Properties

Label 650.2.w.f.357.4
Level $650$
Weight $2$
Character 650.357
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(193,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.w (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 294x^{12} + 1516x^{10} + 4147x^{8} + 6012x^{6} + 4338x^{4} + 1296x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 357.4
Root \(-3.38585i\) of defining polynomial
Character \(\chi\) \(=\) 650.357
Dual form 650.2.w.f.193.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.876322 + 3.27048i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-3.27048 - 0.876322i) q^{6} +(-3.61605 + 2.08773i) q^{7} +1.00000 q^{8} +(-7.33001 + 4.23198i) q^{9} +(-0.732472 + 0.196265i) q^{11} +(2.39416 - 2.39416i) q^{12} +(3.59012 + 0.333218i) q^{13} -4.17546i q^{14} +(-0.500000 + 0.866025i) q^{16} +(2.47178 + 0.662311i) q^{17} -8.46396i q^{18} +(1.24990 - 4.66470i) q^{19} +(-9.99670 - 9.99670i) q^{21} +(0.196265 - 0.732472i) q^{22} +(-2.01011 + 0.538606i) q^{23} +(0.876322 + 3.27048i) q^{24} +(-2.08364 + 2.94253i) q^{26} +(-13.0816 - 13.0816i) q^{27} +(3.61605 + 2.08773i) q^{28} +(4.35399 + 2.51378i) q^{29} +(-1.70293 + 1.70293i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-1.28376 - 2.22354i) q^{33} +(-1.80947 + 1.80947i) q^{34} +(7.33001 + 4.23198i) q^{36} +(-1.55098 - 0.895461i) q^{37} +(3.41480 + 3.41480i) q^{38} +(2.05632 + 12.0334i) q^{39} +(0.417770 + 1.55914i) q^{41} +(13.6557 - 3.65905i) q^{42} +(-2.44221 + 9.11447i) q^{43} +(0.536207 + 0.536207i) q^{44} +(0.538606 - 2.01011i) q^{46} -4.89371i q^{47} +(-3.27048 - 0.876322i) q^{48} +(5.21723 - 9.03650i) q^{49} +8.66429i q^{51} +(-1.50648 - 3.27574i) q^{52} +(-3.87316 + 3.87316i) q^{53} +(17.8698 - 4.78819i) q^{54} +(-3.61605 + 2.08773i) q^{56} +16.3511 q^{57} +(-4.35399 + 2.51378i) q^{58} +(-12.6359 - 3.38578i) q^{59} +(-0.00936317 - 0.0162175i) q^{61} +(-0.623315 - 2.32624i) q^{62} +(17.6705 - 30.6061i) q^{63} +1.00000 q^{64} +2.56753 q^{66} +(-5.67984 + 9.83777i) q^{67} +(-0.662311 - 2.47178i) q^{68} +(-3.52300 - 6.10202i) q^{69} +(7.24992 + 1.94261i) q^{71} +(-7.33001 + 4.23198i) q^{72} +2.26886 q^{73} +(1.55098 - 0.895461i) q^{74} +(-4.66470 + 1.24990i) q^{76} +(2.23891 - 2.23891i) q^{77} +(-11.4494 - 4.23588i) q^{78} +4.98569i q^{79} +(18.6234 - 32.2567i) q^{81} +(-1.55914 - 0.417770i) q^{82} +2.56023i q^{83} +(-3.65905 + 13.6557i) q^{84} +(-6.67225 - 6.67225i) q^{86} +(-4.40575 + 16.4425i) q^{87} +(-0.732472 + 0.196265i) q^{88} +(-1.73597 - 6.47873i) q^{89} +(-13.6777 + 6.29026i) q^{91} +(1.47150 + 1.47150i) q^{92} +(-7.06170 - 4.07708i) q^{93} +(4.23808 + 2.44685i) q^{94} +(2.39416 - 2.39416i) q^{96} +(3.50956 + 6.07874i) q^{97} +(5.21723 + 9.03650i) q^{98} +(4.53844 - 4.53844i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} - 8 q^{4} - 12 q^{7} + 16 q^{8} - 24 q^{9} - 4 q^{11} - 8 q^{13} - 8 q^{16} + 8 q^{17} + 16 q^{19} - 4 q^{21} - 4 q^{22} + 4 q^{23} + 4 q^{26} - 36 q^{27} + 12 q^{28} + 36 q^{29} - 8 q^{31}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.876322 + 3.27048i 0.505945 + 1.88821i 0.457123 + 0.889404i \(0.348880\pi\)
0.0488219 + 0.998808i \(0.484453\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −3.27048 0.876322i −1.33517 0.357757i
\(7\) −3.61605 + 2.08773i −1.36674 + 0.789087i −0.990510 0.137439i \(-0.956113\pi\)
−0.376229 + 0.926527i \(0.622780\pi\)
\(8\) 1.00000 0.353553
\(9\) −7.33001 + 4.23198i −2.44334 + 1.41066i
\(10\) 0 0
\(11\) −0.732472 + 0.196265i −0.220849 + 0.0591762i −0.367547 0.930005i \(-0.619802\pi\)
0.146698 + 0.989181i \(0.453135\pi\)
\(12\) 2.39416 2.39416i 0.691133 0.691133i
\(13\) 3.59012 + 0.333218i 0.995720 + 0.0924181i
\(14\) 4.17546i 1.11594i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.47178 + 0.662311i 0.599494 + 0.160634i 0.545789 0.837923i \(-0.316230\pi\)
0.0537056 + 0.998557i \(0.482897\pi\)
\(18\) 8.46396i 1.99498i
\(19\) 1.24990 4.66470i 0.286747 1.07016i −0.660805 0.750557i \(-0.729785\pi\)
0.947553 0.319599i \(-0.103548\pi\)
\(20\) 0 0
\(21\) −9.99670 9.99670i −2.18146 2.18146i
\(22\) 0.196265 0.732472i 0.0418439 0.156164i
\(23\) −2.01011 + 0.538606i −0.419136 + 0.112307i −0.462222 0.886764i \(-0.652948\pi\)
0.0430860 + 0.999071i \(0.486281\pi\)
\(24\) 0.876322 + 3.27048i 0.178878 + 0.667583i
\(25\) 0 0
\(26\) −2.08364 + 2.94253i −0.408635 + 0.577077i
\(27\) −13.0816 13.0816i −2.51755 2.51755i
\(28\) 3.61605 + 2.08773i 0.683370 + 0.394544i
\(29\) 4.35399 + 2.51378i 0.808515 + 0.466796i 0.846440 0.532484i \(-0.178741\pi\)
−0.0379250 + 0.999281i \(0.512075\pi\)
\(30\) 0 0
\(31\) −1.70293 + 1.70293i −0.305855 + 0.305855i −0.843299 0.537444i \(-0.819390\pi\)
0.537444 + 0.843299i \(0.319390\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −1.28376 2.22354i −0.223474 0.387069i
\(34\) −1.80947 + 1.80947i −0.310321 + 0.310321i
\(35\) 0 0
\(36\) 7.33001 + 4.23198i 1.22167 + 0.705330i
\(37\) −1.55098 0.895461i −0.254980 0.147213i 0.367062 0.930196i \(-0.380364\pi\)
−0.622042 + 0.782983i \(0.713697\pi\)
\(38\) 3.41480 + 3.41480i 0.553954 + 0.553954i
\(39\) 2.05632 + 12.0334i 0.329274 + 1.92689i
\(40\) 0 0
\(41\) 0.417770 + 1.55914i 0.0652446 + 0.243496i 0.990845 0.135007i \(-0.0431056\pi\)
−0.925600 + 0.378503i \(0.876439\pi\)
\(42\) 13.6557 3.65905i 2.10713 0.564603i
\(43\) −2.44221 + 9.11447i −0.372434 + 1.38994i 0.484624 + 0.874723i \(0.338957\pi\)
−0.857058 + 0.515220i \(0.827710\pi\)
\(44\) 0.536207 + 0.536207i 0.0808362 + 0.0808362i
\(45\) 0 0
\(46\) 0.538606 2.01011i 0.0794132 0.296374i
\(47\) 4.89371i 0.713821i −0.934139 0.356910i \(-0.883830\pi\)
0.934139 0.356910i \(-0.116170\pi\)
\(48\) −3.27048 0.876322i −0.472053 0.126486i
\(49\) 5.21723 9.03650i 0.745318 1.29093i
\(50\) 0 0
\(51\) 8.66429i 1.21324i
\(52\) −1.50648 3.27574i −0.208912 0.454264i
\(53\) −3.87316 + 3.87316i −0.532019 + 0.532019i −0.921173 0.389153i \(-0.872768\pi\)
0.389153 + 0.921173i \(0.372768\pi\)
\(54\) 17.8698 4.78819i 2.43177 0.651590i
\(55\) 0 0
\(56\) −3.61605 + 2.08773i −0.483215 + 0.278985i
\(57\) 16.3511 2.16576
\(58\) −4.35399 + 2.51378i −0.571706 + 0.330075i
\(59\) −12.6359 3.38578i −1.64506 0.440792i −0.686834 0.726814i \(-0.741000\pi\)
−0.958223 + 0.286023i \(0.907667\pi\)
\(60\) 0 0
\(61\) −0.00936317 0.0162175i −0.00119883 0.00207644i 0.865425 0.501038i \(-0.167048\pi\)
−0.866624 + 0.498961i \(0.833715\pi\)
\(62\) −0.623315 2.32624i −0.0791611 0.295433i
\(63\) 17.6705 30.6061i 2.22627 3.85601i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 2.56753 0.316041
\(67\) −5.67984 + 9.83777i −0.693903 + 1.20187i 0.276647 + 0.960972i \(0.410777\pi\)
−0.970549 + 0.240903i \(0.922556\pi\)
\(68\) −0.662311 2.47178i −0.0803170 0.299747i
\(69\) −3.52300 6.10202i −0.424119 0.734596i
\(70\) 0 0
