Properties

Label 650.2.w.h
Level 650650
Weight 22
Character orbit 650.w
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(193,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.w (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ12)\Q(\zeta_{12})
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+28x14+294x12+1516x10+4147x8+6012x6+4338x4+1296x2+81 x^{16} + 28x^{14} + 294x^{12} + 1516x^{10} + 4147x^{8} + 6012x^{6} + 4338x^{4} + 1296x^{2} + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 32 3^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β15q2+β2q3+(β151)q4+(β7β5+β1)q6+(β14+β12β10++2)q7q8+(β15β13+β12+1)q9++(β14+3β13β12+1)q99+O(q100) q + \beta_{15} q^{2} + \beta_{2} q^{3} + (\beta_{15} - 1) q^{4} + ( - \beta_{7} - \beta_{5} + \cdots - \beta_1) q^{6} + ( - \beta_{14} + \beta_{12} - \beta_{10} + \cdots + 2) q^{7} - q^{8} + ( - \beta_{15} - \beta_{13} + \beta_{12} + \cdots - 1) q^{9}+ \cdots + (\beta_{14} + 3 \beta_{13} - \beta_{12} + \cdots - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+8q28q4+12q716q824q94q11+8q138q168q17+16q194q21+4q224q23+4q26+36q2712q28+36q298q31+36q99+O(q100) 16 q + 8 q^{2} - 8 q^{4} + 12 q^{7} - 16 q^{8} - 24 q^{9} - 4 q^{11} + 8 q^{13} - 8 q^{16} - 8 q^{17} + 16 q^{19} - 4 q^{21} + 4 q^{22} - 4 q^{23} + 4 q^{26} + 36 q^{27} - 12 q^{28} + 36 q^{29} - 8 q^{31}+ \cdots - 36 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+28x14+294x12+1516x10+4147x8+6012x6+4338x4+1296x2+81 x^{16} + 28x^{14} + 294x^{12} + 1516x^{10} + 4147x^{8} + 6012x^{6} + 4338x^{4} + 1296x^{2} + 81 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (4ν158ν14+145ν13221ν12+2010ν112295ν10+13435ν9++756)/4968 ( 4 \nu^{15} - 8 \nu^{14} + 145 \nu^{13} - 221 \nu^{12} + 2010 \nu^{11} - 2295 \nu^{10} + 13435 \nu^{9} + \cdots + 756 ) / 4968 Copy content Toggle raw display
β3\beta_{3}== (53ν15138ν14+1490ν133657ν12+15489ν1135397ν10+9315)/14904 ( 53 \nu^{15} - 138 \nu^{14} + 1490 \nu^{13} - 3657 \nu^{12} + 15489 \nu^{11} - 35397 \nu^{10} + \cdots - 9315 ) / 14904 Copy content Toggle raw display
β4\beta_{4}== (37ν14+979ν12+9381ν10+41836ν8+89761ν6+83688ν4+26658ν2+4887)/2484 ( 37\nu^{14} + 979\nu^{12} + 9381\nu^{10} + 41836\nu^{8} + 89761\nu^{6} + 83688\nu^{4} + 26658\nu^{2} + 4887 ) / 2484 Copy content Toggle raw display
β5\beta_{5}== (89ν15132ν14+2381ν133750ν12+23229ν1139834ν10+35964)/14904 ( 89 \nu^{15} - 132 \nu^{14} + 2381 \nu^{13} - 3750 \nu^{12} + 23229 \nu^{11} - 39834 \nu^{10} + \cdots - 35964 ) / 14904 Copy content Toggle raw display
β6\beta_{6}== (44ν1537ν14+1250ν13979ν12+13278ν119381ν10+2403)/4968 ( 44 \nu^{15} - 37 \nu^{14} + 1250 \nu^{13} - 979 \nu^{12} + 13278 \nu^{11} - 9381 \nu^{10} + \cdots - 2403 ) / 4968 Copy content Toggle raw display
β7\beta_{7}== (89ν15+132ν14+2381ν13+3750ν12+23229ν11+39834ν10++35964)/14904 ( 89 \nu^{15} + 132 \nu^{14} + 2381 \nu^{13} + 3750 \nu^{12} + 23229 \nu^{11} + 39834 \nu^{10} + \cdots + 35964 ) / 14904 Copy content Toggle raw display
β8\beta_{8}== (29ν1581ν14+758ν132229ν12+7086ν1122659ν10+6939)/4968 ( 29 \nu^{15} - 81 \nu^{14} + 758 \nu^{13} - 2229 \nu^{12} + 7086 \nu^{11} - 22659 \nu^{10} + \cdots - 6939 ) / 4968 Copy content Toggle raw display
