gp: [N,k,chi] = [650,2,Mod(7,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([3, 11]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.7");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [12,0,0,6,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 + 24 x 10 + 192 x 8 + 680 x 6 + 1104 x 4 + 672 x 2 + 4 x^{12} + 24x^{10} + 192x^{8} + 680x^{6} + 1104x^{4} + 672x^{2} + 4 x 1 2 + 2 4 x 1 0 + 1 9 2 x 8 + 6 8 0 x 6 + 1 1 0 4 x 4 + 6 7 2 x 2 + 4
x^12 + 24*x^10 + 192*x^8 + 680*x^6 + 1104*x^4 + 672*x^2 + 4
:
β 1 \beta_{1} β 1 = = =
( 7 ν 10 + 136 ν 8 + 668 ν 6 + 702 ν 4 + 176 ν 2 + 380 ν + 1728 ) / 760 ( 7\nu^{10} + 136\nu^{8} + 668\nu^{6} + 702\nu^{4} + 176\nu^{2} + 380\nu + 1728 ) / 760 ( 7 ν 1 0 + 1 3 6 ν 8 + 6 6 8 ν 6 + 7 0 2 ν 4 + 1 7 6 ν 2 + 3 8 0 ν + 1 7 2 8 ) / 7 6 0
(7*v^10 + 136*v^8 + 668*v^6 + 702*v^4 + 176*v^2 + 380*v + 1728) / 760
β 2 \beta_{2} β 2 = = =
( 7 ν 10 + 136 ν 8 + 668 ν 6 + 702 ν 4 + 176 ν 2 − 380 ν + 1728 ) / 760 ( 7\nu^{10} + 136\nu^{8} + 668\nu^{6} + 702\nu^{4} + 176\nu^{2} - 380\nu + 1728 ) / 760 ( 7 ν 1 0 + 1 3 6 ν 8 + 6 6 8 ν 6 + 7 0 2 ν 4 + 1 7 6 ν 2 − 3 8 0 ν + 1 7 2 8 ) / 7 6 0
(7*v^10 + 136*v^8 + 668*v^6 + 702*v^4 + 176*v^2 - 380*v + 1728) / 760
β 3 \beta_{3} β 3 = = =
( 4 ν 11 + 87 ν 9 + 576 ν 7 + 1504 ν 5 + 1542 ν 3 + 456 ν + 20 ) / 40 ( 4\nu^{11} + 87\nu^{9} + 576\nu^{7} + 1504\nu^{5} + 1542\nu^{3} + 456\nu + 20 ) / 40 ( 4 ν 1 1 + 8 7 ν 9 + 5 7 6 ν 7 + 1 5 0 4 ν 5 + 1 5 4 2 ν 3 + 4 5 6 ν + 2 0 ) / 4 0
(4*v^11 + 87*v^9 + 576*v^7 + 1504*v^5 + 1542*v^3 + 456*v + 20) / 40
β 4 \beta_{4} β 4 = = =
( − 60 ν 11 + 36 ν 10 − 1315 ν 9 + 808 ν 8 − 8820 ν 7 + 5634 ν 6 − 23280 ν 5 + ⋯ + 744 ) / 760 ( - 60 \nu^{11} + 36 \nu^{10} - 1315 \nu^{9} + 808 \nu^{8} - 8820 \nu^{7} + 5634 \nu^{6} - 23280 \nu^{5} + \cdots + 744 ) / 760 ( − 6 0 ν 1 1 + 3 6 ν 1 0 − 1 3 1 5 ν 9 + 8 0 8 ν 8 − 8 8 2 0 ν 7 + 5 6 3 4 ν 6 − 2 3 2 8 0 ν 5 + ⋯ + 7 4 4 ) / 7 6 0
