Properties

Label 650.4.a.m
Level $650$
Weight $4$
Character orbit 650.a
Self dual yes
Analytic conductor $38.351$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,4,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{105}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{105})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + ( - \beta + 4) q^{3} + 4 q^{4} + (2 \beta - 8) q^{6} + ( - \beta + 3) q^{7} - 8 q^{8} + ( - 7 \beta + 15) q^{9} + ( - 5 \beta - 23) q^{11} + ( - 4 \beta + 16) q^{12} - 13 q^{13} + (2 \beta - 6) q^{14}+ \cdots + (121 \beta + 565) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 7 q^{3} + 8 q^{4} - 14 q^{6} + 5 q^{7} - 16 q^{8} + 23 q^{9} - 51 q^{11} + 28 q^{12} - 26 q^{13} - 10 q^{14} + 32 q^{16} + 63 q^{17} - 46 q^{18} + 28 q^{19} + 70 q^{21} + 102 q^{22} + 9 q^{23}+ \cdots + 1251 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.62348
−4.62348
−2.00000 −1.62348 4.00000 0 3.24695 −2.62348 −8.00000 −24.3643 0
1.2 −2.00000 8.62348 4.00000 0 −17.2470 7.62348 −8.00000 47.3643 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.a.m 2
5.b even 2 1 650.4.a.p yes 2
5.c odd 4 2 650.4.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.4.a.m 2 1.a even 1 1 trivial
650.4.a.p yes 2 5.b even 2 1
650.4.b.i 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(650))\):

\( T_{3}^{2} - 7T_{3} - 14 \) Copy content Toggle raw display
\( T_{7}^{2} - 5T_{7} - 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 7T - 14 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 5T - 20 \) Copy content Toggle raw display
$11$ \( T^{2} + 51T - 6 \) Copy content Toggle raw display
$13$ \( (T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 63T - 294 \) Copy content Toggle raw display
$19$ \( T^{2} - 28T - 3584 \) Copy content Toggle raw display
$23$ \( T^{2} - 9T - 7566 \) Copy content Toggle raw display
$29$ \( T^{2} + 198T + 8121 \) Copy content Toggle raw display
$31$ \( T^{2} - 175T + 4480 \) Copy content Toggle raw display
$37$ \( T^{2} - 632T + 96076 \) Copy content Toggle raw display
$41$ \( T^{2} - 210T - 1680 \) Copy content Toggle raw display
$43$ \( T^{2} - 23T - 7454 \) Copy content Toggle raw display
$47$ \( T^{2} - 231T - 78036 \) Copy content Toggle raw display
$53$ \( T^{2} + 186T - 11931 \) Copy content Toggle raw display
$59$ \( T^{2} - 63T - 294 \) Copy content Toggle raw display
$61$ \( T^{2} + 182T - 213899 \) Copy content Toggle raw display
$67$ \( T^{2} - 695T - 77930 \) Copy content Toggle raw display
$71$ \( T^{2} - 390T - 909600 \) Copy content Toggle raw display
$73$ \( T^{2} - 1526 T + 453544 \) Copy content Toggle raw display
$79$ \( T^{2} + 863T + 5356 \) Copy content Toggle raw display
$83$ \( T^{2} - 315T - 557970 \) Copy content Toggle raw display
$89$ \( T^{2} + 1638 T + 170856 \) Copy content Toggle raw display
$97$ \( T^{2} - 98T - 829304 \) Copy content Toggle raw display
show more
show less