Properties

Label 4-650e2-1.1-c3e2-0-9
Degree $4$
Conductor $422500$
Sign $1$
Analytic cond. $1470.81$
Root an. cond. $6.19283$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 7·3-s + 12·4-s − 28·6-s + 5·7-s − 32·8-s + 9·9-s − 51·11-s + 84·12-s − 26·13-s − 20·14-s + 80·16-s + 63·17-s − 36·18-s + 28·19-s + 35·21-s + 204·22-s + 9·23-s − 224·24-s + 104·26-s − 28·27-s + 60·28-s − 198·29-s + 175·31-s − 192·32-s − 357·33-s − 252·34-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.34·3-s + 3/2·4-s − 1.90·6-s + 0.269·7-s − 1.41·8-s + 1/3·9-s − 1.39·11-s + 2.02·12-s − 0.554·13-s − 0.381·14-s + 5/4·16-s + 0.898·17-s − 0.471·18-s + 0.338·19-s + 0.363·21-s + 1.97·22-s + 0.0815·23-s − 1.90·24-s + 0.784·26-s − 0.199·27-s + 0.404·28-s − 1.26·29-s + 1.01·31-s − 1.06·32-s − 1.88·33-s − 1.27·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(422500\)    =    \(2^{2} \cdot 5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1470.81\)
Root analytic conductor: \(6.19283\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 422500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.909535402\)
\(L(\frac12)\) \(\approx\) \(1.909535402\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p T )^{2} \)
5 \( 1 \)
13$C_1$ \( ( 1 + p T )^{2} \)
good3$D_{4}$ \( 1 - 7 T + 40 T^{2} - 7 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 5 T + 666 T^{2} - 5 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 51 T + 2656 T^{2} + 51 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 63 T + 9532 T^{2} - 63 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 28 T + 10134 T^{2} - 28 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 9 T + 16768 T^{2} - 9 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 198 T + 56899 T^{2} + 198 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 175 T + 64062 T^{2} - 175 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 632 T + 197382 T^{2} - 632 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 210 T + 136162 T^{2} - 210 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 23 T + 151560 T^{2} - 23 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 231 T + 129610 T^{2} - 231 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 186 T + 285823 T^{2} + 186 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 63 T + 410464 T^{2} - 63 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 182 T + 240063 T^{2} + 182 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 695 T + 523596 T^{2} - 695 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 390 T - 193778 T^{2} - 390 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 1526 T + 1231578 T^{2} - 1526 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 863 T + 991434 T^{2} + 863 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 315 T + 585604 T^{2} - 315 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 1638 T + 1580794 T^{2} + 1638 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 98 T + 996042 T^{2} - 98 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14457539118605069147347330741, −9.668300201491275622154802080968, −9.426879682177825617975149046077, −9.323951962850405555687678826758, −8.344792590739361304099178245460, −8.249028020448431955275621115210, −7.88291219545671808973735537601, −7.72687333271058219638906277977, −7.11070658147207233406910946179, −6.63577798542684304804278507107, −5.72149247477053852037659481783, −5.71167017401484748595428607984, −4.82751247384841894313216212725, −4.27671325650200537056196266278, −3.17863618884491847534005883639, −3.17215838905741677826473202020, −2.29552048444035712697478301742, −2.23989294362442183115129447094, −1.12651675474771976048296918426, −0.49776152233045255375828449596, 0.49776152233045255375828449596, 1.12651675474771976048296918426, 2.23989294362442183115129447094, 2.29552048444035712697478301742, 3.17215838905741677826473202020, 3.17863618884491847534005883639, 4.27671325650200537056196266278, 4.82751247384841894313216212725, 5.71167017401484748595428607984, 5.72149247477053852037659481783, 6.63577798542684304804278507107, 7.11070658147207233406910946179, 7.72687333271058219638906277977, 7.88291219545671808973735537601, 8.249028020448431955275621115210, 8.344792590739361304099178245460, 9.323951962850405555687678826758, 9.426879682177825617975149046077, 9.668300201491275622154802080968, 10.14457539118605069147347330741

Graph of the $Z$-function along the critical line