(-60*v^11 + 36*v^10 - 1315*v^9 + 808*v^8 - 8820*v^7 + 5634*v^6 - 23280*v^5 + 15336*v^4 - 23250*v^3 + 14368*v^2 - 5040*v + 744) / 760
β 5 \beta_{5} β 5 = = =
( − 11 ν 11 + 89 ν 10 − 173 ν 9 + 1892 ν 8 − 154 ν 7 + 11886 ν 6 + 5194 ν 5 + ⋯ + 1016 ) / 760 ( - 11 \nu^{11} + 89 \nu^{10} - 173 \nu^{9} + 1892 \nu^{8} - 154 \nu^{7} + 11886 \nu^{6} + 5194 \nu^{5} + \cdots + 1016 ) / 760 ( − 1 1 ν 1 1 + 8 9 ν 1 0 − 1 7 3 ν 9 + 1 8 9 2 ν 8 − 1 5 4 ν 7 + 1 1 8 8 6 ν 6 + 5 1 9 4 ν 5 + ⋯ + 1 0 1 6 ) / 7 6 0
(-11*v^11 + 89*v^10 - 173*v^9 + 1892*v^8 - 154*v^7 + 11886*v^6 + 5194*v^5 + 27654*v^4 + 19402*v^3 + 21292*v^2 + 19216*v + 1016) / 760
β 6 \beta_{6} β 6 = = =
( − 60 ν 11 − 36 ν 10 − 1315 ν 9 − 808 ν 8 − 8820 ν 7 − 5634 ν 6 − 23280 ν 5 + ⋯ − 744 ) / 760 ( - 60 \nu^{11} - 36 \nu^{10} - 1315 \nu^{9} - 808 \nu^{8} - 8820 \nu^{7} - 5634 \nu^{6} - 23280 \nu^{5} + \cdots - 744 ) / 760 ( − 6 0 ν 1 1 − 3 6 ν 1 0 − 1 3 1 5 ν 9 − 8 0 8 ν 8 − 8 8 2 0 ν 7 − 5 6 3 4 ν 6 − 2 3 2 8 0 ν 5 + ⋯ − 7 4 4 ) / 7 6 0
(-60*v^11 - 36*v^10 - 1315*v^9 - 808*v^8 - 8820*v^7 - 5634*v^6 - 23280*v^5 - 15336*v^4 - 23250*v^3 - 14368*v^2 - 5040*v - 744) / 760
β 7 \beta_{7} β 7 = = =
( 11 ν 11 + 82 ν 10 + 173 ν 9 + 1756 ν 8 + 154 ν 7 + 11218 ν 6 − 5194 ν 5 + ⋯ − 712 ) / 760 ( 11 \nu^{11} + 82 \nu^{10} + 173 \nu^{9} + 1756 \nu^{8} + 154 \nu^{7} + 11218 \nu^{6} - 5194 \nu^{5} + \cdots - 712 ) / 760 ( 1 1 ν 1 1 + 8 2 ν 1 0 + 1 7 3 ν 9 + 1 7 5 6 ν 8 + 1 5 4 ν 7 + 1 1 2 1 8 ν 6 − 5 1 9 4 ν 5 + ⋯ − 7 1 2 ) / 7 6 0
(11*v^11 + 82*v^10 + 173*v^9 + 1756*v^8 + 154*v^7 + 11218*v^6 - 5194*v^5 + 26952*v^4 - 19402*v^3 + 21116*v^2 - 19596*v - 712) / 760
β 8 \beta_{8} β 8 = = =
( − 36 ν 11 + 125 ν 10 − 808 ν 9 + 2700 ν 8 − 5634 ν 7 + 17520 ν 6 − 15336 ν 5 + ⋯ + 240 ) / 760 ( - 36 \nu^{11} + 125 \nu^{10} - 808 \nu^{9} + 2700 \nu^{8} - 5634 \nu^{7} + 17520 \nu^{6} - 15336 \nu^{5} + \cdots + 240 ) / 760 ( − 3 6 ν 1 1 + 1 2 5 ν 1 0 − 8 0 8 ν 9 + 2 7 0 0 ν 8 − 5 6 3 4 ν 7 + 1 7 5 2 0 ν 6 − 1 5 3 3 6 ν 5 + ⋯ + 2 4 0 ) / 7 6 0
