L(s) = 1 | + (0.809 + 0.587i)2-s + (0.925 + 2.84i)3-s + (0.309 + 0.951i)4-s + (−1.66 − 1.49i)5-s + (−0.925 + 2.84i)6-s − 3.79·7-s + (−0.309 + 0.951i)8-s + (−4.83 + 3.51i)9-s + (−0.469 − 2.18i)10-s + (0.674 + 0.490i)11-s + (−2.42 + 1.76i)12-s + (0.809 − 0.587i)13-s + (−3.07 − 2.23i)14-s + (2.71 − 6.12i)15-s + (−0.809 + 0.587i)16-s + (−1.23 + 3.81i)17-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (0.534 + 1.64i)3-s + (0.154 + 0.475i)4-s + (−0.744 − 0.667i)5-s + (−0.377 + 1.16i)6-s − 1.43·7-s + (−0.109 + 0.336i)8-s + (−1.61 + 1.17i)9-s + (−0.148 − 0.691i)10-s + (0.203 + 0.147i)11-s + (−0.699 + 0.508i)12-s + (0.224 − 0.163i)13-s + (−0.820 − 0.596i)14-s + (0.700 − 1.58i)15-s + (−0.202 + 0.146i)16-s + (−0.300 + 0.925i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.956 + 0.292i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.956 + 0.292i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.188601 - 1.26024i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.188601 - 1.26024i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (1.66 + 1.49i)T \) |
| 13 | \( 1 + (-0.809 + 0.587i)T \) |
good | 3 | \( 1 + (-0.925 - 2.84i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + 3.79T + 7T^{2} \) |
| 11 | \( 1 + (-0.674 - 0.490i)T + (3.39 + 10.4i)T^{2} \) |
| 17 | \( 1 + (1.23 - 3.81i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (0.471 - 1.44i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (4.15 + 3.01i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (-2.30 - 7.09i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (0.254 - 0.782i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.288 - 0.209i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-4.84 + 3.52i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 6.99T + 43T^{2} \) |
| 47 | \( 1 + (0.471 + 1.45i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.50 - 10.7i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-0.420 + 0.305i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-11.4 - 8.33i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (2.74 - 8.43i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (3.24 + 9.98i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (12.1 + 8.83i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (2.39 + 7.36i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (2.02 - 6.24i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + (-11.1 - 8.10i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-5.12 - 15.7i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73073240502082675859182920542, −10.20066154079190193836080853446, −9.046170493275370221978982878520, −8.752584615674140906454848386697, −7.63401469801438262658826046919, −6.34188892191475988573333557641, −5.39994606916419375694723823513, −4.21723671496265788476972890598, −3.86542618384766533533676293962, −2.88884822584651429296405490779,
0.51052454950118445178715951548, 2.34006292144564508794835021354, 3.06750634929521965497408927903, 4.02996355370765609533418446898, 5.94321735110715372249069042882, 6.59337699386899201191169202593, 7.21293590729376941550983145851, 8.092974114787699915602154883230, 9.207141763642038394234666848385, 10.09517725561544332889673481138