 \cdot 5^{2} \cdot 13
Sign: 0.607+0.794i0.607 + 0.794i
Analytic conductor: 5.190275.19027
Root analytic conductor: 2.278212.27821
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ650(521,)\chi_{650} (521, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 650, ( :1/2), 0.607+0.794i)(2,\ 650,\ (\ :1/2),\ 0.607 + 0.794i)

Particular Values

L(1)L(1) \approx 0.5249110.259439i0.524911 - 0.259439i
L(12)L(\frac12) \approx 0.5249110.259439i0.524911 - 0.259439i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
5 1+(1.231.86i)T 1 + (1.23 - 1.86i)T
13 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
good3 1+(0.126+0.0917i)T+(0.927+2.85i)T2 1 + (0.126 + 0.0917i)T + (0.927 + 2.85i)T^{2}
7 1+2.41T+7T2 1 + 2.41T + 7T^{2}
11 1+(0.7332.25i)T+(8.896.46i)T2 1 + (0.733 - 2.25i)T + (-8.89 - 6.46i)T^{2}
17 1+(4.87+3.54i)T+(5.2516.1i)T2 1 + (-4.87 + 3.54i)T + (5.25 - 16.1i)T^{2}
19 1+(1.61+1.17i)T+(5.8718.0i)T2 1 + (-1.61 + 1.17i)T + (5.87 - 18.0i)T^{2}
23 1+(2.62+8.08i)T+(18.613.5i)T2 1 + (-2.62 + 8.08i)T + (-18.6 - 13.5i)T^{2}
29 1+(0.6700.486i)T+(8.96+27.5i)T2 1 + (-0.670 - 0.486i)T + (8.96 + 27.5i)T^{2}
31 1+(7.095.15i)T+(9.5729.4i)T2 1 + (7.09 - 5.15i)T + (9.57 - 29.4i)T^{2}
37 1+(1.19+3.66i)T+(29.9+21.7i)T2 1 + (1.19 + 3.66i)T + (-29.9 + 21.7i)T^{2}
41 1+(2.20+6.78i)T+(33.1+24.0i)T2 1 + (2.20 + 6.78i)T + (-33.1 + 24.0i)T^{2}
43 112.5T+43T2 1 - 12.5T + 43T^{2}
47 1+(4.58+3.32i)T+(14.5+44.6i)T2 1 + (4.58 + 3.32i)T + (14.5 + 44.6i)T^{2}
53 1+(5.91+4.29i)T+(16.3+50.4i)T2 1 + (5.91 + 4.29i)T + (16.3 + 50.4i)T^{2}
59 1+(0.3831.17i)T+(47.7+34.6i)T2 1 + (-0.383 - 1.17i)T + (-47.7 + 34.6i)T^{2}
61 1+(1.27+3.91i)T+(49.335.8i)T2 1 + (-1.27 + 3.91i)T + (-49.3 - 35.8i)T^{2}
67 1+(2.061.49i)T+(20.763.7i)T2 1 + (2.06 - 1.49i)T + (20.7 - 63.7i)T^{2}
71 1+(5.50+4.00i)T+(21.9+67.5i)T2 1 + (5.50 + 4.00i)T + (21.9 + 67.5i)T^{2}
73 1+(0.6131.88i)T+(59.042.9i)T2 1 + (0.613 - 1.88i)T + (-59.0 - 42.9i)T^{2}
79 1+(7.135.18i)T+(24.4+75.1i)T2 1 + (-7.13 - 5.18i)T + (24.4 + 75.1i)T^{2}
83 1+(6.58+4.78i)T+(25.678.9i)T2 1 + (-6.58 + 4.78i)T + (25.6 - 78.9i)T^{2}
89 1+(0.650+2.00i)T+(72.052.3i)T2 1 + (-0.650 + 2.00i)T + (-72.0 - 52.3i)T^{2}
97 1+(10.7+7.77i)T+(29.9+92.2i)T2 1 + (10.7 + 7.77i)T + (29.9 + 92.2i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.26117637878456632502344539752, −9.533958669318932747459062446546, −8.702106821830962555954800910341, −7.46507188014734972757837760917, −6.99086989819347481350419937743, −6.18233667125640657547976365631, −5.09597023776910059268099252596, −3.70453804185645627281125363715, −2.84160598927255381882949858309, −0.36792676686944837507364858791, 1.38107114072406274861837328251, 3.06492051627789575366017243539, 3.88604686805847829570970358424, 5.17056738922424776207964746051, 5.92067566326939009496847998892, 7.60549602290586884695644806787, 8.032526610606714870170725592701, 9.158942638859230275144792197195, 9.725936095209995023132323693832, 10.78669637673034567890850071216

Graph of the ZZ-function along the critical line