(-36*v^11 + 125*v^10 - 808*v^9 + 2700*v^8 - 5634*v^7 + 17520*v^6 - 15336*v^5 + 42990*v^4 - 14368*v^3 + 35280*v^2 - 1504*v + 240) / 760
β 9 \beta_{9} β 9 = = =
( 3 ν 11 − 134 ν 10 + 99 ν 9 − 2902 ν 8 + 1182 ν 7 − 18976 ν 6 + 6218 ν 5 + ⋯ − 1756 ) / 760 ( 3 \nu^{11} - 134 \nu^{10} + 99 \nu^{9} - 2902 \nu^{8} + 1182 \nu^{7} - 18976 \nu^{6} + 6218 \nu^{5} + \cdots - 1756 ) / 760 ( 3 ν 1 1 − 1 3 4 ν 1 0 + 9 9 ν 9 − 2 9 0 2 ν 8 + 1 1 8 2 ν 7 − 1 8 9 7 6 ν 6 + 6 2 1 8 ν 5 + ⋯ − 1 7 5 6 ) / 7 6 0
(3*v^11 - 134*v^10 + 99*v^9 - 2902*v^8 + 1182*v^7 - 18976*v^6 + 6218*v^5 - 47584*v^4 + 14054*v^3 - 41152*v^2 + 10892*v - 1756) / 760
β 10 \beta_{10} β 1 0 = = =
( − 105 ν 11 − 178 ν 10 − 2135 ν 9 − 3784 ν 8 − 11920 ν 7 − 23772 ν 6 + ⋯ − 132 ) / 760 ( - 105 \nu^{11} - 178 \nu^{10} - 2135 \nu^{9} - 3784 \nu^{8} - 11920 \nu^{7} - 23772 \nu^{6} + \cdots - 132 ) / 760 ( − 1 0 5 ν 1 1 − 1 7 8 ν 1 0 − 2 1 3 5 ν 9 − 3 7 8 4 ν 8 − 1 1 9 2 0 ν 7 − 2 3 7 7 2 ν 6 + ⋯ − 1 3 2 ) / 7 6 0
(-105*v^11 - 178*v^10 - 2135*v^9 - 3784*v^8 - 11920*v^7 - 23772*v^6 - 18890*v^5 - 55308*v^4 + 9330*v^3 - 42204*v^2 + 28040*v - 132) / 760
β 11 \beta_{11} β 1 1 = = =
( − 421 ν 10 − 9048 ν 8 − 58144 ν 6 − 140586 ν 4 − 112968 ν 2 + 380 ν − 784 ) / 760 ( -421\nu^{10} - 9048\nu^{8} - 58144\nu^{6} - 140586\nu^{4} - 112968\nu^{2} + 380\nu - 784 ) / 760 ( − 4 2 1 ν 1 0 − 9 0 4 8 ν 8 − 5 8 1 4 4 ν 6 − 1 4 0 5 8 6 ν 4 − 1 1 2 9 6 8 ν 2 + 3 8 0 ν − 7 8 4 ) / 7 6 0
(-421*v^10 - 9048*v^8 - 58144*v^6 - 140586*v^4 - 112968*v^2 + 380*v - 784) / 760
ν \nu ν = = =
− β 2 + β 1 -\beta_{2} + \beta_1 − β 2 + β 1
-b2 + b1
ν 2 \nu^{2} ν 2 = = =
β 11 + 2 β 7 − β 6 + 2 β 5 + β 4 + β 1 − 4 \beta_{11} + 2\beta_{7} - \beta_{6} + 2\beta_{5} + \beta_{4} + \beta _1 - 4 β 1 1 + 2 β 7 − β 6 + 2 β 5 + β 4 + β 1 − 4
b11 + 2*b7 - b6 + 2*b5 + b4 + b1 - 4
ν 3 \nu^{3} ν 3 = = =