\(71\) 7.24992 + 1.94261i 0.860407 + 0.230545i 0.661935 0.749561i \(-0.269735\pi\)
0.198472 + 0.980107i \(0.436402\pi\)
\(72\) −7.33001 + 4.23198i −0.863850 + 0.498744i
\(73\) 2.26886 0.265549 0.132775 0.991146i \(-0.457611\pi\)
0.132775 + 0.991146i \(0.457611\pi\)
\(74\) 1.55098 0.895461i 0.180298 0.104095i
\(75\) 0 0
\(76\) −4.66470 + 1.24990i −0.535078 + 0.143374i
\(77\) 2.23891 2.23891i 0.255147 0.255147i
\(78\) −11.4494 4.23588i −1.29639 0.479619i
\(79\) 4.98569i 0.560934i 0.959864 + 0.280467i \(0.0904894\pi\)
−0.959864 + 0.280467i \(0.909511\pi\)
\(80\) 0 0
\(81\) 18.6234 32.2567i 2.06927 3.58407i
\(82\) −1.55914 0.417770i −0.172178 0.0461349i
\(83\) 2.56023i 0.281021i 0.990079 + 0.140511i \(0.0448744\pi\)
−0.990079 + 0.140511i \(0.955126\pi\)
\(84\) −3.65905 + 13.6557i −0.399235 + 1.48996i
\(85\) 0 0
\(86\) −6.67225 6.67225i −0.719487 0.719487i
\(87\) −4.40575 + 16.4425i −0.472346 + 1.76282i
\(88\) −0.732472 + 0.196265i −0.0780818 + 0.0209220i
\(89\) −1.73597 6.47873i −0.184013 0.686744i −0.994840 0.101459i \(-0.967649\pi\)
0.810827 0.585286i \(-0.199018\pi\)
\(90\) 0 0
\(91\) −13.6777 + 6.29026i −1.43382 + 0.659399i
\(92\) 1.47150 + 1.47150i 0.153414 + 0.153414i
\(93\) −7.06170 4.07708i −0.732264 0.422773i
\(94\) 4.23808 + 2.44685i 0.437124 + 0.252374i
\(95\) 0 0
\(96\) 2.39416 2.39416i 0.244352 0.244352i
\(97\) 3.50956 + 6.07874i 0.356342 + 0.617203i 0.987347 0.158577i \(-0.0506905\pi\)
−0.631005 + 0.775779i \(0.717357\pi\)
\(98\) 5.21723 + 9.03650i 0.527020 + 0.912825i
\(99\) 4.53844 4.53844i 0.456130 0.456130i
\(100\) 0 0
\(101\) 11.6709 + 6.73818i 1.16129 + 0.670474i 0.951614 0.307296i \(-0.0994243\pi\)
0.209680 + 0.977770i \(0.432758\pi\)
\(102\) −7.50350 4.33215i −0.742957 0.428946i
\(103\) 5.59931 + 5.59931i 0.551716 + 0.551716i 0.926936 0.375220i \(-0.122433\pi\)
−0.375220 + 0.926936i \(0.622433\pi\)
\(104\) 3.59012 + 0.333218i 0.352040 + 0.0326747i
\(105\) 0 0
\(106\) −1.41768 5.29084i −0.137697 0.513891i
\(107\) −0.794439 + 0.212869i −0.0768013 + 0.0205788i −0.297015 0.954873i \(-0.595991\pi\)
0.220214 + 0.975452i \(0.429324\pi\)
\(108\) −4.78819 + 17.8698i −0.460744 + 1.71952i
\(109\) 2.20036 + 2.20036i 0.210757 + 0.210757i 0.804589 0.593832i \(-0.202386\pi\)
−0.593832 + 0.804589i \(0.702386\pi\)
\(110\) 0 0
\(111\) 1.56942 5.85717i 0.148963 0.555938i
\(112\) 4.17546i 0.394544i
\(113\) −7.42029 1.98826i −0.698042 0.187040i −0.107689 0.994185i \(-0.534345\pi\)
−0.590353 + 0.807145i \(0.701012\pi\)
\(114\) −8.17556 + 14.1605i −0.765711 + 1.32625i
\(115\) 0 0
\(116\) 5.02755i 0.466796i
\(117\) −27.7258 + 12.7508i −2.56325 + 1.17881i
\(118\) 9.25014 9.25014i 0.851544 0.851544i
\(119\) −10.3208 + 2.76545i −0.946107 + 0.253509i
\(120\) 0 0
\(121\) −9.02828 + 5.21248i −0.820753 + 0.473862i
\(122\) 0.0187263 0.00169540
\(123\) −4.73302 + 2.73261i −0.426762 + 0.246391i
\(124\) 2.32624 + 0.623315i 0.208903 + 0.0559753i
\(125\) 0 0
\(126\) 17.6705 + 30.6061i 1.57421 + 2.72661i
\(127\) 3.75739 + 14.0228i 0.333415 + 1.24432i 0.905577 + 0.424181i \(0.139438\pi\)
−0.572163 + 0.820140i \(0.693895\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −31.9488 −2.81294
\(130\) 0 0
\(131\) −18.7853 −1.64128 −0.820639 0.571447i \(-0.806382\pi\)
−0.820639 + 0.571447i \(0.806382\pi\)
\(132\) −1.28376 + 2.22354i −0.111737 + 0.193535i
\(133\) 5.21892 + 19.4773i 0.452538 + 1.68889i
\(134\) −5.67984 9.83777i −0.490663 0.849854i
\(135\) 0 0
\(136\) 2.47178 + 0.662311i 0.211953 + 0.0567927i
\(137\) 7.54859 4.35818i 0.644920 0.372344i −0.141588 0.989926i \(-0.545221\pi\)
0.786507 + 0.617581i \(0.211887\pi\)
\(138\) 7.04600 0.599795
\(139\) 2.72940 1.57582i 0.231504 0.133659i −0.379761 0.925084i \(-0.623994\pi\)
0.611266 + 0.791425i \(0.290661\pi\)
\(140\) 0 0
\(141\) 16.0048 4.28846i 1.34784 0.361154i
\(142\) −5.30731 + 5.30731i −0.445379 + 0.445379i
\(143\) −2.69506 + 0.460543i −0.225373 + 0.0385126i
\(144\) 8.46396i 0.705330i
\(145\) 0 0
\(146\) −1.13443 + 1.96489i −0.0938859 + 0.162615i
\(147\) 34.1256 + 9.14394i 2.81464 + 0.754179i
\(148\) 1.79092i 0.147213i
\(149\) 5.18428 19.3480i 0.424713 1.58505i −0.339836 0.940485i \(-0.610372\pi\)
0.764549 0.644566i \(-0.222962\pi\)
\(150\) 0 0
\(151\) 4.48760 + 4.48760i 0.365195 + 0.365195i 0.865721 0.500526i \(-0.166860\pi\)
−0.500526 + 0.865721i \(0.666860\pi\)
\(152\) 1.24990 4.66470i 0.101381 0.378357i
\(153\) −20.9210 + 5.60578i −1.69137 + 0.453200i
\(154\) 0.819498 + 3.05841i 0.0660370 + 0.246454i
\(155\) 0 0
\(156\) 9.39308 7.79753i 0.752049 0.624302i
\(157\) 15.7067 + 15.7067i 1.25353 + 1.25353i 0.954125 + 0.299408i \(0.0967893\pi\)
0.299408 + 0.954125i \(0.403211\pi\)
\(158\) −4.31774 2.49285i −0.343501 0.198320i
\(159\) −16.0612 9.27295i −1.27374 0.735393i
\(160\) 0 0
\(161\) 6.14419 6.14419i 0.484230 0.484230i
\(162\) 18.6234 + 32.2567i 1.46319 + 2.53432i
\(163\) −3.63070 6.28855i −0.284378 0.492557i 0.688080 0.725635i \(-0.258454\pi\)
−0.972458 + 0.233077i \(0.925120\pi\)
\(164\) 1.14137 1.14137i 0.0891258 0.0891258i
\(165\) 0 0
\(166\) −2.21722 1.28011i −0.172090 0.0993560i
\(167\) −13.9752 8.06856i −1.08143 0.624364i −0.150149 0.988663i \(-0.547975\pi\)
−0.931282 + 0.364299i \(0.881309\pi\)
\(168\) −9.99670 9.99670i −0.771262 0.771262i
\(169\) 12.7779 + 2.39259i 0.982918 + 0.184045i
\(170\) 0 0
\(171\) 10.5791 + 39.4819i 0.809007 + 3.01925i
\(172\) 9.11447 2.44221i 0.694971 0.186217i
\(173\) 2.50223 9.33846i 0.190241 0.709990i −0.803206 0.595701i \(-0.796874\pi\)
0.993448 0.114289i \(-0.0364590\pi\)
\(174\) −12.0367 12.0367i −0.912503 0.912503i
\(175\) 0 0
\(176\) 0.196265 0.732472i 0.0147941 0.0552122i
\(177\) 44.2925i 3.32923i
\(178\) 6.47873 + 1.73597i 0.485601 + 0.130117i
\(179\) −2.15547 + 3.73338i −0.161107 + 0.279046i −0.935266 0.353946i \(-0.884840\pi\)
0.774159 + 0.632991i \(0.218173\pi\)
\(180\) 0 0
\(181\) 9.62668i 0.715545i 0.933809 + 0.357773i \(0.116464\pi\)
−0.933809 + 0.357773i \(0.883536\pi\)
\(182\) 1.39134 14.9904i 0.103133 1.11116i
\(183\) 0.0448338 0.0448338i 0.00331421 0.00331421i
\(184\) −2.01011 + 0.538606i −0.148187 + 0.0397066i
\(185\) 0 0
\(186\) 7.06170 4.07708i 0.517789 0.298946i
\(187\) −1.94050 −0.141903
\(188\) −4.23808 + 2.44685i −0.309093 + 0.178455i
\(189\) 74.6145 + 19.9929i 5.42741 + 1.45427i
\(190\) 0 0
\(191\) 11.3481 + 19.6555i 0.821119 + 1.42222i 0.904849 + 0.425732i \(0.139983\pi\)
−0.0837303 + 0.996488i \(0.526683\pi\)
\(192\) 0.876322 + 3.27048i 0.0632431 + 0.236026i
\(193\) −1.22466 + 2.12118i −0.0881533 + 0.152686i −0.906731 0.421711i \(-0.861430\pi\)
0.818577 + 0.574396i \(0.194763\pi\)
\(194\) −7.01912 −0.503944
\(195\) 0 0
\(196\) −10.4345 −0.745318
\(197\) −9.34032 + 16.1779i −0.665470 + 1.15263i 0.313687 + 0.949526i \(0.398436\pi\)
