L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.876 + 3.27i)3-s + (−0.499 − 0.866i)4-s + (−3.27 − 0.876i)6-s + (−3.61 + 2.08i)7-s + 0.999·8-s + (−7.33 + 4.23i)9-s + (−0.732 + 0.196i)11-s + (2.39 − 2.39i)12-s + (3.59 + 0.333i)13-s − 4.17i·14-s + (−0.5 + 0.866i)16-s + (2.47 + 0.662i)17-s − 8.46i·18-s + (1.24 − 4.66i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.505 + 1.88i)3-s + (−0.249 − 0.433i)4-s + (−1.33 − 0.357i)6-s + (−1.36 + 0.789i)7-s + 0.353·8-s + (−2.44 + 1.41i)9-s + (−0.220 + 0.0591i)11-s + (0.691 − 0.691i)12-s + (0.995 + 0.0924i)13-s − 1.11i·14-s + (−0.125 + 0.216i)16-s + (0.599 + 0.160i)17-s − 1.99i·18-s + (0.286 − 1.07i)19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.500+0.865i)Λ(2−s)
Λ(s)=(=(650s/2ΓC(s+1/2)L(s)(−0.500+0.865i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.500+0.865i
|
Analytic conductor: |
5.19027 |
Root analytic conductor: |
2.27821 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(357,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :1/2), −0.500+0.865i)
|
Particular Values
L(1) |
≈ |
0.423379−0.733746i |
L(21) |
≈ |
0.423379−0.733746i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 5 | 1 |
| 13 | 1+(−3.59−0.333i)T |
good | 3 | 1+(−0.876−3.27i)T+(−2.59+1.5i)T2 |
| 7 | 1+(3.61−2.08i)T+(3.5−6.06i)T2 |
| 11 | 1+(0.732−0.196i)T+(9.52−5.5i)T2 |
| 17 | 1+(−2.47−0.662i)T+(14.7+8.5i)T2 |
| 19 | 1+(−1.24+4.66i)T+(−16.4−9.5i)T2 |
| 23 | 1+(2.01−0.538i)T+(19.9−11.5i)T2 |
| 29 | 1+(−4.35−2.51i)T+(14.5+25.1i)T2 |
| 31 | 1+(1.70−1.70i)T−31iT2 |
| 37 | 1+(1.55+0.895i)T+(18.5+32.0i)T2 |
| 41 | 1+(−0.417−1.55i)T+(−35.5+20.5i)T2 |
| 43 | 1+(2.44−9.11i)T+(−37.2−21.5i)T2 |
| 47 | 1+4.89iT−47T2 |
| 53 | 1+(3.87−3.87i)T−53iT2 |
| 59 | 1+(12.6+3.38i)T+(51.0+29.5i)T2 |
| 61 | 1+(0.00936+0.0162i)T+(−30.5+52.8i)T2 |
| 67 | 1+(5.67−9.83i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−7.24−1.94i)T+(61.4+35.5i)T2 |
| 73 | 1−2.26T+73T2 |
| 79 | 1−4.98iT−79T2 |
| 83 | 1−2.56iT−83T2 |
| 89 | 1+(1.73+6.47i)T+(−77.0+44.5i)T2 |
| 97 | 1+(−3.50−6.07i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.69097435077110838290662756554, −10.02093963229037719608769934365, −9.292210356292972338708467329996, −8.873437214867278851135802128828, −7.993212426000721102777529272059, −6.46705435411443742045520714936, −5.66351033767313242356182707804, −4.77588564374347727819847479608, −3.58045972108460270638700545108, −2.82974725373952884791402001797,
0.48121120679471329072528673216, 1.65606775874990892625134832744, 3.02373242375398201316576486104, 3.65234577591582624964707932443, 5.89856376146258185304174270051, 6.54483898937082737505716682486, 7.49893983189155888223252656192, 8.087229637145619624742440740260, 9.011254652404727389088339624910, 9.937845454682083706874772519474