β9\beta_{9}== (61ν1577ν14+1711ν132015ν12+17991ν1118924ν10++7587)/4968 ( 61 \nu^{15} - 77 \nu^{14} + 1711 \nu^{13} - 2015 \nu^{12} + 17991 \nu^{11} - 18924 \nu^{10} + \cdots + 7587 ) / 4968 Copy content Toggle raw display
β10\beta_{10}== (29ν1581ν14758ν132229ν127086ν1122659ν10+6939)/4968 ( - 29 \nu^{15} - 81 \nu^{14} - 758 \nu^{13} - 2229 \nu^{12} - 7086 \nu^{11} - 22659 \nu^{10} + \cdots - 6939 ) / 4968 Copy content Toggle raw display
β11\beta_{11}== (73ν1538ν141939ν13998ν1218639ν119504ν10+3861)/4968 ( - 73 \nu^{15} - 38 \nu^{14} - 1939 \nu^{13} - 998 \nu^{12} - 18639 \nu^{11} - 9504 \nu^{10} + \cdots - 3861 ) / 4968 Copy content Toggle raw display
β12\beta_{12}== (2ν1453ν12510ν102303ν85132ν65331ν42142ν2+36ν162)/72 ( -2\nu^{14} - 53\nu^{12} - 510\nu^{10} - 2303\nu^{8} - 5132\nu^{6} - 5331\nu^{4} - 2142\nu^{2} + 36\nu - 162 ) / 72 Copy content Toggle raw display
β13\beta_{13}== (19ν1523ν14522ν13598ν125327ν115543ν10++2277)/1656 ( - 19 \nu^{15} - 23 \nu^{14} - 522 \nu^{13} - 598 \nu^{12} - 5327 \nu^{11} - 5543 \nu^{10} + \cdots + 2277 ) / 1656 Copy content Toggle raw display
β14\beta_{14}== (77ν1546ν142084ν131219ν1220649ν1111799ν10+3105)/4968 ( - 77 \nu^{15} - 46 \nu^{14} - 2084 \nu^{13} - 1219 \nu^{12} - 20649 \nu^{11} - 11799 \nu^{10} + \cdots - 3105 ) / 4968 Copy content Toggle raw display
β15\beta_{15}== (2ν15+54ν13+535ν11+2522ν9+5991ν7+6892ν5+3345ν3+450ν+36)/72 ( 2\nu^{15} + 54\nu^{13} + 535\nu^{11} + 2522\nu^{9} + 5991\nu^{7} + 6892\nu^{5} + 3345\nu^{3} + 450\nu + 36 ) / 72 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β10+β8+β7β5+β44 \beta_{10} + \beta_{8} + \beta_{7} - \beta_{5} + \beta_{4} - 4 Copy content Toggle raw display
ν3\nu^{3}== 2β15+2β14β13β11β10+β9+β8+5β1 - 2 \beta_{15} + 2 \beta_{14} - \beta_{13} - \beta_{11} - \beta_{10} + \beta_{9} + \beta_{8} + \cdots - 5 \beta_1 Copy content Toggle raw display
ν4\nu^{4}== 2β14+2β134β12+2β119β10+2β99β8++28 2 \beta_{14} + 2 \beta_{13} - 4 \beta_{12} + 2 \beta_{11} - 9 \beta_{10} + 2 \beta_{9} - 9 \beta_{8} + \cdots + 28 Copy content Toggle raw display
ν5\nu^{5}== 38β1524β14+21β13+15β11+17β1021β917β8+7 38 \beta_{15} - 24 \beta_{14} + 21 \beta_{13} + 15 \beta_{11} + 17 \beta_{10} - 21 \beta_{9} - 17 \beta_{8} + \cdots - 7 Copy content Toggle raw display
ν6\nu^{6}== 22β1427β13+62β1240β11+88β1027β9+259 - 22 \beta_{14} - 27 \beta_{13} + 62 \beta_{12} - 40 \beta_{11} + 88 \beta_{10} - 27 \beta_{9} + \cdots - 259 Copy content Toggle raw display
ν7\nu^{7}== 524β15+265β14293β13182β11222β10+293β9++128 - 524 \beta_{15} + 265 \beta_{14} - 293 \beta_{13} - 182 \beta_{11} - 222 \beta_{10} + 293 \beta_{9} + \cdots + 128 Copy content Toggle raw display
ν8\nu^{8}== 234β14+316β13792β12+546β11923β10+316β9++2713 234 \beta_{14} + 316 \beta_{13} - 792 \beta_{12} + 546 \beta_{11} - 923 \beta_{10} + 316 \beta_{9} + \cdots + 2713 Copy content Toggle raw display
ν9\nu^{9}== 6506β152942β14+3637β13+2101β11+2695β103637β9+1749 6506 \beta_{15} - 2942 \beta_{14} + 3637 \beta_{13} + 2101 \beta_{11} + 2695 \beta_{10} - 3637 \beta_{9} + \cdots - 1749 Copy content Toggle raw display
ν10\nu^{10}== 2594β143605β13+9514β126680β11+10101β10+29935 - 2594 \beta_{14} - 3605 \beta_{13} + 9514 \beta_{12} - 6680 \beta_{11} + 10101 \beta_{10} + \cdots - 29935 Copy content Toggle raw display
ν11\nu^{11}== 77366β15+33081β1443200β1323991β1131763β10++21658 - 77366 \beta_{15} + 33081 \beta_{14} - 43200 \beta_{13} - 23991 \beta_{11} - 31763 \beta_{10} + \cdots + 21658 Copy content Toggle raw display