−0.979158 + 0.203102i \(0.934898\pi\)
\(198\) 1.66118 + 6.19962i 0.118055 + 0.440588i
\(199\) 8.52723 + 14.7696i 0.604479 + 1.04699i 0.992134 + 0.125184i \(0.0399521\pi\)
−0.387654 + 0.921805i \(0.626715\pi\)
\(200\) 0 0
\(201\) −37.1516 9.95473i −2.62047 0.702153i
\(202\) −11.6709 + 6.73818i −0.821159 + 0.474096i
\(203\) −20.9923 −1.47337
\(204\) 7.50350 4.33215i 0.525350 0.303311i
\(205\) 0 0
\(206\) −7.64880 + 2.04949i −0.532917 + 0.142795i
\(207\) 12.4547 12.4547i 0.865663 0.865663i
\(208\) −2.08364 + 2.94253i −0.144474 + 0.204027i
\(209\) 3.66208i 0.253311i
\(210\) 0 0
\(211\) 9.88824 17.1269i 0.680735 1.17907i −0.294022 0.955799i \(-0.594994\pi\)
0.974757 0.223269i \(-0.0716727\pi\)
\(212\) 5.29084 + 1.41768i 0.363376 + 0.0973663i
\(213\) 25.4130i 1.74127i
\(214\) 0.212869 0.794439i 0.0145514 0.0543067i
\(215\) 0 0
\(216\) −13.0816 13.0816i −0.890089 0.890089i
\(217\) 2.60263 9.71313i 0.176678 0.659370i
\(218\) −3.00575 + 0.805389i −0.203575 + 0.0545478i
\(219\) 1.98825 + 7.42024i 0.134353 + 0.501413i
\(220\) 0 0
\(221\) 8.65329 + 3.20142i 0.582083 + 0.215351i
\(222\) 4.28775 + 4.28775i 0.287775 + 0.287775i
\(223\) 13.0781 + 7.55064i 0.875773 + 0.505628i 0.869263 0.494351i \(-0.164594\pi\)
0.00651091 + 0.999979i \(0.497927\pi\)
\(224\) 3.61605 + 2.08773i 0.241608 + 0.139492i
\(225\) 0 0
\(226\) 5.43203 5.43203i 0.361333 0.361333i
\(227\) −10.0811 17.4610i −0.669106 1.15893i −0.978154 0.207880i \(-0.933344\pi\)
0.309048 0.951046i \(-0.399990\pi\)
\(228\) −8.17556 14.1605i −0.541440 0.937801i
\(229\) −1.26351 + 1.26351i −0.0834950 + 0.0834950i −0.747621 0.664126i \(-0.768804\pi\)
0.664126 + 0.747621i \(0.268804\pi\)
\(230\) 0 0
\(231\) 9.28431 + 5.36030i 0.610863 + 0.352682i
\(232\) 4.35399 + 2.51378i 0.285853 + 0.165037i
\(233\) −5.75348 5.75348i −0.376923 0.376923i 0.493068 0.869991i \(-0.335875\pi\)
−0.869991 + 0.493068i \(0.835875\pi\)
\(234\) 2.82035 30.3866i 0.184372 1.98644i
\(235\) 0 0
\(236\) 3.38578 + 12.6359i 0.220396 + 0.822528i
\(237\) −16.3056 + 4.36907i −1.05916 + 0.283802i
\(238\) 2.76545 10.3208i 0.179258 0.668999i
\(239\) 2.44600 + 2.44600i 0.158219 + 0.158219i 0.781777 0.623558i \(-0.214314\pi\)
−0.623558 + 0.781777i \(0.714314\pi\)
\(240\) 0 0
\(241\) −1.92172 + 7.17197i −0.123789 + 0.461987i −0.999794 0.0203158i \(-0.993533\pi\)
0.876005 + 0.482303i \(0.160200\pi\)
\(242\) 10.4250i 0.670142i
\(243\) 68.2055 + 18.2756i 4.37538 + 1.17238i
\(244\) −0.00936317 + 0.0162175i −0.000599416 + 0.00103822i
\(245\) 0 0
\(246\) 5.46522i 0.348450i
\(247\) 6.04167 16.3304i 0.384422 1.03908i
\(248\) −1.70293 + 1.70293i −0.108136 + 0.108136i
\(249\) −8.37316 + 2.24358i −0.530628 + 0.142181i
\(250\) 0 0
\(251\) 20.7305 11.9688i 1.30850 0.755462i 0.326653 0.945144i \(-0.394079\pi\)
0.981845 + 0.189683i \(0.0607459\pi\)
\(252\) −35.3409 −2.22627
\(253\) 1.36664 0.789029i 0.0859198 0.0496058i
\(254\) −14.0228 3.75739i −0.879868 0.235760i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.47635 + 12.9739i 0.216849 + 0.809291i 0.985507 + 0.169632i \(0.0542579\pi\)
−0.768659 + 0.639659i \(0.779075\pi\)
\(258\) 15.9744 27.6685i 0.994523 1.72256i
\(259\) 7.47792 0.464655
\(260\) 0 0
\(261\) −42.5530 −2.63396
\(262\) 9.39264 16.2685i 0.580279 1.00507i
\(263\) −2.54798 9.50920i −0.157115 0.586362i −0.998915 0.0465722i \(-0.985170\pi\)
0.841800 0.539790i \(-0.181496\pi\)
\(264\) −1.28376 2.22354i −0.0790102 0.136850i
\(265\) 0 0
\(266\) −19.4773 5.21892i −1.19423 0.319992i
\(267\) 19.6673 11.3549i 1.20362 0.694909i
\(268\) 11.3597 0.693903
\(269\) −2.37390 + 1.37057i −0.144739 + 0.0835654i −0.570621 0.821214i \(-0.693297\pi\)
0.425881 + 0.904779i \(0.359964\pi\)
\(270\) 0 0
\(271\) 6.31118 1.69108i 0.383377 0.102726i −0.0619830 0.998077i \(-0.519742\pi\)
0.445360 + 0.895352i \(0.353076\pi\)
\(272\) −1.80947 + 1.80947i −0.109715 + 0.109715i
\(273\) −32.5583 39.2204i −1.97052 2.37373i
\(274\) 8.71636i 0.526575i
\(275\) 0 0
\(276\) −3.52300 + 6.10202i −0.212060 + 0.367298i
\(277\) −13.9628 3.74132i −0.838943 0.224794i −0.186332 0.982487i \(-0.559660\pi\)
−0.652611 + 0.757693i \(0.726327\pi\)
\(278\) 3.15164i 0.189023i
\(279\) 5.27572 19.6892i 0.315849 1.17876i
\(280\) 0 0
\(281\) 9.15879 + 9.15879i 0.546368 + 0.546368i 0.925388 0.379021i \(-0.123739\pi\)
−0.379021 + 0.925388i \(0.623739\pi\)
\(282\) −4.28846 + 16.0048i −0.255374 + 0.953070i
\(283\) −12.0424 + 3.22674i −0.715844 + 0.191810i −0.598316 0.801260i \(-0.704163\pi\)
−0.117527 + 0.993070i \(0.537497\pi\)
\(284\) −1.94261 7.24992i −0.115273 0.430203i
\(285\) 0 0
\(286\) 0.948690 2.56426i 0.0560972 0.151628i
\(287\) −4.76573 4.76573i −0.281312 0.281312i
\(288\) 7.33001 + 4.23198i 0.431925 + 0.249372i
\(289\) −9.05140 5.22583i −0.532435 0.307402i
\(290\) 0 0
\(291\) −16.8049 + 16.8049i −0.985119 + 0.985119i
\(292\) −1.13443 1.96489i −0.0663874 0.114986i
\(293\) −15.2652 26.4401i −0.891801 1.54464i −0.837715 0.546108i \(-0.816109\pi\)
−0.0540863 0.998536i \(-0.517225\pi\)
\(294\) −24.9817 + 24.9817i −1.45696 + 1.45696i
\(295\) 0 0
\(296\) −1.55098 0.895461i −0.0901491 0.0520476i
\(297\) 12.1494 + 7.01443i 0.704977 + 0.407019i
\(298\) 14.1637 + 14.1637i 0.820483 + 0.820483i
\(299\) −7.39600 + 1.26386i −0.427722 + 0.0730908i
\(300\) 0 0
\(301\) −10.1974 38.0571i −0.587766 2.19357i
\(302\) −6.13017 + 1.64257i −0.352752 + 0.0945195i
\(303\) −11.8096 + 44.0741i −0.678445 + 2.53199i
\(304\) 3.41480 + 3.41480i 0.195852 + 0.195852i
\(305\) 0 0
\(306\) 5.60578 20.9210i 0.320461 1.19598i
\(307\) 11.3407i 0.647249i 0.946186 + 0.323625i \(0.104901\pi\)
−0.946186 + 0.323625i \(0.895099\pi\)
\(308\) −3.05841 0.819498i −0.174269 0.0466952i
\(309\) −13.4056 + 23.2192i −0.762619 + 1.32089i
\(310\) 0 0
\(311\) 18.0460i 1.02330i −0.859195 0.511649i \(-0.829035\pi\)
0.859195 0.511649i \(-0.170965\pi\)
\(312\) 2.05632 + 12.0334i 0.116416 + 0.681258i
\(313\) 9.49544 9.49544i 0.536714 0.536714i −0.385848 0.922562i \(-0.626091\pi\)
0.922562 + 0.385848i \(0.126091\pi\)
\(314\) −21.4558 + 5.74906i −1.21082 + 0.324438i
\(315\) 0 0
\(316\) 4.31774 2.49285i 0.242892 0.140234i
\(317\) 14.7891 0.830636 0.415318 0.909676i \(-0.363670\pi\)
0.415318 + 0.909676i \(0.363670\pi\)
\(318\) 16.0612 9.27295i 0.900668 0.520001i
\(319\) −3.68254 0.986734i −0.206183 0.0552465i
\(320\) 0 0
\(321\) −1.39237 2.41165i −0.0777144 0.134605i
\(322\) 2.24893 + 8.39312i 0.125328 + 0.467730i
\(323\) 6.17897 10.7023i 0.343807 0.595491i
\(324\) −37.2468 −2.06927
\(325\) 0 0
\(326\) 7.26139 0.402171
\(327\) −5.26801 + 9.12447i −0.291322 + 0.504584i
\(328\) 0.417770 + 1.55914i 0.0230675 + 0.0860889i
\(329\) 10.2167 + 17.6959i 0.563267 + 0.975607i
\(330\) 0 0
\(331\) 31.2960 + 8.38573i 1.72018 + 0.460922i 0.977884 0.209148i \(-0.0670690\pi\)
0.742299 + 0.670069i \(0.233736\pi\)