− 2 β 11 − 4 β 8 − 2 β 7 + 5 β 6 − 2 β 5 + 5 β 4 + 6 β 3 + ⋯ − 3 - 2 \beta_{11} - 4 \beta_{8} - 2 \beta_{7} + 5 \beta_{6} - 2 \beta_{5} + 5 \beta_{4} + 6 \beta_{3} + \cdots - 3 − 2 β 1 1 − 4 β 8 − 2 β 7 + 5 β 6 − 2 β 5 + 5 β 4 + 6 β 3 + ⋯ − 3
-2*b11 - 4*b8 - 2*b7 + 5*b6 - 2*b5 + 5*b4 + 6*b3 + 10*b2 - 10*b1 - 3
ν 4 \nu^{4} ν 4 = = =
− 13 β 11 + 2 β 10 − 4 β 9 + 2 β 8 − 27 β 7 + 14 β 6 − 29 β 5 + ⋯ + 28 - 13 \beta_{11} + 2 \beta_{10} - 4 \beta_{9} + 2 \beta_{8} - 27 \beta_{7} + 14 \beta_{6} - 29 \beta_{5} + \cdots + 28 − 1 3 β 1 1 + 2 β 1 0 − 4 β 9 + 2 β 8 − 2 7 β 7 + 1 4 β 6 − 2 9 β 5 + ⋯ + 2 8
-13*b11 + 2*b10 - 4*b9 + 2*b8 - 27*b7 + 14*b6 - 29*b5 - 16*b4 + 2*b3 + 3*b2 - 7*b1 + 28
ν 5 \nu^{5} ν 5 = = =
32 β 11 − 5 β 10 + 59 β 8 + 24 β 7 − 77 β 6 + 35 β 5 − 72 β 4 + ⋯ + 50 32 \beta_{11} - 5 \beta_{10} + 59 \beta_{8} + 24 \beta_{7} - 77 \beta_{6} + 35 \beta_{5} - 72 \beta_{4} + \cdots + 50 3 2 β 1 1 − 5 β 1 0 + 5 9 β 8 + 2 4 β 7 − 7 7 β 6 + 3 5 β 5 − 7 2 β 4 + ⋯ + 5 0
32*b11 - 5*b10 + 59*b8 + 24*b7 - 77*b6 + 35*b5 - 72*b4 - 95*b3 - 118*b2 + 110*b1 + 50
ν 6 \nu^{6} ν 6 = = =
168 β 11 − 24 β 10 + 48 β 9 − 24 β 8 + 352 β 7 − 174 β 6 + ⋯ − 292 168 \beta_{11} - 24 \beta_{10} + 48 \beta_{9} - 24 \beta_{8} + 352 \beta_{7} - 174 \beta_{6} + \cdots - 292 1 6 8 β 1 1 − 2 4 β 1 0 + 4 8 β 9 − 2 4 β 8 + 3 5 2 β 7 − 1 7 4 β 6 + ⋯ − 2 9 2
168*b11 - 24*b10 + 48*b9 - 24*b8 + 352*b7 - 174*b6 + 376*b5 + 198*b4 - 24*b3 - 56*b2 + 80*b1 - 292
ν 7 \nu^{7} ν 7 = = =
− 422 β 11 + 96 β 10 − 748 β 8 − 270 β 7 + 1008 β 6 − 478 β 5 + ⋯ − 680 - 422 \beta_{11} + 96 \beta_{10} - 748 \beta_{8} - 270 \beta_{7} + 1008 \beta_{6} - 478 \beta_{5} + \cdots - 680 − 4 2 2 β 1 1 + 9 6 β 1 0 − 7 4 8 β 8 − 2 7 0 β 7 + 1 0 0 8 β 6 − 4 7 8 β 5 + ⋯ − 6 8 0
-422*b11 + 96*b10 - 748*b8 - 270*b7 + 1008*b6 - 478*b5 + 912*b4 + 1264*b3 + 1440*b2 - 1288*b1 - 680
ν 8 \nu^{8} ν 8 = = =
− 2122 β 11 + 270 β 10 − 540 β 9 + 270 β 8 − 4460 β 7 + 2132 β 6 + ⋯ + 3460 - 2122 \beta_{11} + 270 \beta_{10} - 540 \beta_{9} + 270 \beta_{8} - 4460 \beta_{7} + 2132 \beta_{6} + \cdots + 3460 − 2 1 2 2 β 1 1 + 2 7 0 β 1 0 − 5 4 0 β 9 + 2 7 0 β 8 − 4 4 6 0 β 7 + 2 1 3 2 β 6 + ⋯ + 3 4 6 0
