Properties

Label 2-650-65.2-c1-0-8
Degree 22
Conductor 650650
Sign 0.009400.999i0.00940 - 0.999i
Analytic cond. 5.190275.19027
Root an. cond. 2.278212.27821
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (1.98 + 0.531i)3-s + (−0.499 + 0.866i)4-s + (0.531 + 1.98i)6-s + (2.67 + 1.54i)7-s − 0.999·8-s + (1.05 + 0.609i)9-s + (−0.858 + 3.20i)11-s + (−1.45 + 1.45i)12-s + (−1.43 − 3.30i)13-s + 3.09i·14-s + (−0.5 − 0.866i)16-s + (1.44 + 5.40i)17-s + 1.21i·18-s + (0.296 − 0.0794i)19-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (1.14 + 0.306i)3-s + (−0.249 + 0.433i)4-s + (0.217 + 0.809i)6-s + (1.01 + 0.584i)7-s − 0.353·8-s + (0.351 + 0.203i)9-s + (−0.258 + 0.965i)11-s + (−0.419 + 0.419i)12-s + (−0.397 − 0.917i)13-s + 0.826i·14-s + (−0.125 − 0.216i)16-s + (0.351 + 1.31i)17-s + 0.287i·18-s + (0.0680 − 0.0182i)19-s + ⋯

Functional equation

Λ(s)=(650s/2ΓC(s)L(s)=((0.009400.999i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00940 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(650s/2ΓC(s+1/2)L(s)=((0.009400.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00940 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 650650    =    252132 \cdot 5^{2} \cdot 13
Sign: 0.009400.999i0.00940 - 0.999i
Analytic conductor: 5.190275.19027
Root analytic conductor: 2.278212.27821
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ650(457,)\chi_{650} (457, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 650, ( :1/2), 0.009400.999i)(2,\ 650,\ (\ :1/2),\ 0.00940 - 0.999i)

Particular Values

L(1)L(1) \approx 1.86359+1.84614i1.86359 + 1.84614i
L(12)L(\frac12) \approx 1.86359+1.84614i1.86359 + 1.84614i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
5 1 1
13 1+(1.43+3.30i)T 1 + (1.43 + 3.30i)T
good3 1+(1.980.531i)T+(2.59+1.5i)T2 1 + (-1.98 - 0.531i)T + (2.59 + 1.5i)T^{2}
7 1+(2.671.54i)T+(3.5+6.06i)T2 1 + (-2.67 - 1.54i)T + (3.5 + 6.06i)T^{2}
11 1+(0.8583.20i)T+(9.525.5i)T2 1 + (0.858 - 3.20i)T + (-9.52 - 5.5i)T^{2}
17 1+(1.445.40i)T+(14.7+8.5i)T2 1 + (-1.44 - 5.40i)T + (-14.7 + 8.5i)T^{2}
19 1+(0.296+0.0794i)T+(16.49.5i)T2 1 + (-0.296 + 0.0794i)T + (16.4 - 9.5i)T^{2}
23 1+(1.35+5.05i)T+(19.911.5i)T2 1 + (-1.35 + 5.05i)T + (-19.9 - 11.5i)T^{2}
29 1+(6.38+3.68i)T+(14.525.1i)T2 1 + (-6.38 + 3.68i)T + (14.5 - 25.1i)T^{2}
31 1+(1.421.42i)T31iT2 1 + (1.42 - 1.42i)T - 31iT^{2}
37 1+(3.191.84i)T+(18.532.0i)T2 1 + (3.19 - 1.84i)T + (18.5 - 32.0i)T^{2}
41 1+(9.052.42i)T+(35.5+20.5i)T2 1 + (-9.05 - 2.42i)T + (35.5 + 20.5i)T^{2}
43 1+(9.262.48i)T+(37.221.5i)T2 1 + (9.26 - 2.48i)T + (37.2 - 21.5i)T^{2}
47 1+5.28iT47T2 1 + 5.28iT - 47T^{2}
53 1+(2.01+2.01i)T53iT2 1 + (-2.01 + 2.01i)T - 53iT^{2}
59 1+(0.224+0.837i)T+(51.0+29.5i)T2 1 + (0.224 + 0.837i)T + (-51.0 + 29.5i)T^{2}
61 1+(2.36+4.09i)T+(30.552.8i)T2 1 + (-2.36 + 4.09i)T + (-30.5 - 52.8i)T^{2}
67 1+(1.62+2.81i)T+(33.5+58.0i)T2 1 + (1.62 + 2.81i)T + (-33.5 + 58.0i)T^{2}
71 1+(1.79+6.68i)T+(61.4+35.5i)T2 1 + (1.79 + 6.68i)T + (-61.4 + 35.5i)T^{2}
73 1+11.2T+73T2 1 + 11.2T + 73T^{2}
79 14.04iT79T2 1 - 4.04iT - 79T^{2}
83 1+5.45iT83T2 1 + 5.45iT - 83T^{2}
89 1+(7.031.88i)T+(77.0+44.5i)T2 1 + (-7.03 - 1.88i)T + (77.0 + 44.5i)T^{2}
97 1+(7.07+12.2i)T+(48.584.0i)T2 1 + (-7.07 + 12.2i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.51597252886191540978257088736, −9.796365189256632630731523939119, −8.623870253531542829537106237408, −8.251242790229907383868376182160, −7.53601899801849326695923745279, −6.26190842023048159718498064738, −5.14356388931791761584564980983, −4.36813181251116186088638028676, −3.13191715693818202241111398177, −2.09613014773916742796736927559, 1.30040169316445446672658488530, 2.53770619919311891945121610259, 3.44379358313239969175541892278, 4.59702000700249379146255453955, 5.52702060573578745499643153113, 7.08309095629580402890644412438, 7.76015632624260345140725978060, 8.718011345520474719819010659241, 9.335297228745494053481769967773, 10.42197103525457351139410786702

Graph of the ZZ-function along the critical line