\(332\) 2.21722 1.28011i 0.121686 0.0702553i
\(333\) 15.1583 0.830669
\(334\) 13.9752 8.06856i 0.764687 0.441492i
\(335\) 0 0
\(336\) 13.6557 3.65905i 0.744982 0.199617i
\(337\) −15.3618 + 15.3618i −0.836810 + 0.836810i −0.988438 0.151628i \(-0.951548\pi\)
0.151628 + 0.988438i \(0.451548\pi\)
\(338\) −8.46101 + 9.86972i −0.460218 + 0.536842i
\(339\) 26.0102i 1.41268i
\(340\) 0 0
\(341\) 0.913122 1.58157i 0.0494483 0.0856470i
\(342\) −39.4819 10.5791i −2.13494 0.572054i
\(343\) 14.3404i 0.774310i
\(344\) −2.44221 + 9.11447i −0.131675 + 0.491419i
\(345\) 0 0
\(346\) 6.83623 + 6.83623i 0.367518 + 0.367518i
\(347\) −0.970881 + 3.62338i −0.0521196 + 0.194513i −0.987077 0.160247i \(-0.948771\pi\)
0.934957 + 0.354760i \(0.115438\pi\)
\(348\) 16.4425 4.40575i 0.881410 0.236173i
\(349\) 2.88458 + 10.7654i 0.154408 + 0.576258i 0.999155 + 0.0410929i \(0.0130839\pi\)
−0.844747 + 0.535165i \(0.820249\pi\)
\(350\) 0 0
\(351\) −42.6054 51.3235i −2.27411 2.73944i
\(352\) 0.536207 + 0.536207i 0.0285799 + 0.0285799i
\(353\) 11.0688 + 6.39060i 0.589135 + 0.340137i 0.764755 0.644321i \(-0.222860\pi\)
−0.175620 + 0.984458i \(0.556193\pi\)
\(354\) 38.3585 + 22.1463i 2.03873 + 1.17706i
\(355\) 0 0
\(356\) −4.74276 + 4.74276i −0.251366 + 0.251366i
\(357\) −18.0887 31.3305i −0.957356 1.65819i
\(358\) −2.15547 3.73338i −0.113920 0.197315i
\(359\) −5.32657 + 5.32657i −0.281126 + 0.281126i −0.833558 0.552432i \(-0.813700\pi\)
0.552432 + 0.833558i \(0.313700\pi\)
\(360\) 0 0
\(361\) −3.74271 2.16085i −0.196985 0.113729i
\(362\) −8.33695 4.81334i −0.438180 0.252983i
\(363\) −24.9590 24.9590i −1.31001 1.31001i
\(364\) 12.2864 + 8.70014i 0.643982 + 0.456011i
\(365\) 0 0
\(366\) 0.0164103 + 0.0612441i 0.000857780 + 0.00320128i
\(367\) 0.0995368 0.0266708i 0.00519578 0.00139221i −0.256220 0.966618i \(-0.582477\pi\)
0.261416 + 0.965226i \(0.415811\pi\)
\(368\) 0.538606 2.01011i 0.0280768 0.104784i
\(369\) −9.66049 9.66049i −0.502905 0.502905i
\(370\) 0 0
\(371\) 5.91944 22.0917i 0.307322 1.14694i
\(372\) 8.15415i 0.422773i
\(373\) 13.4883 + 3.61418i 0.698397 + 0.187135i 0.590513 0.807028i \(-0.298926\pi\)
0.107885 + 0.994163i \(0.465592\pi\)
\(374\) 0.970249 1.68052i 0.0501704 0.0868977i
\(375\) 0 0
\(376\) 4.89371i 0.252374i
\(377\) 14.7937 + 10.4756i 0.761914 + 0.539520i
\(378\) −54.6216 + 54.6216i −2.80943 + 2.80943i
\(379\) 28.4375 7.61981i 1.46074 0.391403i 0.560993 0.827821i \(-0.310419\pi\)
0.899744 + 0.436417i \(0.143753\pi\)
\(380\) 0 0
\(381\) −42.5685 + 24.5770i −2.18085 + 1.25912i
\(382\) −22.6962 −1.16124
\(383\) 18.0719 10.4338i 0.923433 0.533144i 0.0387045 0.999251i \(-0.487677\pi\)
0.884729 + 0.466106i \(0.154344\pi\)
\(384\) −3.27048 0.876322i −0.166896 0.0447196i
\(385\) 0 0
\(386\) −1.22466 2.12118i −0.0623338 0.107965i
\(387\) −20.6708 77.1445i −1.05076 3.92148i
\(388\) 3.50956 6.07874i 0.178171 0.308601i
\(389\) 17.6286 0.893804 0.446902 0.894583i \(-0.352527\pi\)
0.446902 + 0.894583i \(0.352527\pi\)
\(390\) 0 0
\(391\) −5.32526 −0.269310
\(392\) 5.21723 9.03650i 0.263510 0.456412i
\(393\) −16.4619 61.4368i −0.830395 3.09908i
\(394\) −9.34032 16.1779i −0.470559 0.815032i
\(395\) 0 0
\(396\) −6.19962 1.66118i −0.311543 0.0834776i
\(397\) −25.0432 + 14.4587i −1.25688 + 0.725661i −0.972467 0.233040i \(-0.925133\pi\)
−0.284415 + 0.958701i \(0.591799\pi\)
\(398\) −17.0545 −0.854863
\(399\) −59.1265 + 34.1367i −2.96003 + 1.70897i
\(400\) 0 0
\(401\) −8.22656 + 2.20430i −0.410815 + 0.110078i −0.458307 0.888794i \(-0.651544\pi\)
0.0474918 + 0.998872i \(0.484877\pi\)
\(402\) 27.1968 27.1968i 1.35645 1.35645i
\(403\) −6.68116 + 5.54627i −0.332812 + 0.276279i
\(404\) 13.4764i 0.670474i
\(405\) 0 0
\(406\) 10.4962 18.1799i 0.520916 0.902253i
\(407\) 1.31180 + 0.351496i 0.0650235 + 0.0174230i
\(408\) 8.66429i 0.428946i
\(409\) 6.49840 24.2524i 0.321325 1.19920i −0.596629 0.802517i \(-0.703494\pi\)
0.917955 0.396685i \(-0.129840\pi\)
\(410\) 0 0
\(411\) 20.8683 + 20.8683i 1.02936 + 1.02936i
\(412\) 2.04949 7.64880i 0.100971 0.376829i
\(413\) 52.7608 14.1372i 2.59619 0.695646i
\(414\) 4.55874 + 17.0135i 0.224050 + 0.836166i
\(415\) 0 0
\(416\) −1.50648 3.27574i −0.0738615 0.160607i
\(417\) 7.54551 + 7.54551i 0.369505 + 0.369505i
\(418\) −3.17145 1.83104i −0.155121 0.0895591i
\(419\) 23.2032 + 13.3964i 1.13355 + 0.654456i 0.944826 0.327574i \(-0.106231\pi\)
0.188726 + 0.982030i \(0.439564\pi\)
\(420\) 0 0
\(421\) 5.47935 5.47935i 0.267047 0.267047i −0.560862 0.827909i \(-0.689530\pi\)
0.827909 + 0.560862i \(0.189530\pi\)
\(422\) 9.88824 + 17.1269i 0.481352 + 0.833726i
\(423\) 20.7101 + 35.8709i 1.00696 + 1.74410i
\(424\) −3.87316 + 3.87316i −0.188097 + 0.188097i
\(425\) 0 0
\(426\) −22.0083 12.7065i −1.06631 0.615633i
\(427\) 0.0677154 + 0.0390955i 0.00327698 + 0.00189197i
\(428\) 0.581570 + 0.581570i 0.0281112 + 0.0281112i
\(429\) −3.86794 8.41056i −0.186746 0.406066i
\(430\) 0 0
\(431\) 1.63759 + 6.11158i 0.0788800 + 0.294384i 0.994085 0.108604i \(-0.0346381\pi\)
−0.915205 + 0.402989i \(0.867971\pi\)
\(432\) 17.8698 4.78819i 0.859760 0.230372i
\(433\) 6.30725 23.5390i 0.303107 1.13121i −0.631455 0.775412i \(-0.717542\pi\)
0.934562 0.355799i \(-0.115791\pi\)
\(434\) 7.11051 + 7.11051i 0.341315 + 0.341315i
\(435\) 0 0
\(436\) 0.805389 3.00575i 0.0385711 0.143949i
\(437\) 10.0498i 0.480745i
\(438\) −7.42024 1.98825i −0.354553 0.0950021i
\(439\) 8.74647 15.1493i 0.417446 0.723038i −0.578235 0.815870i \(-0.696258\pi\)
0.995682 + 0.0928316i \(0.0295918\pi\)
\(440\) 0 0
\(441\) 88.3168i 4.20556i
\(442\) −7.09915 + 5.89326i −0.337672 + 0.280314i
\(443\) 20.0146 20.0146i 0.950923 0.950923i −0.0479276 0.998851i \(-0.515262\pi\)
0.998851 + 0.0479276i \(0.0152617\pi\)
\(444\) −5.85717 + 1.56942i −0.277969 + 0.0744816i
\(445\) 0 0
\(446\) −13.0781 + 7.55064i −0.619265 + 0.357533i
\(447\) 67.8203 3.20779
\(448\) −3.61605 + 2.08773i −0.170842 + 0.0986359i
\(449\) −17.1530 4.59612i −0.809498 0.216904i −0.169748 0.985488i \(-0.554295\pi\)
−0.639750 + 0.768583i \(0.720962\pi\)
\(450\) 0 0
\(451\) −0.612009 1.06003i −0.0288184 0.0499149i
\(452\) 1.98826 + 7.42029i 0.0935199 + 0.349021i
\(453\) −10.7440 + 18.6092i −0.504797 + 0.874334i
\(454\) 20.1622 0.946259
\(455\) 0 0
\(456\) 16.3511 0.765711
\(457\) 8.49845 14.7198i 0.397541 0.688561i −0.595881 0.803073i \(-0.703197\pi\)
0.993422 + 0.114512i \(0.0365304\pi\)
\(458\) −0.462476 1.72598i −0.0216101 0.0806500i
\(459\) −23.6707 40.9988i −1.10485 1.91366i
\(460\) 0 0
\(461\) 13.2125 + 3.54027i 0.615366 + 0.164887i 0.553020 0.833168i \(-0.313475\pi\)
0.0623456 + 0.998055i \(0.480142\pi\)
\(462\) −9.28431 + 5.36030i −0.431945 + 0.249384i
\(463\) −7.68919 −0.357347 −0.178674 0.983908i \(-0.557181\pi\)
−0.178674 + 0.983908i \(0.557181\pi\)
