L(s) = 1 | + (−0.866 + 0.5i)2-s + (−1.09 − 0.294i)3-s + (0.499 − 0.866i)4-s + (1.09 − 0.294i)6-s + (2.54 − 4.40i)7-s + 0.999i·8-s + (−1.47 − 0.854i)9-s + (−2.27 − 0.609i)11-s + (−0.803 + 0.803i)12-s + (−3.54 − 0.653i)13-s + 5.08i·14-s + (−0.5 − 0.866i)16-s + (0.0601 + 0.224i)17-s + 1.70·18-s + (1.53 + 5.71i)19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.633 − 0.169i)3-s + (0.249 − 0.433i)4-s + (0.448 − 0.120i)6-s + (0.961 − 1.66i)7-s + 0.353i·8-s + (−0.493 − 0.284i)9-s + (−0.685 − 0.183i)11-s + (−0.231 + 0.231i)12-s + (−0.983 − 0.181i)13-s + 1.35i·14-s + (−0.125 − 0.216i)16-s + (0.0145 + 0.0544i)17-s + 0.402·18-s + (0.351 + 1.31i)19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.939+0.342i)Λ(2−s)
Λ(s)=(=(650s/2ΓC(s+1/2)L(s)(−0.939+0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.939+0.342i
|
Analytic conductor: |
5.19027 |
Root analytic conductor: |
2.27821 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(557,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :1/2), −0.939+0.342i)
|
Particular Values
L(1) |
≈ |
0.0542787−0.306960i |
L(21) |
≈ |
0.0542787−0.306960i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 5 | 1 |
| 13 | 1+(3.54+0.653i)T |
good | 3 | 1+(1.09+0.294i)T+(2.59+1.5i)T2 |
| 7 | 1+(−2.54+4.40i)T+(−3.5−6.06i)T2 |
| 11 | 1+(2.27+0.609i)T+(9.52+5.5i)T2 |
| 17 | 1+(−0.0601−0.224i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−1.53−5.71i)T+(−16.4+9.5i)T2 |
| 23 | 1+(0.674−2.51i)T+(−19.9−11.5i)T2 |
| 29 | 1+(2.64−1.52i)T+(14.5−25.1i)T2 |
| 31 | 1+(4.45+4.45i)T+31iT2 |
| 37 | 1+(2.49+4.31i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.412−1.53i)T+(−35.5−20.5i)T2 |
| 43 | 1+(1.66−0.447i)T+(37.2−21.5i)T2 |
| 47 | 1+12.2T+47T2 |
| 53 | 1+(5.79−5.79i)T−53iT2 |
| 59 | 1+(2.68−0.720i)T+(51.0−29.5i)T2 |
| 61 | 1+(−4.23+7.33i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.150−0.0866i)T+(33.5−58.0i)T2 |
| 71 | 1+(−4.17+1.11i)T+(61.4−35.5i)T2 |
| 73 | 1+7.51iT−73T2 |
| 79 | 1−5.17iT−79T2 |
| 83 | 1−10.4T+83T2 |
| 89 | 1+(−1.49+5.59i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−7.02−4.05i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27058273699329392257004160943, −9.430615976513263840028970122677, −7.995008060268446715229801747507, −7.71808010727264829210805679104, −6.78104767369666507467219436821, −5.64239051375283223029398371040, −4.88363399651925718654090291445, −3.53586096449382512429720887694, −1.63945699087803674788010051372, −0.21382011072114182108978444474,
2.06000749279195726190727307282, 2.84092410066524580278693924012, 5.00209795849935858880149515756, 5.14196868209246119830969772146, 6.46605955890926345867651637610, 7.67305739000469605666099103095, 8.475884353214773168234702113780, 9.160257466920681167882654671115, 10.12043223724868710451209618882, 11.11287477232795605796382691363