Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [650,2,Mod(193,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([9, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.193");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 650.w (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
193.1 |
|
0.500000 | + | 0.866025i | −0.876322 | + | 3.27048i | −0.500000 | + | 0.866025i | 0 | −3.27048 | + | 0.876322i | 3.61605 | + | 2.08773i | −1.00000 | −7.33001 | − | 4.23198i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
193.2 | 0.500000 | + | 0.866025i | −0.201635 | + | 0.752511i | −0.500000 | + | 0.866025i | 0 | −0.752511 | + | 0.201635i | −2.09844 | − | 1.21153i | −1.00000 | 2.07246 | + | 1.19654i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
193.3 | 0.500000 | + | 0.866025i | 0.460454 | − | 1.71844i | −0.500000 | + | 0.866025i | 0 | 1.71844 | − | 0.460454i | 0.670111 | + | 0.386889i | −1.00000 | −0.142931 | − | 0.0825211i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
193.4 | 0.500000 | + | 0.866025i | 0.617503 | − | 2.30455i | −0.500000 | + | 0.866025i | 0 | 2.30455 | − | 0.617503i | 2.54433 | + | 1.46897i | −1.00000 | −2.33157 | − | 1.34613i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
293.1 | 0.500000 | − | 0.866025i | −1.24438 | + | 0.333429i | −0.500000 | − | 0.866025i | 0 | −0.333429 | + | 1.24438i | 2.21606 | − | 1.27944i | −1.00000 | −1.16078 | + | 0.670177i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
293.2 | 0.500000 | − | 0.866025i | −1.01796 | + | 0.272763i | −0.500000 | − | 0.866025i | 0 | −0.272763 | + | 1.01796i | 0.524968 | − | 0.303090i | −1.00000 | −1.63622 | + | 0.944675i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
293.3 | 0.500000 | − | 0.866025i | 0.278450 | − | 0.0746104i | −0.500000 | − | 0.866025i | 0 | 0.0746104 | − | 0.278450i | −4.15170 | + | 2.39698i | −1.00000 | −2.52611 | + | 1.45845i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
293.4 | 0.500000 | − | 0.866025i | 1.98389 | − | 0.531582i | −0.500000 | − | 0.866025i | 0 | 0.531582 | − | 1.98389i | 2.67861 | − | 1.54650i | −1.00000 | 1.05516 | − | 0.609199i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
357.1 | 0.500000 | − | 0.866025i | −0.876322 | − | 3.27048i | −0.500000 | − | 0.866025i | 0 | −3.27048 | − | 0.876322i | 3.61605 | − | 2.08773i | −1.00000 | −7.33001 | + | 4.23198i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
357.2 | 0.500000 | − | 0.866025i | −0.201635 | − | 0.752511i | −0.500000 | − | 0.866025i | 0 | −0.752511 | − | 0.201635i | −2.09844 | + | 1.21153i | −1.00000 | 2.07246 | − | 1.19654i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
357.3 | 0.500000 | − | 0.866025i | 0.460454 | + | 1.71844i | −0.500000 | − | 0.866025i | 0 | 1.71844 | + | 0.460454i | 0.670111 | − | 0.386889i | −1.00000 | −0.142931 | + | 0.0825211i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
357.4 | 0.500000 | − | 0.866025i | 0.617503 | + | 2.30455i | −0.500000 | − | 0.866025i | 0 | 2.30455 | + | 0.617503i | 2.54433 | − | 1.46897i | −1.00000 | −2.33157 | + | 1.34613i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
457.1 | 0.500000 | + | 0.866025i | −1.24438 | − | 0.333429i | −0.500000 | + | 0.866025i | 0 | −0.333429 | − | 1.24438i | 2.21606 | + | 1.27944i | −1.00000 | −1.16078 | − | 0.670177i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
457.2 | 0.500000 | + | 0.866025i | −1.01796 | − | 0.272763i | −0.500000 | + | 0.866025i | 0 | −0.272763 | − | 1.01796i | 0.524968 | + | 0.303090i | −1.00000 | −1.63622 | − | 0.944675i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
457.3 | 0.500000 | + | 0.866025i | 0.278450 | + | 0.0746104i | −0.500000 | + | 0.866025i | 0 | 0.0746104 | + | 0.278450i | −4.15170 | − | 2.39698i | −1.00000 | −2.52611 | − | 1.45845i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
457.4 | 0.500000 | + | 0.866025i | 1.98389 | + | 0.531582i | −0.500000 | + | 0.866025i | 0 | 0.531582 | + | 1.98389i | 2.67861 | + | 1.54650i | −1.00000 | 1.05516 | + | 0.609199i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.o | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 650.2.w.h | yes | 16 |
5.b | even | 2 | 1 | 650.2.w.f | yes | 16 | |
5.c | odd | 4 | 1 | 650.2.t.f | ✓ | 16 | |
5.c | odd | 4 | 1 | 650.2.t.h | yes | 16 | |
13.f | odd | 12 | 1 | 650.2.t.f | ✓ | 16 | |
65.o | even | 12 | 1 | inner | 650.2.w.h | yes | 16 |
65.s | odd | 12 | 1 | 650.2.t.h | yes | 16 | |
65.t | even | 12 | 1 | 650.2.w.f | yes | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
650.2.t.f | ✓ | 16 | 5.c | odd | 4 | 1 | |
650.2.t.f | ✓ | 16 | 13.f | odd | 12 | 1 | |
650.2.t.h | yes | 16 | 5.c | odd | 4 | 1 | |
650.2.t.h | yes | 16 | 65.s | odd | 12 | 1 | |
650.2.w.f | yes | 16 | 5.b | even | 2 | 1 | |
650.2.w.f | yes | 16 | 65.t | even | 12 | 1 | |
650.2.w.h | yes | 16 | 1.a | even | 1 | 1 | trivial |
650.2.w.h | yes | 16 | 65.o | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .