L(s) = 1 | + (0.809 + 0.587i)2-s + (0.925 + 2.84i)3-s + (0.309 + 0.951i)4-s + (−1.66 − 1.49i)5-s + (−0.925 + 2.84i)6-s − 3.79·7-s + (−0.309 + 0.951i)8-s + (−4.83 + 3.51i)9-s + (−0.469 − 2.18i)10-s + (0.674 + 0.490i)11-s + (−2.42 + 1.76i)12-s + (0.809 − 0.587i)13-s + (−3.07 − 2.23i)14-s + (2.71 − 6.12i)15-s + (−0.809 + 0.587i)16-s + (−1.23 + 3.81i)17-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (0.534 + 1.64i)3-s + (0.154 + 0.475i)4-s + (−0.744 − 0.667i)5-s + (−0.377 + 1.16i)6-s − 1.43·7-s + (−0.109 + 0.336i)8-s + (−1.61 + 1.17i)9-s + (−0.148 − 0.691i)10-s + (0.203 + 0.147i)11-s + (−0.699 + 0.508i)12-s + (0.224 − 0.163i)13-s + (−0.820 − 0.596i)14-s + (0.700 − 1.58i)15-s + (−0.202 + 0.146i)16-s + (−0.300 + 0.925i)17-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.956+0.292i)Λ(2−s)
Λ(s)=(=(650s/2ΓC(s+1/2)L(s)(−0.956+0.292i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.956+0.292i
|
Analytic conductor: |
5.19027 |
Root analytic conductor: |
2.27821 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :1/2), −0.956+0.292i)
|
Particular Values
L(1) |
≈ |
0.188601−1.26024i |
L(21) |
≈ |
0.188601−1.26024i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809−0.587i)T |
| 5 | 1+(1.66+1.49i)T |
| 13 | 1+(−0.809+0.587i)T |
good | 3 | 1+(−0.925−2.84i)T+(−2.42+1.76i)T2 |
| 7 | 1+3.79T+7T2 |
| 11 | 1+(−0.674−0.490i)T+(3.39+10.4i)T2 |
| 17 | 1+(1.23−3.81i)T+(−13.7−9.99i)T2 |
| 19 | 1+(0.471−1.44i)T+(−15.3−11.1i)T2 |
| 23 | 1+(4.15+3.01i)T+(7.10+21.8i)T2 |
| 29 | 1+(−2.30−7.09i)T+(−23.4+17.0i)T2 |
| 31 | 1+(0.254−0.782i)T+(−25.0−18.2i)T2 |
| 37 | 1+(0.288−0.209i)T+(11.4−35.1i)T2 |
| 41 | 1+(−4.84+3.52i)T+(12.6−38.9i)T2 |
| 43 | 1−6.99T+43T2 |
| 47 | 1+(0.471+1.45i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−3.50−10.7i)T+(−42.8+31.1i)T2 |
| 59 | 1+(−0.420+0.305i)T+(18.2−56.1i)T2 |
| 61 | 1+(−11.4−8.33i)T+(18.8+58.0i)T2 |
| 67 | 1+(2.74−8.43i)T+(−54.2−39.3i)T2 |
| 71 | 1+(3.24+9.98i)T+(−57.4+41.7i)T2 |
| 73 | 1+(12.1+8.83i)T+(22.5+69.4i)T2 |
| 79 | 1+(2.39+7.36i)T+(−63.9+46.4i)T2 |
| 83 | 1+(2.02−6.24i)T+(−67.1−48.7i)T2 |
| 89 | 1+(−11.1−8.10i)T+(27.5+84.6i)T2 |
| 97 | 1+(−5.12−15.7i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73073240502082675859182920542, −10.20066154079190193836080853446, −9.046170493275370221978982878520, −8.752584615674140906454848386697, −7.63401469801438262658826046919, −6.34188892191475988573333557641, −5.39994606916419375694723823513, −4.21723671496265788476972890598, −3.86542618384766533533676293962, −2.88884822584651429296405490779,
0.51052454950118445178715951548, 2.34006292144564508794835021354, 3.06750634929521965497408927903, 4.02996355370765609533418446898, 5.94321735110715372249069042882, 6.59337699386899201191169202593, 7.21293590729376941550983145851, 8.092974114787699915602154883230, 9.207141763642038394234666848385, 10.09517725561544332889673481138