-2122*b11 + 270*b10 - 540*b9 + 270*b8 - 4460*b7 + 2132*b6 - 4730*b5 - 2402*b4 + 270*b3 + 792*b2 - 1006*b1 + 3460
ν 9 \nu^{9} ν 9 = = =
5316 β 11 − 1368 β 10 + 9264 β 8 + 3156 β 7 − 12698 β 6 + 6108 β 5 + ⋯ + 8706 5316 \beta_{11} - 1368 \beta_{10} + 9264 \beta_{8} + 3156 \beta_{7} - 12698 \beta_{6} + 6108 \beta_{5} + \cdots + 8706 5 3 1 6 β 1 1 − 1 3 6 8 β 1 0 + 9 2 6 4 β 8 + 3 1 5 6 β 7 − 1 2 6 9 8 β 6 + 6 1 0 8 β 5 + ⋯ + 8 7 0 6
5316*b11 - 1368*b10 + 9264*b8 + 3156*b7 - 12698*b6 + 6108*b5 - 11330*b4 - 16044*b3 - 17724*b2 + 15564*b1 + 8706
ν 10 \nu^{10} ν 1 0 = = =
26474 β 11 − 3156 β 10 + 6312 β 9 − 3156 β 8 + 55718 β 7 − 26196 β 6 + ⋯ − 42312 26474 \beta_{11} - 3156 \beta_{10} + 6312 \beta_{9} - 3156 \beta_{8} + 55718 \beta_{7} - 26196 \beta_{6} + \cdots - 42312 2 6 4 7 4 β 1 1 − 3 1 5 6 β 1 0 + 6 3 1 2 β 9 − 3 1 5 6 β 8 + 5 5 7 1 8 β 7 − 2 6 1 9 6 β 6 + ⋯ − 4 2 3 1 2
26474*b11 - 3156*b10 + 6312*b9 - 3156*b8 + 55718*b7 - 26196*b6 + 58874*b5 + 29352*b4 - 3156*b3 - 10290*b2 + 12642*b1 - 42312
ν 11 \nu^{11} ν 1 1 = = =
− 66116 β 11 + 17810 β 10 − 114422 β 8 − 38016 β 7 + 158054 β 6 + ⋯ − 109084 - 66116 \beta_{11} + 17810 \beta_{10} - 114422 \beta_{8} - 38016 \beta_{7} + 158054 \beta_{6} + \cdots - 109084 − 6 6 1 1 6 β 1 1 + 1 7 8 1 0 β 1 0 − 1 1 4 4 2 2 β 8 − 3 8 0 1 6 β 7 + 1 5 8 0 5 4 β 6 + ⋯ − 1 0 9 0 8 4
-66116*b11 + 17810*b10 - 114422*b8 - 38016*b7 + 158054*b6 - 76406*b5 + 140244*b4 + 200358*b3 + 218764*b2 - 190664*b1 - 109084
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
β 4 + β 6 \beta_{4} + \beta_{6} β 4 + β 6
− β 6 -\beta_{6} − β 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 12 + 12 T 3 10 − 4 T 3 9 + 24 T 3 8 − 24 T 3 7 − 280 T 3 6 − 48 T 3 5 + ⋯ + 4 T_{3}^{12} + 12 T_{3}^{10} - 4 T_{3}^{9} + 24 T_{3}^{8} - 24 T_{3}^{7} - 280 T_{3}^{6} - 48 T_{3}^{5} + \cdots + 4 T 3 1 2 + 1 2 T 3 1 0 − 4 T 3 9 + 2 4 T 3 8 − 2 4 T 3 7 − 2 8 0 T 3 6 − 4 8 T 3 5 + ⋯ + 4
T3^12 + 12*T3^10 - 4*T3^9 + 24*T3^8 - 24*T3^7 - 280*T3^6 - 48*T3^5 + 600*T3^4 + 568*T3^3 + 144*T3^2 + 4
acting on S 2 n e w ( 650 , [ χ ] ) S_{2}^{\mathrm{new}}(650, [\chi]) S 2 n e w ( 6 5 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 4 − T 2 + 1 ) 3 (T^{4} - T^{2} + 1)^{3} ( T 4 − T 2 + 1 ) 3
(T^4 - T^2 + 1)^3
3 3 3
T 12 + 12 T 10 + ⋯ + 4 T^{12} + 12 T^{10} + \cdots + 4 T 1 2 + 1 2 T 1 0 + ⋯ + 4
T^12 + 12*T^10 - 4*T^9 + 24*T^8 - 24*T^7 - 280*T^6 - 48*T^5 + 600*T^4 + 568*T^3 + 144*T^2 + 4
5 5 5
T 12 T^{12} T 1 2
T^12
7 7 7
T 12 + 21 T 10 + ⋯ + 169 T^{12} + 21 T^{10} + \cdots + 169 T 1 2 + 2 1 T 1 0 + ⋯ + 1 6 9
T^12 + 21*T^10 + 64*T^9 + 414*T^8 + 720*T^7 + 1617*T^6 + 1152*T^5 + 2538*T^4 + 2128*T^3 + 1953*T^2 + 624*T + 169
11 11 1 1
T 12 − 6 T 11 + ⋯ + 6889 T^{12} - 6 T^{11} + \cdots + 6889 T 1 2 − 6 T 1 1 + ⋯ + 6 8 8 9
T^12 - 6*T^11 + 9*T^10 - 28*T^9 + 30*T^8 + 426*T^7 + 293*T^6 + 3462*T^5 + 4848*T^4 - 10748*T^3 + 4719*T^2 - 7470*T + 6889
13 13 1 3
T 12 − 12 T 11 + ⋯ + 4826809 T^{12} - 12 T^{11} + \cdots + 4826809 T 1 2 − 1 2 T 1 1 + ⋯ + 4 8 2 6 8 0 9
T^12 - 12*T^11 + 69*T^10 - 202*T^9 - 24*T^8 + 3576*T^7 - 18615*T^6 + 46488*T^5 - 4056*T^4 - 443794*T^3 + 1970709*T^2 - 4455516*T + 4826809
17 17 1 7
T 12 + 12 T 11 + ⋯ + 4 T^{12} + 12 T^{11} + \cdots + 4 T 1 2 + 1 2 T 1 1 + ⋯ + 4
T^12 + 12*T^11 + 30*T^10 - 32*T^9 + 234*T^8 - 228*T^7 - 172*T^6 + 12*T^5 + 96*T^4 + 152*T^3 + 60*T^2 + 4
19 19 1 9
T 12 − 36 T 11 + ⋯ + 221841 T^{12} - 36 T^{11} + \cdots + 221841 T 1 2 − 3 6 T 1 1 + ⋯ + 2 2 1 8 4 1
T^12 - 36*T^11 + 627*T^10 - 7110*T^9 + 58332*T^8 - 358440*T^7 + 1662741*T^6 - 5740380*T^5 + 13951458*T^4 - 20972826*T^3 + 14165541*T^2 + 638676*T + 221841
23 23 2 3
T 12 + 6 T 11 + ⋯ + 23078416 T^{12} + 6 T^{11} + \cdots + 23078416 T 1 2 + 6 T 1 1 + ⋯ + 2 3 0 7 8 4 1 6
T^12 + 6*T^11 + 66*T^10 + 488*T^9 - 1740*T^8 - 7944*T^7 - 200248*T^6 - 1707144*T^5 + 13531272*T^4 + 27504688*T^3 + 136250400*T^2 + 104804064*T + 23078416