\(464\) −4.35399 + 2.51378i −0.202129 + 0.116699i
\(465\) 0 0
\(466\) 7.85940 2.10592i 0.364080 0.0975548i
\(467\) 25.0177 25.0177i 1.15768 1.15768i 0.172709 0.984973i \(-0.444748\pi\)
0.984973 0.172709i \(-0.0552520\pi\)
\(468\) 24.9054 + 17.6358i 1.15125 + 0.815216i
\(469\) 47.4319i 2.19020i
\(470\) 0 0
\(471\) −37.6044 + 65.1327i −1.73272 + 3.00115i
\(472\) −12.6359 3.38578i −0.581615 0.155843i
\(473\) 7.15542i 0.329006i
\(474\) 4.36907 16.3056i 0.200678 0.748941i
\(475\) 0 0
\(476\) 7.55536 + 7.55536i 0.346299 + 0.346299i
\(477\) 11.9991 44.7814i 0.549403 2.05040i
\(478\) −3.34130 + 0.895298i −0.152827 + 0.0409500i
\(479\) 10.8240 + 40.3955i 0.494559 + 1.84572i 0.532486 + 0.846439i \(0.321258\pi\)
−0.0379268 + 0.999281i \(0.512075\pi\)
\(480\) 0 0
\(481\) −5.26983 3.73163i −0.240284 0.170148i
\(482\) −5.25025 5.25025i −0.239142 0.239142i
\(483\) 25.4787 + 14.7101i 1.15932 + 0.669335i
\(484\) 9.02828 + 5.21248i 0.410377 + 0.236931i
\(485\) 0 0
\(486\) −49.9299 + 49.9299i −2.26487 + 2.26487i
\(487\) 9.91755 + 17.1777i 0.449407 + 0.778396i 0.998347 0.0574656i \(-0.0183020\pi\)
−0.548940 + 0.835861i \(0.684969\pi\)
\(488\) −0.00936317 0.0162175i −0.000423851 0.000734131i
\(489\) 17.3849 17.3849i 0.786173 0.786173i
\(490\) 0 0
\(491\) −16.5596 9.56070i −0.747325 0.431469i 0.0774013 0.997000i \(-0.475338\pi\)
−0.824727 + 0.565532i \(0.808671\pi\)
\(492\) 4.73302 + 2.73261i 0.213381 + 0.123196i
\(493\) 9.09719 + 9.09719i 0.409717 + 0.409717i
\(494\) 11.1217 + 13.3974i 0.500387 + 0.602778i
\(495\) 0 0
\(496\) −0.623315 2.32624i −0.0279877 0.104451i
\(497\) −30.2717 + 8.11128i −1.35787 + 0.363841i
\(498\) 2.24358 8.37316i 0.100537 0.375210i
\(499\) 8.31578 + 8.31578i 0.372266 + 0.372266i 0.868302 0.496036i \(-0.165212\pi\)
−0.496036 + 0.868302i \(0.665212\pi\)
\(500\) 0 0
\(501\) 14.1413 52.7761i 0.631787 2.35786i
\(502\) 23.9375i 1.06838i
\(503\) −13.8375 3.70775i −0.616984 0.165320i −0.0632279 0.997999i \(-0.520139\pi\)
−0.553757 + 0.832679i \(0.686806\pi\)
\(504\) 17.6705 30.6061i 0.787105 1.36331i
\(505\) 0 0
\(506\) 1.57806i 0.0701532i
\(507\) 3.37267 + 43.8866i 0.149786 + 1.94907i
\(508\) 10.2654 10.2654i 0.455453 0.455453i
\(509\) 20.5496 5.50625i 0.910845 0.244060i 0.227177 0.973853i \(-0.427050\pi\)
0.683668 + 0.729793i \(0.260384\pi\)
\(510\) 0 0
\(511\) −8.20430 + 4.73676i −0.362937 + 0.209542i
\(512\) 1.00000 0.0441942
\(513\) −77.3724 + 44.6710i −3.41607 + 1.97227i
\(514\) −12.9739 3.47635i −0.572255 0.153335i
\(515\) 0 0
\(516\) 15.9744 + 27.6685i 0.703234 + 1.21804i
\(517\) 0.960465 + 3.58451i 0.0422412 + 0.157646i
\(518\) −3.73896 + 6.47607i −0.164280 + 0.284542i
\(519\) 32.7340 1.43686
\(520\) 0 0
\(521\) 12.9481 0.567266 0.283633 0.958933i \(-0.408460\pi\)
0.283633 + 0.958933i \(0.408460\pi\)
\(522\) 21.2765 36.8520i 0.931247 1.61297i
\(523\) 8.93236 + 33.3360i 0.390585 + 1.45768i 0.829172 + 0.558994i \(0.188812\pi\)
−0.438587 + 0.898689i \(0.644521\pi\)
\(524\) 9.39264 + 16.2685i 0.410319 + 0.710694i
\(525\) 0 0
\(526\) 9.50920 + 2.54798i 0.414621 + 0.111097i
\(527\) −5.33713 + 3.08139i −0.232489 + 0.134228i
\(528\) 2.56753 0.111737
\(529\) −16.1682 + 9.33469i −0.702963 + 0.405856i
\(530\) 0 0
\(531\) 106.950 28.6572i 4.64123 1.24361i
\(532\) 14.2584 14.2584i 0.618178 0.618178i
\(533\) 0.980310 + 5.73670i 0.0424619 + 0.248484i
\(534\) 22.7098i 0.982750i
\(535\) 0 0
\(536\) −5.67984 + 9.83777i −0.245332 + 0.424927i
\(537\) −14.0988 3.77777i −0.608409 0.163023i
\(538\) 2.74115i 0.118179i
\(539\) −2.04792 + 7.64295i −0.0882102 + 0.329205i
\(540\) 0 0
\(541\) 7.10819 + 7.10819i 0.305605 + 0.305605i 0.843202 0.537597i \(-0.180668\pi\)
−0.537597 + 0.843202i \(0.680668\pi\)
\(542\) −1.69108 + 6.31118i −0.0726379 + 0.271088i
\(543\) −31.4838 + 8.43607i −1.35110 + 0.362026i
\(544\) −0.662311 2.47178i −0.0283964 0.105977i
\(545\) 0 0
\(546\) 50.2450 8.58607i 2.15029 0.367450i
\(547\) −12.8526 12.8526i −0.549536 0.549536i 0.376771 0.926307i \(-0.377034\pi\)
−0.926307 + 0.376771i \(0.877034\pi\)
\(548\) −7.54859 4.35818i −0.322460 0.186172i
\(549\) 0.137264 + 0.0792495i 0.00585829 + 0.00338229i
\(550\) 0 0
\(551\) 17.1681 17.1681i 0.731385 0.731385i
\(552\) −3.52300 6.10202i −0.149949 0.259719i
\(553\) −10.4088 18.0285i −0.442626 0.766651i
\(554\) 10.2215 10.2215i 0.434269 0.434269i
\(555\) 0 0
\(556\) −2.72940 1.57582i −0.115752 0.0668296i
\(557\) 37.4945 + 21.6475i 1.58869 + 0.917233i 0.993523 + 0.113635i \(0.0362494\pi\)
0.595172 + 0.803598i \(0.297084\pi\)
\(558\) 14.4135 + 14.4135i 0.610173 + 0.610173i
\(559\) −11.8049 + 31.9082i −0.499296 + 1.34957i
\(560\) 0 0
\(561\) −1.70050 6.34636i −0.0717952 0.267943i
\(562\) −12.5111 + 3.35235i −0.527751 + 0.141410i
\(563\) −4.76983 + 17.8012i −0.201024 + 0.750232i 0.789601 + 0.613621i \(0.210288\pi\)
−0.990625 + 0.136611i \(0.956379\pi\)
\(564\) −11.7163 11.7163i −0.493345 0.493345i
\(565\) 0 0
\(566\) 3.22674 12.0424i 0.135630 0.506178i
\(567\) 155.522i 6.53133i
\(568\) 7.24992 + 1.94261i 0.304200 + 0.0815101i
\(569\) −17.0518 + 29.5346i −0.714849 + 1.23815i 0.248169 + 0.968717i \(0.420171\pi\)
−0.963018 + 0.269438i \(0.913162\pi\)
\(570\) 0 0
\(571\) 11.8871i 0.497460i −0.968573 0.248730i \(-0.919987\pi\)
0.968573 0.248730i \(-0.0800132\pi\)
\(572\) 1.74637 + 2.10372i 0.0730196 + 0.0879610i
\(573\) −54.3382 + 54.3382i −2.27001 + 2.27001i
\(574\) 6.51011 1.74438i 0.271727 0.0728090i
\(575\) 0 0
\(576\) −7.33001 + 4.23198i −0.305417 + 0.176333i
\(577\) −31.4791 −1.31049 −0.655247 0.755415i \(-0.727435\pi\)
−0.655247 + 0.755415i \(0.727435\pi\)
\(578\) 9.05140 5.22583i 0.376489 0.217366i
\(579\) −8.01047 2.14640i −0.332904 0.0892013i
\(580\) 0 0
\(581\) −5.34506 9.25791i −0.221750 0.384083i
\(582\) −6.15101 22.9559i −0.254968 0.951552i
\(583\) 2.07682 3.59715i 0.0860129 0.148979i
\(584\) 2.26886 0.0938859
\(585\) 0 0
\(586\) 30.5303 1.26120
\(587\) −3.14505 + 5.44739i −0.129810 + 0.224838i −0.923603 0.383350i \(-0.874770\pi\)
0.793793 + 0.608188i \(0.208103\pi\)
\(588\) −9.14394 34.1256i −0.377090 1.40732i
\(589\) 5.81516 + 10.0721i 0.239609 + 0.415016i
\(590\) 0 0
\(591\) −61.0946 16.3703i −2.51310 0.673382i
\(592\) 1.55098 0.895461i 0.0637450 0.0368032i
\(593\) −26.1184 −1.07255 −0.536277 0.844042i \(-0.680170\pi\)
−0.536277 + 0.844042i \(0.680170\pi\)
\(594\) −12.1494 + 7.01443i −0.498494 + 0.287806i
\(595\) 0 0
\(596\) −19.3480 + 5.18428i −0.792525 + 0.212357i
\(597\) −40.8310 + 40.8310i −1.67110 + 1.67110i
\(598\) 2.60347 7.03705i 0.106464 0.287766i
\(599\) 15.9858i 0.653161i −0.945169 0.326581i \(-0.894104\pi\)
0.945169 0.326581i \(-0.105896\pi\)
\(600\) 0 0
\(601\) 3.86818 6.69989i 0.157787 0.273294i −0.776284 0.630384i \(-0.782898\pi\)
0.934070 + 0.357089i \(0.116231\pi\)