ν12\nu^{12}== 29416β14+41016β13111416β12+78628β11113122β10++337525 29416 \beta_{14} + 41016 \beta_{13} - 111416 \beta_{12} + 78628 \beta_{11} - 113122 \beta_{10} + \cdots + 337525 Copy content Toggle raw display
ν13\nu^{13}== 902396β15375304β14+503534β13+273782β11+369198β10+257408 902396 \beta_{15} - 375304 \beta_{14} + 503534 \beta_{13} + 273782 \beta_{11} + 369198 \beta_{10} + \cdots - 257408 Copy content Toggle raw display
ν14\nu^{14}== 336384β14467572β13+1289976β12911652β11+1281923β10+3840844 - 336384 \beta_{14} - 467572 \beta_{13} + 1289976 \beta_{12} - 911652 \beta_{11} + 1281923 \beta_{10} + \cdots - 3840844 Copy content Toggle raw display
ν15\nu^{15}== 10431278β15+4279454β145818687β133128719β114262047β10++3002670 - 10431278 \beta_{15} + 4279454 \beta_{14} - 5818687 \beta_{13} - 3128719 \beta_{11} - 4262047 \beta_{10} + \cdots + 3002670 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) β5+β7\beta_{5} + \beta_{7} β7\beta_{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
3.38585i
0.779057i
1.77906i
2.38585i
1.28827i
1.05387i
0.288273i
2.05387i
3.38585i
0.779057i
1.77906i
2.38585i
1.28827i
1.05387i
0.288273i
2.05387i
0.500000 + 0.866025i −0.876322 + 3.27048i −0.500000 + 0.866025i 0 −3.27048 + 0.876322i 3.61605 + 2.08773i −1.00000 −7.33001 4.23198i 0
193.2 0.500000 + 0.866025i −0.201635 + 0.752511i −0.500000 + 0.866025i 0 −0.752511 + 0.201635i −2.09844 1.21153i −1.00000 2.07246 + 1.19654i 0
193.3 0.500000 + 0.866025i 0.460454 1.71844i −0.500000 + 0.866025i 0 1.71844 0.460454i 0.670111 + 0.386889i −1.00000 −0.142931 0.0825211i 0
193.4 0.500000 + 0.866025i 0.617503 2.30455i −0.500000 + 0.866025i 0 2.30455 0.617503i 2.54433 + 1.46897i −1.00000 −2.33157 1.34613i 0
293.1 0.500000 0.866025i −1.24438 + 0.333429i −0.500000 0.866025i 0 −0.333429 + 1.24438i 2.21606 1.27944i −1.00000 −1.16078 + 0.670177i 0
293.2 0.500000 0.866025i −1.01796 + 0.272763i −0.500000 0.866025i 0 −0.272763 + 1.01796i 0.524968 0.303090i −1.00000 −1.63622 + 0.944675i 0
293.3 0.500000 0.866025i 0.278450 0.0746104i −0.500000 0.866025i 0 0.0746104 0.278450i −4.15170 + 2.39698i −1.00000 −2.52611 + 1.45845i 0
293.4 0.500000 0.866025i 1.98389 0.531582i −0.500000 0.866025i 0 0.531582 1.98389i 2.67861 1.54650i −1.00000 1.05516 0.609199i 0
357.1 0.500000 0.866025i −0.876322 3.27048i −0.500000 0.866025i 0 −3.27048 0.876322i 3.61605 2.08773i −1.00000 −7.33001 + 4.23198i 0
357.2 0.500000 0.866025i −0.201635 0.752511i −0.500000 0.866025i 0 −0.752511 0.201635i −2.09844 + 1.21153i −1.00000 2.07246 1.19654i 0
357.3 0.500000 0.866025i 0.460454 + 1.71844i −0.500000 0.866025i 0 1.71844 + 0.460454i 0.670111 0.386889i −1.00000 −0.142931 + 0.0825211i 0
357.4 0.500000 0.866025i 0.617503 + 2.30455i −0.500000 0.866025i 0 2.30455 + 0.617503i 2.54433 1.46897i −1.00000 −2.33157 + 1.34613i 0
457.1 0.500000 + 0.866025i −1.24438 0.333429i −0.500000 + 0.866025i 0 −0.333429 1.24438i 2.21606 + 1.27944i −1.00000 −1.16078 0.670177i 0
457.2 0.500000 + 0.866025i −1.01796 0.272763i −0.500000 + 0.866025i 0 −0.272763 1.01796i 0.524968 + 0.303090i −1.00000 −1.63622 0.944675i 0
457.3 0.500000 + 0.866025i 0.278450 + 0.0746104i −0.500000 + 0.866025i 0 0.0746104 + 0.278450i −4.15170 2.39698i −1.00000 −2.52611 1.45845i 0
