L(s) = 1 | + (−0.866 + 0.5i)2-s + (−1.09 − 0.294i)3-s + (0.499 − 0.866i)4-s + (1.09 − 0.294i)6-s + (2.54 − 4.40i)7-s + 0.999i·8-s + (−1.47 − 0.854i)9-s + (−2.27 − 0.609i)11-s + (−0.803 + 0.803i)12-s + (−3.54 − 0.653i)13-s + 5.08i·14-s + (−0.5 − 0.866i)16-s + (0.0601 + 0.224i)17-s + 1.70·18-s + (1.53 + 5.71i)19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.633 − 0.169i)3-s + (0.249 − 0.433i)4-s + (0.448 − 0.120i)6-s + (0.961 − 1.66i)7-s + 0.353i·8-s + (−0.493 − 0.284i)9-s + (−0.685 − 0.183i)11-s + (−0.231 + 0.231i)12-s + (−0.983 − 0.181i)13-s + 1.35i·14-s + (−0.125 − 0.216i)16-s + (0.0145 + 0.0544i)17-s + 0.402·18-s + (0.351 + 1.31i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0542787 - 0.306960i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0542787 - 0.306960i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.54 + 0.653i)T \) |
good | 3 | \( 1 + (1.09 + 0.294i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-2.54 + 4.40i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.27 + 0.609i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-0.0601 - 0.224i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.53 - 5.71i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (0.674 - 2.51i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (2.64 - 1.52i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.45 + 4.45i)T + 31iT^{2} \) |
| 37 | \( 1 + (2.49 + 4.31i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.412 - 1.53i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (1.66 - 0.447i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 12.2T + 47T^{2} \) |
| 53 | \( 1 + (5.79 - 5.79i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.68 - 0.720i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-4.23 + 7.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.150 - 0.0866i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.17 + 1.11i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + 7.51iT - 73T^{2} \) |
| 79 | \( 1 - 5.17iT - 79T^{2} \) |
| 83 | \( 1 - 10.4T + 83T^{2} \) |
| 89 | \( 1 + (-1.49 + 5.59i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-7.02 - 4.05i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27058273699329392257004160943, −9.430615976513263840028970122677, −7.995008060268446715229801747507, −7.71808010727264829210805679104, −6.78104767369666507467219436821, −5.64239051375283223029398371040, −4.88363399651925718654090291445, −3.53586096449382512429720887694, −1.63945699087803674788010051372, −0.21382011072114182108978444474,
2.06000749279195726190727307282, 2.84092410066524580278693924012, 5.00209795849935858880149515756, 5.14196868209246119830969772146, 6.46605955890926345867651637610, 7.67305739000469605666099103095, 8.475884353214773168234702113780, 9.160257466920681167882654671115, 10.12043223724868710451209618882, 11.11287477232795605796382691363