L(s) = 1 | + 2i·2-s − 1.62i·3-s − 4·4-s + 3.24·6-s + 2.62i·7-s − 8i·8-s + 24.3·9-s − 51.1·11-s + 6.49i·12-s − 13i·13-s − 5.24·14-s + 16·16-s + 4.36i·17-s + 48.7i·18-s + 47.4·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.312i·3-s − 0.5·4-s + 0.220·6-s + 0.141i·7-s − 0.353i·8-s + 0.902·9-s − 1.40·11-s + 0.156i·12-s − 0.277i·13-s − 0.100·14-s + 0.250·16-s + 0.0622i·17-s + 0.638i·18-s + 0.573·19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(0.894−0.447i)Λ(4−s)
Λ(s)=(=(650s/2ΓC(s+3/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
38.3512 |
Root analytic conductor: |
6.19283 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :3/2), 0.894−0.447i)
|
Particular Values
L(2) |
≈ |
1.788323963 |
L(21) |
≈ |
1.788323963 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 5 | 1 |
| 13 | 1+13iT |
good | 3 | 1+1.62iT−27T2 |
| 7 | 1−2.62iT−343T2 |
| 11 | 1+51.1T+1.33e3T2 |
| 17 | 1−4.36iT−4.91e3T2 |
| 19 | 1−47.4T+6.85e3T2 |
| 23 | 1−91.5iT−1.21e4T2 |
| 29 | 1−139.T+2.43e4T2 |
| 31 | 1−31.1T+2.97e4T2 |
| 37 | 1+377.iT−5.06e4T2 |
| 41 | 1+7.71T+6.89e4T2 |
| 43 | 1+75.5iT−7.95e4T2 |
| 47 | 1−186.iT−1.03e5T2 |
| 53 | 1+236.iT−1.48e5T2 |
| 59 | 1−4.36T+2.05e5T2 |
| 61 | 1−380.T+2.26e5T2 |
| 67 | 1−98.2iT−3.00e5T2 |
| 71 | 1−1.16e3T+3.57e5T2 |
| 73 | 1−404.iT−3.89e5T2 |
| 79 | 1−856.T+4.93e5T2 |
| 83 | 1−920.iT−5.71e5T2 |
| 89 | 1−1.52e3T+7.04e5T2 |
| 97 | 1+960.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.11260102476124476804925987694, −9.319338338000401015657113912916, −8.158542131109715790041623330803, −7.59159891177575733982919487694, −6.80618862138402083258021255408, −5.66334557253068368440901373465, −4.95734142805661577683190918634, −3.72395545287353145770519826938, −2.33149936289840854596807597285, −0.75220340419365490380966276786,
0.830669908655800126291687768571, 2.25631649111312587671975089838, 3.33159046459911736920967532245, 4.52452948077747458748486351323, 5.14699670409903873733809223291, 6.52883180508908881034571198945, 7.60572993251976460974912084798, 8.431060422507145641270022636387, 9.504625471068891837142373137078, 10.26949456076721477479630390336