\(602\) 38.0571 + 10.1974i 1.55109 + 0.415613i
\(603\) 96.1479i 3.91544i
\(604\) 1.64257 6.13017i 0.0668354 0.249433i
\(605\) 0 0
\(606\) −32.2645 32.2645i −1.31066 1.31066i
\(607\) 10.8949 40.6602i 0.442209 1.65035i −0.280992 0.959710i \(-0.590664\pi\)
0.723202 0.690637i \(-0.242670\pi\)
\(608\) −4.66470 + 1.24990i −0.189179 + 0.0506903i
\(609\) −18.3960 68.6549i −0.745445 2.78204i
\(610\) 0 0
\(611\) 1.63067 17.5690i 0.0659700 0.710766i
\(612\) 15.3153 + 15.3153i 0.619083 + 0.619083i
\(613\) −1.31674 0.760221i −0.0531827 0.0307051i 0.473173 0.880970i \(-0.343109\pi\)
−0.526356 + 0.850265i \(0.676442\pi\)
\(614\) −9.82135 5.67036i −0.396358 0.228837i
\(615\) 0 0
\(616\) 2.23891 2.23891i 0.0902083 0.0902083i
\(617\) −19.8314 34.3490i −0.798381 1.38284i −0.920670 0.390343i \(-0.872357\pi\)
0.122288 0.992495i \(-0.460977\pi\)
\(618\) −13.4056 23.2192i −0.539253 0.934014i
\(619\) −2.88094 + 2.88094i −0.115795 + 0.115795i −0.762630 0.646835i \(-0.776092\pi\)
0.646835 + 0.762630i \(0.276092\pi\)
\(620\) 0 0
\(621\) 33.3412 + 19.2495i 1.33794 + 0.772458i
\(622\) 15.6283 + 9.02302i 0.626639 + 0.361790i
\(623\) 19.8032 + 19.8032i 0.793399 + 0.793399i
\(624\) −11.4494 4.23588i −0.458343 0.169571i
\(625\) 0 0
\(626\) 3.47557 + 12.9710i 0.138912 + 0.518426i
\(627\) −11.9767 + 3.20916i −0.478305 + 0.128161i
\(628\) 5.74906 21.4558i 0.229413 0.856179i
\(629\) −3.24061 3.24061i −0.129212 0.129212i
\(630\) 0 0
\(631\) −7.40223 + 27.6255i −0.294678 + 1.09975i 0.646794 + 0.762664i \(0.276109\pi\)
−0.941473 + 0.337090i \(0.890557\pi\)
\(632\) 4.98569i 0.198320i
\(633\) 64.6786 + 17.3306i 2.57074 + 0.688828i
\(634\) −7.39453 + 12.8077i −0.293674 + 0.508659i
\(635\) 0 0
\(636\) 18.5459i 0.735393i
\(637\) 21.7416 30.7037i 0.861434 1.21652i
\(638\) 2.69581 2.69581i 0.106728 0.106728i
\(639\) −61.3630 + 16.4422i −2.42748 + 0.650442i
\(640\) 0 0
\(641\) −10.4012 + 6.00513i −0.410822 + 0.237188i −0.691143 0.722718i \(-0.742893\pi\)
0.280321 + 0.959906i \(0.409559\pi\)
\(642\) 2.78474 0.109905
\(643\) −16.0043 + 9.24008i −0.631148 + 0.364393i −0.781196 0.624285i \(-0.785390\pi\)
0.150049 + 0.988679i \(0.452057\pi\)
\(644\) −8.39312 2.24893i −0.330735 0.0886202i
\(645\) 0 0
\(646\) 6.17897 + 10.7023i 0.243108 + 0.421076i
\(647\) 6.38555 + 23.8312i 0.251042 + 0.936901i 0.970250 + 0.242106i \(0.0778381\pi\)
−0.719208 + 0.694795i \(0.755495\pi\)
\(648\) 18.6234 32.2567i 0.731596 1.26716i
\(649\) 9.91998 0.389393
\(650\) 0 0
\(651\) 34.0473 1.33442
\(652\) −3.63070 + 6.28855i −0.142189 + 0.246279i
\(653\) −0.991306 3.69960i −0.0387928 0.144777i 0.943813 0.330480i \(-0.107210\pi\)
−0.982606 + 0.185703i \(0.940544\pi\)
\(654\) −5.26801 9.12447i −0.205996 0.356795i
\(655\) 0 0
\(656\) −1.55914 0.417770i −0.0608741 0.0163112i
\(657\) −16.6307 + 9.60176i −0.648827 + 0.374600i
\(658\) −20.4335 −0.796580
\(659\) −9.13583 + 5.27458i −0.355882 + 0.205468i −0.667273 0.744814i \(-0.732538\pi\)
0.311391 + 0.950282i \(0.399205\pi\)
\(660\) 0 0
\(661\) 11.0424 2.95880i 0.429500 0.115084i −0.0375915 0.999293i \(-0.511969\pi\)
0.467091 + 0.884209i \(0.345302\pi\)
\(662\) −22.9102 + 22.9102i −0.890432 + 0.890432i
\(663\) −2.88710 + 31.1059i −0.112126 + 1.20805i
\(664\) 2.56023i 0.0993560i
\(665\) 0 0
\(666\) −7.57915 + 13.1275i −0.293686 + 0.508679i
\(667\) −10.1059 2.70787i −0.391302 0.104849i
\(668\) 16.1371i 0.624364i
\(669\) −13.2336 + 49.3884i −0.511640 + 1.90946i
\(670\) 0 0
\(671\) 0.0100412 + 0.0100412i 0.000387636 + 0.000387636i
\(672\) −3.65905 + 13.6557i −0.141151 + 0.526782i
\(673\) 48.2133 12.9187i 1.85849 0.497980i 0.858594 0.512656i \(-0.171338\pi\)
0.999892 + 0.0146758i \(0.00467162\pi\)
\(674\) −5.62280 20.9846i −0.216582 0.808296i
\(675\) 0 0
\(676\) −4.31692 12.2623i −0.166036 0.471627i
\(677\) 12.0185 + 12.0185i 0.461909 + 0.461909i 0.899281 0.437372i \(-0.144091\pi\)
−0.437372 + 0.899281i \(0.644091\pi\)
\(678\) 22.5255 + 13.0051i 0.865088 + 0.499459i
\(679\) −25.3815 14.6540i −0.974054 0.562370i
\(680\) 0 0
\(681\) 48.2715 48.2715i 1.84977 1.84977i
\(682\) 0.913122 + 1.58157i 0.0349652 + 0.0605616i
\(683\) −12.8174 22.2004i −0.490444 0.849475i 0.509495 0.860474i \(-0.329832\pi\)
−0.999940 + 0.0109989i \(0.996499\pi\)
\(684\) 28.9027 28.9027i 1.10512 1.10512i
\(685\) 0 0
\(686\) −12.4192 7.17021i −0.474166 0.273760i
\(687\) −5.23952 3.02504i −0.199900 0.115412i
\(688\) −6.67225 6.67225i −0.254377 0.254377i
\(689\) −15.1957 + 12.6145i −0.578911 + 0.480574i
\(690\) 0 0
\(691\) 0.460873 + 1.72000i 0.0175324 + 0.0654320i 0.974138 0.225955i \(-0.0725501\pi\)
−0.956605 + 0.291387i \(0.905883\pi\)
\(692\) −9.33846 + 2.50223i −0.354995 + 0.0951206i
\(693\) −6.93620 + 25.8863i −0.263484 + 0.983337i
\(694\) −2.65250 2.65250i −0.100687 0.100687i
\(695\) 0 0
\(696\) −4.40575 + 16.4425i −0.167000 + 0.623251i
\(697\) 4.13053i 0.156455i
\(698\) −10.7654 2.88458i −0.407476 0.109183i
\(699\) 13.7747 23.8585i 0.521008 0.902412i
\(700\) 0 0
\(701\) 1.74194i 0.0657923i 0.999459 + 0.0328961i \(0.0104731\pi\)
−0.999459 + 0.0328961i \(0.989527\pi\)
\(702\) 65.7501 11.2356i 2.48158 0.424062i
\(703\) −6.11564 + 6.11564i −0.230656 + 0.230656i
\(704\) −0.732472 + 0.196265i −0.0276061 + 0.00739703i
\(705\) 0 0
\(706\) −11.0688 + 6.39060i −0.416581 + 0.240513i
\(707\) −56.2699 −2.11625
\(708\) −38.3585 + 22.1463i −1.44160 + 0.832308i
\(709\) −17.1644 4.59918i −0.644622 0.172726i −0.0783257 0.996928i \(-0.524957\pi\)
−0.566296 + 0.824202i \(0.691624\pi\)
\(710\) 0 0
\(711\) −21.0994 36.5452i −0.791288 1.37055i
\(712\) −1.73597 6.47873i −0.0650583 0.242801i
\(713\) 2.50586 4.34027i 0.0938451 0.162545i
\(714\) 36.1774 1.35391
\(715\) 0 0
\(716\) 4.31093 0.161107
\(717\) −5.85610 + 10.1431i −0.218700 + 0.378800i
\(718\) −1.94966 7.27623i −0.0727607 0.271547i
\(719\) −14.7761 25.5929i −0.551054 0.954453i −0.998199 0.0599917i \(-0.980893\pi\)
0.447145 0.894461i \(-0.352441\pi\)
\(720\) 0 0
\(721\) −31.9372 8.55756i −1.18940 0.318700i
\(722\) 3.74271 2.16085i 0.139289 0.0804186i
\(723\) −25.1398 −0.934960
\(724\) 8.33695 4.81334i 0.309840 0.178886i
\(725\) 0 0
\(726\) 34.0946 9.13562i 1.26537 0.339055i
\(727\) −21.2487 + 21.2487i −0.788072 + 0.788072i −0.981178 0.193106i \(-0.938144\pi\)
0.193106 + 0.981178i \(0.438144\pi\)
\(728\) −13.6777 + 6.29026i −0.506931 + 0.233133i
\(729\) 127.339i 4.71627i
\(730\) 0 0
\(731\) −12.0732 + 20.9114i −0.446544 + 0.773437i
\(732\) −0.0612441 0.0164103i −0.00226365 0.000606542i
\(733\) 24.2362i 0.895183i 0.894238 + 0.447592i \(0.147718\pi\)
−0.894238 + 0.447592i \(0.852282\pi\)
\(734\) −0.0266708 + 0.0995368i −0.000984438 + 0.00367397i
\(735\) 0 0
\(736\) 1.47150 + 1.47150i 0.0542402 + 0.0542402i
\(737\) 2.22951 8.32065i 0.0821251 0.306495i
\(738\) 13.1965 3.53599i 0.485769 0.130161i