457.4 0.500000 + 0.866025i 1.98389 + 0.531582i −0.500000 + 0.866025i 0 0.531582 + 1.98389i 2.67861 + 1.54650i −1.00000 1.05516 + 0.609199i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 193.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.o even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.w.h yes 16
5.b even 2 1 650.2.w.f yes 16
5.c odd 4 1 650.2.t.f 16
5.c odd 4 1 650.2.t.h yes 16
13.f odd 12 1 650.2.t.f 16
65.o even 12 1 inner 650.2.w.h yes 16
65.s odd 12 1 650.2.t.h yes 16
65.t even 12 1 650.2.w.f yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.2.t.f 16 5.c odd 4 1
650.2.t.f 16 13.f odd 12 1
650.2.t.h yes 16 5.c odd 4 1
650.2.t.h yes 16 65.s odd 12 1
650.2.w.f yes 16 5.b even 2 1
650.2.w.f yes 16 65.t even 12 1
650.2.w.h yes 16 1.a even 1 1 trivial
650.2.w.h yes 16 65.o even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T316+12T31412T313+23T31212T311228T310+48T39++81 T_{3}^{16} + 12 T_{3}^{14} - 12 T_{3}^{13} + 23 T_{3}^{12} - 12 T_{3}^{11} - 228 T_{3}^{10} + 48 T_{3}^{9} + \cdots + 81 acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)8 (T^{2} - T + 1)^{8} Copy content Toggle raw display
33 T16+12T14++81 T^{16} + 12 T^{14} + \cdots + 81 Copy content Toggle raw display
55 T16 T^{16} Copy content Toggle raw display
77 T1612T15++279841 T^{16} - 12 T^{15} + \cdots + 279841 Copy content Toggle raw display
1111 T16+4T15++81 T^{16} + 4 T^{15} + \cdots + 81 Copy content Toggle raw display
1313 T16++815730721 T^{16} + \cdots + 815730721 Copy content Toggle raw display
1717 T16+8T15++9199089 T^{16} + 8 T^{15} + \cdots + 9199089 Copy content Toggle raw display
1919 T1616T15++81 T^{16} - 16 T^{15} + \cdots + 81 Copy content Toggle raw display
2323 T16+4T15++11881809 T^{16} + 4 T^{15} + \cdots + 11881809 Copy content Toggle raw display
2929 T16++7001170929 T^{16} + \cdots + 7001170929 Copy content Toggle raw display
3131 T16+8T15++20736 T^{16} + 8 T^{15} + \cdots + 20736 Copy content Toggle raw display
3737 T16+36T15++187489 T^{16} + 36 T^{15} + \cdots + 187489 Copy content Toggle raw display
4141 T16++5749430625 T^{16} + \cdots + 5749430625 Copy content Toggle raw display
4343 T16++45270647361 T^{16} + \cdots + 45270647361 Copy content Toggle raw display
4747 T16++4512867171201 T^{16} + \cdots + 4512867171201 Copy content Toggle raw display
5353 T16++178024081041 T^{16} + \cdots + 178024081041 Copy content Toggle raw display
5959 T16+24T15++3470769 T^{16} + 24 T^{15} + \cdots + 3470769 Copy content Toggle raw display
6161 T16+20T15++42849 T^{16} + 20 T^{15} + \cdots + 42849 Copy content Toggle raw display
6767 T16++36051756129 T^{16} + \cdots + 36051756129 Copy content Toggle raw display
7171 T16++10 ⁣ ⁣64 T^{16} + \cdots + 10\!\cdots\!64 Copy content Toggle raw display
7373 (T8304T6++90000)2 (T^{8} - 304 T^{6} + \cdots + 90000)^{2} Copy content Toggle raw display
7979 T16++211086032481 T^{16} + \cdots + 211086032481 Copy content Toggle raw display
8383 T16++175707680625 T^{16} + \cdots + 175707680625 Copy content Toggle raw display
8989 T16++709755295760289 T^{16} + \cdots + 709755295760289 Copy content Toggle raw display
9797 T16++45 ⁣ ⁣89 T^{16} + \cdots + 45\!\cdots\!89 Copy content Toggle raw display
show more
show less