29 29 2 9
T 12 − 6 T 11 + ⋯ + 8248384 T^{12} - 6 T^{11} + \cdots + 8248384 T 1 2 − 6 T 1 1 + ⋯ + 8 2 4 8 3 8 4
T^12 - 6*T^11 - 42*T^10 + 324*T^9 + 1680*T^8 - 8136*T^7 - 37816*T^6 + 119280*T^5 + 760896*T^4 + 341280*T^3 - 2679456*T^2 - 1033920*T + 8248384
31 31 3 1
T 12 + 24 T 11 + ⋯ + 26152996 T^{12} + 24 T^{11} + \cdots + 26152996 T 1 2 + 2 4 T 1 1 + ⋯ + 2 6 1 5 2 9 9 6
T^12 + 24*T^11 + 288*T^10 + 1544*T^9 + 3624*T^8 - 588*T^7 + 134144*T^6 + 742872*T^5 + 1548204*T^4 - 7439336*T^3 + 36602568*T^2 + 43755384*T + 26152996
37 37 3 7
T 12 + 93 T 10 + ⋯ + 769129 T^{12} + 93 T^{10} + \cdots + 769129 T 1 2 + 9 3 T 1 0 + ⋯ + 7 6 9 1 2 9
T^12 + 93*T^10 + 44*T^9 + 7488*T^8 + 120*T^7 + 110211*T^6 - 383778*T^5 + 1387110*T^4 - 2197498*T^3 + 2691279*T^2 - 1689102*T + 769129
41 41 4 1
T 12 − 18 T 11 + ⋯ + 1690000 T^{12} - 18 T^{11} + \cdots + 1690000 T 1 2 − 1 8 T 1 1 + ⋯ + 1 6 9 0 0 0 0
T^12 - 18*T^11 + 126*T^10 - 520*T^9 + 1008*T^8 + 6312*T^7 - 13408*T^6 + 51480*T^5 + 98184*T^4 - 423440*T^3 + 414000*T^2 - 1092000*T + 1690000
43 43 4 3
T 12 − 36 T 10 + ⋯ + 22886656 T^{12} - 36 T^{10} + \cdots + 22886656 T 1 2 − 3 6 T 1 0 + ⋯ + 2 2 8 8 6 6 5 6
T^12 - 36*T^10 - 200*T^9 - 1224*T^8 + 8304*T^7 + 79616*T^6 + 218304*T^5 + 2282880*T^4 + 5163776*T^3 + 7977600*T^2 + 20437248*T + 22886656
47 47 4 7
( T 6 + 6 T 5 + ⋯ − 6047 ) 2 (T^{6} + 6 T^{5} + \cdots - 6047)^{2} ( T 6 + 6 T 5 + ⋯ − 6 0 4 7 ) 2
(T^6 + 6*T^5 - 105*T^4 - 196*T^3 + 1995*T^2 - 66*T - 6047)^2
53 53 5 3
T 12 + 18 T 11 + ⋯ + 36881329 T^{12} + 18 T^{11} + \cdots + 36881329 T 1 2 + 1 8 T 1 1 + ⋯ + 3 6 8 8 1 3 2 9
T^12 + 18*T^11 + 162*T^10 - 202*T^9 + 3039*T^8 + 57768*T^7 + 567908*T^6 - 1228836*T^5 + 4073523*T^4 + 37310878*T^3 + 202608450*T^2 - 122249490*T + 36881329
59 59 5 9
T 12 − 18 T 11 + ⋯ + 576 T^{12} - 18 T^{11} + \cdots + 576 T 1 2 − 1 8 T 1 1 + ⋯ + 5 7 6
