Properties

Label 650.4.b.i
Level $650$
Weight $4$
Character orbit 650.b
Analytic conductor $38.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,4,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{105})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 53x^{2} + 676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta_{2} q^{2} + ( - 3 \beta_{2} + \beta_1) q^{3} - 4 q^{4} + (2 \beta_{3} - 8) q^{6} + (2 \beta_{2} - \beta_1) q^{7} + 8 \beta_{2} q^{8} + (7 \beta_{3} - 15) q^{9} + ( - 5 \beta_{3} - 23) q^{11}+ \cdots + ( - 121 \beta_{3} - 565) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 28 q^{6} - 46 q^{9} - 102 q^{11} + 20 q^{14} + 64 q^{16} - 56 q^{19} + 140 q^{21} + 112 q^{24} + 104 q^{26} + 396 q^{29} + 350 q^{31} + 252 q^{34} + 184 q^{36} + 182 q^{39} + 420 q^{41}+ \cdots - 2502 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 53x^{2} + 676 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 27\nu ) / 26 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 27 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 26\beta_{2} - 27\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
5.62348i
4.62348i
4.62348i
5.62348i
2.00000i 8.62348i −4.00000 0 −17.2470 7.62348i 8.00000i −47.3643 0
599.2 2.00000i 1.62348i −4.00000 0 3.24695 2.62348i 8.00000i 24.3643 0
599.3 2.00000i 1.62348i −4.00000 0 3.24695 2.62348i 8.00000i 24.3643 0
599.4 2.00000i 8.62348i −4.00000 0 −17.2470 7.62348i 8.00000i −47.3643 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.b.i 4
5.b even 2 1 inner 650.4.b.i 4
5.c odd 4 1 650.4.a.m 2
5.c odd 4 1 650.4.a.p yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.4.a.m 2 5.c odd 4 1
650.4.a.p yes 2 5.c odd 4 1
650.4.b.i 4 1.a even 1 1 trivial
650.4.b.i 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(650, [\chi])\):

\( T_{3}^{4} + 77T_{3}^{2} + 196 \) Copy content Toggle raw display
\( T_{7}^{4} + 65T_{7}^{2} + 400 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 77T^{2} + 196 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 65T^{2} + 400 \) Copy content Toggle raw display
$11$ \( (T^{2} + 51 T - 6)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 4557 T^{2} + 86436 \) Copy content Toggle raw display
$19$ \( (T^{2} + 28 T - 3584)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 15213 T^{2} + 57244356 \) Copy content Toggle raw display
$29$ \( (T^{2} - 198 T + 8121)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 175 T + 4480)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 9230597776 \) Copy content Toggle raw display
$41$ \( (T^{2} - 210 T - 1680)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 15437 T^{2} + 55562116 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 6089617296 \) Copy content Toggle raw display
$53$ \( T^{4} + 58458 T^{2} + 142348761 \) Copy content Toggle raw display
$59$ \( (T^{2} + 63 T - 294)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 182 T - 213899)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 6073084900 \) Copy content Toggle raw display
$71$ \( (T^{2} - 390 T - 909600)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 205702159936 \) Copy content Toggle raw display
$79$ \( (T^{2} - 863 T + 5356)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 311330520900 \) Copy content Toggle raw display
$89$ \( (T^{2} - 1638 T + 170856)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 687745124416 \) Copy content Toggle raw display
show more
show less