\(739\) 12.5644 + 46.8911i 0.462190 + 1.72492i 0.666041 + 0.745916i \(0.267988\pi\)
−0.203850 + 0.979002i \(0.565346\pi\)
\(740\) 0 0
\(741\) 58.7025 + 5.44849i 2.15649 + 0.200155i
\(742\) 16.1722 + 16.1722i 0.593701 + 0.593701i
\(743\) −29.9017 17.2637i −1.09699 0.633345i −0.161558 0.986863i \(-0.551652\pi\)
−0.935428 + 0.353518i \(0.884985\pi\)
\(744\) −7.06170 4.07708i −0.258895 0.149473i
\(745\) 0 0
\(746\) −9.87411 + 9.87411i −0.361517 + 0.361517i
\(747\) −10.8348 18.7665i −0.396426 0.686629i
\(748\) 0.970249 + 1.68052i 0.0354758 + 0.0614459i
\(749\) 2.42832 2.42832i 0.0887289 0.0887289i
\(750\) 0 0
\(751\) 6.61675 + 3.82018i 0.241449 + 0.139400i 0.615842 0.787869i \(-0.288816\pi\)
−0.374394 + 0.927270i \(0.622149\pi\)
\(752\) 4.23808 + 2.44685i 0.154547 + 0.0892276i
\(753\) 57.3102 + 57.3102i 2.08850 + 2.08850i
\(754\) −16.4690 + 7.57393i −0.599765 + 0.275826i
\(755\) 0 0
\(756\) −19.9929 74.6145i −0.727134 2.71370i
\(757\) −33.4967 + 8.97541i −1.21746 + 0.326217i −0.809684 0.586866i \(-0.800362\pi\)
−0.407774 + 0.913083i \(0.633695\pi\)
\(758\) −7.61981 + 28.4375i −0.276764 + 1.03290i
\(759\) 3.77811 + 3.77811i 0.137137 + 0.137137i
\(760\) 0 0
\(761\) −1.66206 + 6.20288i −0.0602495 + 0.224854i −0.989485 0.144633i \(-0.953800\pi\)
0.929236 + 0.369487i \(0.120467\pi\)
\(762\) 49.1539i 1.78066i
\(763\) −12.5504 3.36287i −0.454355 0.121744i
\(764\) 11.3481 19.6555i 0.410560 0.711110i
\(765\) 0 0
\(766\) 20.8677i 0.753980i
\(767\) −44.2363 16.3659i −1.59728 0.590938i
\(768\) 2.39416 2.39416i 0.0863917 0.0863917i
\(769\) 29.2963 7.84993i 1.05645 0.283076i 0.311537 0.950234i \(-0.399156\pi\)
0.744916 + 0.667158i \(0.232489\pi\)
\(770\) 0 0
\(771\) −39.3845 + 22.7387i −1.41840 + 0.818913i
\(772\) 2.44933 0.0881533
\(773\) 29.5519 17.0618i 1.06291 0.613670i 0.136673 0.990616i \(-0.456359\pi\)
0.926235 + 0.376946i \(0.123026\pi\)
\(774\) 77.1445 + 20.6708i 2.77290 + 0.742997i
\(775\) 0 0
\(776\) 3.50956 + 6.07874i 0.125986 + 0.218214i
\(777\) 6.55306 + 24.4564i 0.235090 + 0.877367i
\(778\) −8.81428 + 15.2668i −0.316007 + 0.547341i
\(779\) 7.79508 0.279288
\(780\) 0 0
\(781\) −5.69163 −0.203663
\(782\) 2.66263 4.61181i 0.0952155 0.164918i
\(783\) −24.0729 89.8412i −0.860294 3.21066i
\(784\) 5.21723 + 9.03650i 0.186330 + 0.322732i
\(785\) 0 0
\(786\) 61.4368 + 16.4619i 2.19138 + 0.587178i
\(787\) 38.7940 22.3977i 1.38285 0.798392i 0.390358 0.920663i \(-0.372351\pi\)
0.992497 + 0.122271i \(0.0390178\pi\)
\(788\) 18.6806 0.665470
\(789\) 28.8668 16.6662i 1.02768 0.593334i
\(790\) 0 0
\(791\) 30.9831 8.30190i 1.10163 0.295182i
\(792\) 4.53844 4.53844i 0.161266 0.161266i
\(793\) −0.0282109 0.0613427i −0.00100180 0.00217834i
\(794\) 28.9174i 1.02624i
\(795\) 0 0
\(796\) 8.52723 14.7696i 0.302240 0.523494i
\(797\) 45.5195 + 12.1969i 1.61238 + 0.432037i 0.948752 0.316022i \(-0.102347\pi\)
0.663632 + 0.748059i \(0.269014\pi\)
\(798\) 68.2734i 2.41685i
\(799\) 3.24116 12.0962i 0.114664 0.427931i
\(800\) 0 0
\(801\) 40.1426 + 40.1426i 1.41837 + 1.41837i
\(802\) 2.20430 8.22656i 0.0778366 0.290490i
\(803\) −1.66187 + 0.445298i −0.0586463 + 0.0157142i
\(804\) 9.95473 + 37.1516i 0.351076 + 1.31023i
\(805\) 0 0
\(806\) −1.46263 8.55919i −0.0515189 0.301485i
\(807\) −6.56274 6.56274i −0.231019 0.231019i
\(808\) 11.6709 + 6.73818i 0.410580 + 0.237048i
\(809\) 29.4427 + 16.9988i 1.03515 + 0.597645i 0.918456 0.395523i \(-0.129437\pi\)
0.116695 + 0.993168i \(0.462770\pi\)
\(810\) 0 0
\(811\) −26.3564 + 26.3564i −0.925498 + 0.925498i −0.997411 0.0719129i \(-0.977090\pi\)
0.0719129 + 0.997411i \(0.477090\pi\)
\(812\) 10.4962 + 18.1799i 0.368343 + 0.637989i
\(813\) 11.0612 + 19.1586i 0.387935 + 0.671923i
\(814\) −0.960305 + 0.960305i −0.0336587 + 0.0336587i
\(815\) 0 0
\(816\) −7.50350 4.33215i −0.262675 0.151655i
\(817\) 39.4637 + 22.7844i 1.38066 + 0.797125i
\(818\) 17.7540 + 17.7540i 0.620753 + 0.620753i
\(819\) 73.6376 103.992i 2.57311 3.63376i
\(820\) 0 0
\(821\) −10.1687 37.9502i −0.354891 1.32447i −0.880621 0.473821i \(-0.842874\pi\)
0.525730 0.850651i \(-0.323792\pi\)
\(822\) −28.5067 + 7.63834i −0.994284 + 0.266418i
\(823\) 8.71449 32.5229i 0.303768 1.13368i −0.630233 0.776406i \(-0.717041\pi\)
0.934001 0.357271i \(-0.116293\pi\)
\(824\) 5.59931 + 5.59931i 0.195061 + 0.195061i
\(825\) 0 0
\(826\) −14.1372 + 52.7608i −0.491896 + 1.83578i
\(827\) 26.5912i 0.924666i −0.886706 0.462333i \(-0.847013\pi\)
0.886706 0.462333i \(-0.152987\pi\)
\(828\) −17.0135 4.55874i −0.591259 0.158427i
\(829\) 2.49475 4.32104i 0.0866463 0.150076i −0.819445 0.573157i \(-0.805718\pi\)
0.906092 + 0.423082i \(0.139052\pi\)
\(830\) 0 0
\(831\) 48.9436i 1.69784i
\(832\) 3.59012 + 0.333218i 0.124465 + 0.0115523i
\(833\) 18.8808 18.8808i 0.654181 0.654181i
\(834\) −10.3074 + 2.76185i −0.356915 + 0.0956350i
\(835\) 0 0
\(836\) 3.17145 1.83104i 0.109687 0.0633278i
\(837\) 44.5540 1.54001
\(838\) −23.2032 + 13.3964i −0.801542 + 0.462770i
\(839\) −10.8926 2.91865i −0.376053 0.100763i 0.0658415 0.997830i \(-0.479027\pi\)
−0.441895 + 0.897067i \(0.645694\pi\)
\(840\) 0 0
\(841\) −1.86187 3.22485i −0.0642024 0.111202i
\(842\) 2.00558 + 7.48493i 0.0691169 + 0.257948i
\(843\) −21.9276 + 37.9797i −0.755226 + 1.30809i
\(844\) −19.7765 −0.680735
\(845\) 0 0
\(846\) −41.4202 −1.42405
\(847\) 21.7645 37.6972i 0.747837 1.29529i
\(848\) −1.41768 5.29084i −0.0486832 0.181688i
\(849\) −21.1060 36.5566i −0.724355 1.25462i
\(850\) 0 0
\(851\) 3.59994 + 0.964602i 0.123404 + 0.0330661i
\(852\) 22.0083 12.7065i 0.753993 0.435318i
\(853\) −30.1746 −1.03316 −0.516579 0.856239i \(-0.672795\pi\)
−0.516579 + 0.856239i \(0.672795\pi\)
\(854\) −0.0677154 + 0.0390955i −0.00231717 + 0.00133782i
\(855\) 0 0
\(856\) −0.794439 + 0.212869i −0.0271534 + 0.00727572i
\(857\) 18.4882 18.4882i 0.631546 0.631546i −0.316910 0.948456i \(-0.602645\pi\)
0.948456 + 0.316910i \(0.102645\pi\)
\(858\) 9.21773 + 0.855547i 0.314688 + 0.0292079i
\(859\) 2.76088i 0.0941999i 0.998890 + 0.0471000i \(0.0149979\pi\)
−0.998890 + 0.0471000i \(0.985002\pi\)
\(860\) 0 0
\(861\) 11.4099 19.7625i 0.388849 0.673505i
\(862\) −6.11158 1.63759i −0.208161 0.0557766i
\(863\) 45.2712i 1.54105i 0.637411 + 0.770524i \(0.280006\pi\)
−0.637411 + 0.770524i \(0.719994\pi\)
\(864\) −4.78819 + 17.8698i −0.162898 + 0.607942i
\(865\) 0 0
\(866\) 17.2317 + 17.2317i 0.585558 + 0.585558i
\(867\) 9.15901 34.1819i 0.311056 1.16088i
\(868\) −9.71313 + 2.60263i −0.329685 + 0.0883389i
\(869\) −0.978519 3.65188i −0.0331940 0.123882i
\(870\) 0 0
\(871\) −23.6694 + 33.4261i −0.802008 + 1.13260i
\(872\) 2.20036 + 2.20036i 0.0745137 + 0.0745137i
\(873\) −51.4502 29.7048i −1.74133 1.00536i
\(874\) −8.70334 5.02488i −0.294395 0.169969i
\(875\) 0 0