T^12 - 18*T^11 - 6*T^10 + 852*T^9 + 4008*T^8 + 10056*T^7 + 22536*T^6 + 41904*T^5 + 51840*T^4 + 44640*T^3 + 26208*T^2 + 2880*T + 576
61 61 6 1
T 12 + ⋯ + 307721764 T^{12} + \cdots + 307721764 T 1 2 + ⋯ + 3 0 7 7 2 1 7 6 4
T^12 - 18*T^11 + 294*T^10 - 2408*T^9 + 21852*T^8 - 124212*T^7 + 974184*T^6 - 3990996*T^5 + 19594668*T^4 - 19553576*T^3 + 82812744*T^2 - 55994064*T + 307721764
67 67 6 7
T 12 + 12 T 11 + ⋯ + 2304 T^{12} + 12 T^{11} + \cdots + 2304 T 1 2 + 1 2 T 1 1 + ⋯ + 2 3 0 4
T^12 + 12*T^11 - 12*T^10 - 720*T^9 + 960*T^8 + 50112*T^7 + 277152*T^6 + 604224*T^5 + 440640*T^4 - 207360*T^3 - 6912*T^2 + 13824*T + 2304
71 71 7 1
T 12 + ⋯ + 880427584 T^{12} + \cdots + 880427584 T 1 2 + ⋯ + 8 8 0 4 2 7 5 8 4
T^12 - 18*T^11 + 198*T^10 - 1636*T^9 + 6048*T^8 - 16056*T^7 + 94088*T^6 + 1625904*T^5 - 6016992*T^4 - 24130784*T^3 + 44755104*T^2 + 22075968*T + 880427584
73 73 7 3
T 12 + ⋯ + 704902500 T^{12} + \cdots + 704902500 T 1 2 + ⋯ + 7 0 4 9 0 2 5 0 0
T^12 + 300*T^10 + 32436*T^8 + 1587240*T^6 + 35623476*T^4 + 327094200*T^2 + 704902500
79 79 7 9
T 12 + ⋯ + 1427177284 T^{12} + \cdots + 1427177284 T 1 2 + ⋯ + 1 4 2 7 1 7 7 2 8 4
T^12 + 444*T^10 + 69336*T^8 + 4726016*T^6 + 143583132*T^4 + 1626123240*T^2 + 1427177284
83 83 8 3
( T 6 − 24 T 5 + ⋯ − 31050 ) 2 (T^{6} - 24 T^{5} + \cdots - 31050)^{2} ( T 6 − 2 4 T 5 + ⋯ − 3 1 0 5 0 ) 2
(T^6 - 24*T^5 + 36*T^4 + 2466*T^3 - 17928*T^2 + 41580*T - 31050)^2
89 89 8 9
T 12 − 6 T 11 + ⋯ + 39828721 T^{12} - 6 T^{11} + \cdots + 39828721 T 1 2 − 6 T 1 1 + ⋯ + 3 9 8 2 8 7 2 1
T^12 - 6*T^11 + 159*T^10 + 644*T^9 - 8550*T^8 + 3690*T^7 + 50219*T^6 - 1435848*T^5 + 4452018*T^4 + 33587974*T^3 + 59145663*T^2 + 55738752*T + 39828721
97 97 9 7
T 12 + ⋯ + 553217613796 T^{12} + \cdots + 553217613796 T 1 2 + ⋯ + 5 5 3 2 1 7 6 1 3 7 9 6
T^12 - 102*T^11 + 4896*T^10 - 145656*T^9 + 2984142*T^8 - 44289276*T^7 + 487843256*T^6 - 4016908848*T^5 + 24542208612*T^4 - 108578593800*T^3 + 330621399660*T^2 - 623575306680*T + 553217613796
show more
show less