\(876\) 5.43199 5.43199i 0.183530 0.183530i
\(877\) 19.1871 + 33.2331i 0.647903 + 1.12220i 0.983623 + 0.180239i \(0.0576872\pi\)
−0.335719 + 0.941962i \(0.608979\pi\)
\(878\) 8.74647 + 15.1493i 0.295179 + 0.511265i
\(879\) 73.0944 73.0944i 2.46541 2.46541i
\(880\) 0 0
\(881\) −43.2499 24.9703i −1.45713 0.841272i −0.458257 0.888820i \(-0.651526\pi\)
−0.998869 + 0.0475474i \(0.984859\pi\)
\(882\) −76.4846 44.1584i −2.57537 1.48689i
\(883\) −23.5749 23.5749i −0.793358 0.793358i 0.188680 0.982039i \(-0.439579\pi\)
−0.982039 + 0.188680i \(0.939579\pi\)
\(884\) −1.55413 9.09468i −0.0522712 0.305887i
\(885\) 0 0
\(886\) 7.32586 + 27.3405i 0.246117 + 0.918521i
\(887\) −9.49544 + 2.54430i −0.318826 + 0.0854291i −0.414683 0.909966i \(-0.636107\pi\)
0.0958571 + 0.995395i \(0.469441\pi\)
\(888\) 1.56942 5.85717i 0.0526664 0.196554i
\(889\) −42.8627 42.8627i −1.43757 1.43757i
\(890\) 0 0
\(891\) −7.31026 + 27.2822i −0.244903 + 0.913990i
\(892\) 15.1013i 0.505628i
\(893\) −22.8277 6.11666i −0.763900 0.204686i
\(894\) −33.9102 + 58.7341i −1.13413 + 1.96436i
\(895\) 0 0
\(896\) 4.17546i 0.139492i
\(897\) −10.6147 23.0809i −0.354414 0.770649i
\(898\) 12.5568 12.5568i 0.419027 0.419027i
\(899\) −11.6953 + 3.13375i −0.390060 + 0.104516i
\(900\) 0 0
\(901\) −12.1388 + 7.00836i −0.404403 + 0.233482i
\(902\) 1.22402 0.0407554
\(903\) 115.529 66.7005i 3.84455 2.21965i
\(904\) −7.42029 1.98826i −0.246795 0.0661286i
\(905\) 0 0
\(906\) −10.7440 18.6092i −0.356946 0.618248i
\(907\) 2.44703 + 9.13246i 0.0812525 + 0.303238i 0.994578 0.103992i \(-0.0331615\pi\)
−0.913326 + 0.407230i \(0.866495\pi\)
\(908\) −10.0811 + 17.4610i −0.334553 + 0.579463i
\(909\) −114.063 −3.78324
\(910\) 0 0
\(911\) −20.0662 −0.664822 −0.332411 0.943135i \(-0.607862\pi\)
−0.332411 + 0.943135i \(0.607862\pi\)
\(912\) −8.17556 + 14.1605i −0.270720 + 0.468901i
\(913\) −0.502484 1.87529i −0.0166298 0.0620632i
\(914\) 8.49845 + 14.7198i 0.281104 + 0.486886i
\(915\) 0 0
\(916\) 1.72598 + 0.462476i 0.0570281 + 0.0152806i
\(917\) 67.9286 39.2186i 2.24320 1.29511i
\(918\) 47.3414 1.56250
\(919\) −6.83105 + 3.94391i −0.225336 + 0.130098i −0.608418 0.793616i \(-0.708196\pi\)
0.383083 + 0.923714i \(0.374862\pi\)
\(920\) 0 0
\(921\) −37.0896 + 9.93812i −1.22214 + 0.327472i
\(922\) −9.67220 + 9.67220i −0.318537 + 0.318537i
\(923\) 25.3808 + 9.39001i 0.835418 + 0.309076i
\(924\) 10.7206i 0.352682i
\(925\) 0 0
\(926\) 3.84460 6.65903i 0.126341 0.218829i
\(927\) −64.7391 17.3468i −2.12631 0.569744i
\(928\) 5.02755i 0.165037i
\(929\) −6.71229 + 25.0506i −0.220223 + 0.821884i 0.764039 + 0.645170i \(0.223213\pi\)
−0.984262 + 0.176714i \(0.943453\pi\)
\(930\) 0 0
\(931\) −35.6316 35.6316i −1.16778 1.16778i
\(932\) −2.10592 + 7.85940i −0.0689817 + 0.257443i
\(933\) 59.0192 15.8141i 1.93220 0.517732i
\(934\) 9.15712 + 34.1748i 0.299630 + 1.11823i
\(935\) 0 0
\(936\) −27.7258 + 12.7508i −0.906246 + 0.416774i
\(937\) 5.05649 + 5.05649i 0.165188 + 0.165188i 0.784861 0.619672i \(-0.212734\pi\)
−0.619672 + 0.784861i \(0.712734\pi\)
\(938\) 41.0772 + 23.7159i 1.34122 + 0.774352i
\(939\) 39.3757 + 22.7336i 1.28498 + 0.741881i
\(940\) 0 0
\(941\) −22.6650 + 22.6650i −0.738859 + 0.738859i −0.972357 0.233498i \(-0.924983\pi\)
0.233498 + 0.972357i \(0.424983\pi\)
\(942\) −37.6044 65.1327i −1.22522 2.12214i
\(943\) −1.67952 2.90902i −0.0546928 0.0947307i
\(944\) 9.25014 9.25014i 0.301066 0.301066i
\(945\) 0 0
\(946\) 6.19677 + 3.57771i 0.201474 + 0.116321i
\(947\) −29.0597 16.7776i −0.944314 0.545200i −0.0530042 0.998594i \(-0.516880\pi\)
−0.891310 + 0.453394i \(0.850213\pi\)
\(948\) 11.9365 + 11.9365i 0.387680 + 0.387680i
\(949\) 8.14546 + 0.756024i 0.264413 + 0.0245416i
\(950\) 0 0
\(951\) 12.9600 + 48.3673i 0.420256 + 1.56842i
\(952\) −10.3208 + 2.76545i −0.334499 + 0.0896288i
\(953\) −1.53795 + 5.73970i −0.0498190 + 0.185927i −0.986351 0.164654i \(-0.947349\pi\)
0.936532 + 0.350581i \(0.114016\pi\)
\(954\) 32.7823 + 32.7823i 1.06137 + 1.06137i
\(955\) 0 0
\(956\) 0.895298 3.34130i 0.0289560 0.108065i
\(957\) 12.9084i 0.417268i
\(958\) −40.3955 10.8240i −1.30512 0.349706i
\(959\) −18.1974 + 31.5188i −0.587625 + 1.01780i
\(960\) 0 0
\(961\) 25.2001i 0.812906i
\(962\) 5.86660 2.69800i 0.189147 0.0869869i
\(963\) 4.92238 4.92238i 0.158622 0.158622i
\(964\) 7.17197 1.92172i 0.230994 0.0618945i
\(965\) 0 0
\(966\) −25.4787 + 14.7101i −0.819764 + 0.473291i
\(967\) −17.2907 −0.556030 −0.278015 0.960577i \(-0.589677\pi\)
−0.278015 + 0.960577i \(0.589677\pi\)
\(968\) −9.02828 + 5.21248i −0.290180 + 0.167536i
\(969\) 40.4164 + 10.8295i 1.29836 + 0.347895i
\(970\) 0 0
\(971\) 8.22692 + 14.2494i 0.264014 + 0.457286i 0.967305 0.253616i \(-0.0816200\pi\)
−0.703291 + 0.710903i \(0.748287\pi\)
\(972\) −18.2756 68.2055i −0.586190 2.18769i
\(973\) −6.57976 + 11.3965i −0.210938 + 0.365355i
\(974\) −19.8351 −0.635558
\(975\) 0 0
\(976\) 0.0187263 0.000599416
\(977\) −1.64582 + 2.85064i −0.0526545 + 0.0912002i −0.891151 0.453706i \(-0.850102\pi\)
0.838497 + 0.544906i \(0.183435\pi\)
\(978\) 6.36332 + 23.7482i 0.203476 + 0.759384i
\(979\) 2.54310 + 4.40478i 0.0812779 + 0.140777i
\(980\) 0 0
\(981\) −25.4406 6.81678i −0.812255 0.217643i
\(982\) 16.5596 9.56070i 0.528439 0.305094i
\(983\) −18.4925 −0.589818 −0.294909 0.955525i \(-0.595289\pi\)
−0.294909 + 0.955525i \(0.595289\pi\)
\(984\) −4.73302 + 2.73261i −0.150883 + 0.0871125i
\(985\) 0 0
\(986\) −12.4270 + 3.32980i −0.395756 + 0.106043i
\(987\) −48.9209 + 48.9209i −1.55717 + 1.55717i
\(988\) −17.1633 + 2.93294i −0.546038 + 0.0933092i
\(989\) 19.6364i 0.624402i
\(990\) 0 0
\(991\) 16.1179 27.9170i 0.512002 0.886813i −0.487902 0.872899i \(-0.662238\pi\)
0.999903 0.0139141i \(-0.00442913\pi\)
\(992\) 2.32624 + 0.623315i 0.0738583 + 0.0197903i
\(993\) 109.701i 3.48127i
\(994\) 8.11128 30.2717i 0.257274 0.960161i
\(995\) 0 0
\(996\) 6.12958 + 6.12958i 0.194223 + 0.194223i
\(997\) 13.3302 49.7491i 0.422173 1.57557i −0.347847 0.937551i \(-0.613087\pi\)
0.770020 0.638020i \(-0.220246\pi\)
\(998\) −11.3596 + 3.04379i −0.359581 + 0.0963494i
\(999\) 8.57527 + 32.0034i 0.271310 + 1.01254i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.w.f.357.4 yes 16
5.2 odd 4 650.2.t.f.643.4 yes 16
5.3 odd 4 650.2.t.h.643.1 yes 16
5.4 even 2 650.2.w.h.357.1 yes 16
13.11 odd 12 650.2.t.h.557.1 yes 16
65.24 odd 12 650.2.t.f.557.4 16
65.37 even 12 650.2.w.h.193.1 yes 16
65.63 even 12 inner 650.2.w.f.193.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.t.f.557.4 16 65.24 odd 12
650.2.t.f.643.4 yes 16 5.2 odd 4
650.2.t.h.557.1 yes 16 13.11 odd 12
650.2.t.h.643.1 yes 16 5.3 odd 4
650.2.w.f.193.4 yes 16 65.63 even 12 inner
650.2.w.f.357.4 yes 16 1.1 even 1 trivial
650.2.w.h.193.1 yes 16 65.37 even 12
650.2.w.h.357.1 yes 16 5.4 even 2